Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wspomaganie Decyzji. Roman Słowiński. Zakład Inteligentnych Systemów Wspomagania Decyzji. Instytut Informatyki. Politechniki Poznańskiej"

Transkrypt

1 Wspomaganie Decyzji Roman Słowiński Zakład Inteligentnyc Systemów Wspomagania Decyzji Instytut Informatyki Politecniki Poznańskiej Roman Słowiński

2 Problem decyzyjny Istnieje cel lub cele do osiągnięcia Istnieją alternatywne sposoby osiągnięcia tego celu (celów) Wybór najlepszego sposobu nie jest trywialny 2

3 Modele problemów decyzyjnyc Modele teorio-decyzyjne (matematyczne): optymalizacyjny (badania operacyjne) wielokryterialny (wielokryterialne wspomaganie decyzji) Modele sztucznej inteligencji: logiczny (maszynowe uczenie się) neuronowy (sztuczne sieci neuronowe) 3

4 Modele problemów decyzyjnyc Modelowanie matematyczne: Reprezentacja problemu decyzyjnego z użyciem funkcji rzeczywistyc (której argumentami są zmienne modelu), lub z użyciem relacji porządkującyc Forma reprezentacji: programowanie matematyczne, relacja preferencji w zbiorze wariantów decyzyjnyc Modele sztucznej inteligencji: Budowanie reprezentacji problemu decyzyjnego na drodze analizy przykładów decyzji (przykładów uczącyc) Forma reprezentacji: funkcje rzeczywiste, reguły decyzyjne, drzewa decyzyjne, sieci semantyczne

5 Modelowanie problemów decyzyjnyc a niedoskonałość informacji Racunek prawdopodobieństwa i statystyka matematyczna [Bernoulli, 7] niepewność wynikająca z przypadkowej zmienności parametrów (werystyczna) Aksjomat o addytywności prawdopodobieństw zdarzeń rozłącznyc: P(A) + P( A) Teoria zbiorów rozmytyc [Zade, 9] niepewność natury subiektywnej (posybilistyczna) i nieostrość pojęć: ( ) + µ ( ) µ A A Teoria zbiorów przybliżonyc [Pawlak, 982] niepewność wynikająca z granularności informacji (niespójność, dwuznaczność): obiekt albo na pewno należy, albo być może należy, albo na pewno nie należy do zbioru A

6 Model programowania matematycznego ) rozwiązanie (wariant decyzyjny): [,..., n ] 2) funkcja celu (kryterium): f(,..., n ) 3) ograniczenia definiujące zbiór A rozwiązań dopuszczalnyc (wariantów decyzyjnyc): g i (,..., n ), i,...,m Problem programowania matematycznego: Należy: z f(,..., n ) MIN (lub MAX) przy ograniczeniac: g i (,..., n ) (lub ) b i, i,...,m

7 Problem programowania liniowego (PL) 7 { },...,n j,...,m i b,, a MIN c z j i n j j ij n j j j,, przy ograniczeniac:

8 Wielokryterialny problem PL (WPL) 8 { },...,n j,...,m i b,, a MIN c z c z j i n j j ij n j j k j k n j j j,, przy ograniczeniac:

9 Problemy decyzyjne modelowane w kategoriac programowania matematycznego, sprowadzalne do programowania liniowego Problem programowania ilorazowego c + c z d + d MIN przy ograniczeniac : A b, d + d > gdzie c T [,..., n], b [ b,...,bm ] [ c,...,c ], d [ d,...,d ] n n T Transformacja Carnesa-Coopera 9

10 Transformacja Carnesa-Coopera Wprowadzamy zmienne pomocnicze: u d + d u d + d, czyli u,...,n Podstawiając te zmienne do funkcji celu i ograniczeń, otrzymujemy: j j, j d + d c + c c + c d + d d + d d + d A b A b d + d d + d u d + d ponieważ d + d >, to d + cu + c d u Au bu > u >

11 Transformacja Carnesa-Coopera Ponadto dla powiązania u i u : u d d + d + u d d + d d + d du + du d + d Otrzymaliśmy następujący problem zastępczy równoważny problemowi programowania ilorazowego: z cu + cu MIN przy ograniczeniac : Au bu du + du u, u >

12 Transformacja Carnesa-Coopera Problem ten byłby problemem PL, gdyby u, a nie u > Tw. Jeżeli istnieje rozwiązanie optymalne problemu zastępczego ( ) z warunkiem u (czyli problemu PL) postaci u,u, takie że ( ), to wektor u > u,u jest rozwiązaniem optymalnym wyjściowego problemu programowania ilorazowego W zagadnieniac praktycznyc zazwyczaj spełniony jest warunek u >, dlatego stosowanie metody Carnesa-Coopera i rozwiązywanie problemu zastępczego jako problemu PL kończy się powodzeniem. 2

13 Problem programowania celowego z przy A gdzie c k w c ograniczeniac : b MIN T [,..., n], b [ b,...,bm ] [ c,...,c ],,...,k n c gdzie c są wartościami pożądanymi funkcji c,,..,k (cele) T 3

14 Wprowadzamy zmienne oznaczające odcyłki od celów: Mamy Otrzymujemy zastępczy równoważny problem PL: { } { } k,..., c,c ma y c,c ma y,, +,...,k y y y y y y c c y y c c,,, ( ),...,k,y y b A y y c c ograniczeniac : przy MIN y y w z k,,

15 + ( ) Tw. Jeśli, y, y jest rozwiązaniem optymalnym zastępczego problemu PL, to + y y,,...,k

16 Problem programowania min-ma (problem Czebyszewa) z przy A gdzie c MAX,...,k { w ( c c )} ograniczeniac : b MIN T [,..., n], b [ b,...,bm ] [ c,...,c ],,...,k n T

17 Wprowadzamy zmienną pomocniczą: funkcji typu α c można także sprowadzić do problemu PL w podobny sposób, wprowadzając dla każdej z tyc funkcji osobną zmienna typu α c c c,,...,k Otrzymujemy zastępczy równoważny problem PL: α MIN przy ograniczeniac : α,,..,k A b (zmienna α nie musi być nieujemna) Problem, w którym należy minimalizować sumę skończonej liczby MAX,...,k { w ( c c )} 7

18 Problem transportowy m liczba punktów nadawczyc (magazyny) n liczba punktów odbiorczyc (klienci) koszt transportu jednostki towaru z magazynu i do odbiorcy j d j zapotrzebowanie odbiorcy j s i ilość towaru w magazynie i Należy zminimalizować łączne koszty transportu Zmienna decyzyjna: ij ilość towaru przesłana z magazynu i do odbiorcy j 8

19 Problem transportowy z ij n j m i gdzie m i m n i j przy ograniczeniac : i,...,m, j,...,n s i ij ij s d i j c n j ij d MIN i,...,m j,...,n j ij Problem ten można rozwiązać metodą sympleksów 9

20 Problem przydziału m liczba zadań (programy) m liczba wykonawców (procesory) koszt wykonania i przez wykonawcę j Elementy tworzą macierz efektywności C[ ] o wymiarac m m Każde zadanie może być wykonywane przez co najwyżej jednego wykonawcę Każdy wykonawca może wykonać tylko jedno zadanie Należy tak przydzielić do wykonawców, by zminimalizować łączny koszt wykonania wszystkic zadań 2

21 Zmienna decyzyjna: ij,, gdy wykonawca i nie w przeciwnym razie jest przydzielony do j z m m i j c ij ij MIN przy ograniczeniac : m j ij i,...,m m i ij j,...,m ij {, } i,...,m, j,..., m Jest to problem - programowania liniowego Jest to także przypadek szczególny problemu transportowego, gdzie s i d j, nm i zmienna decyzyjna jest - 2

22 Problem transportowy ma tę korzystną własność, że jeżeli s i i d j są liczbami całkowitymi i istnieje coćby jedno rozwiązanie dopuszczalne, to istnieje rozwiązanie optymalne, w którym ij są wszystkie liczbami całkowitymi lub zerami Metoda sympleksowa znajduje to całkowitoliczbowe rozwiązanie optymalne Dzieje się tak dlatego, gdyż macierz współczynników ograniczeń A problemu transportowego jest unimodularna (wyznacznik dowolnej podmacierzy kwadratowej macierzy A jest, lub -), a wektor prawyc stron ograniczeń b jest złożony z liczb całkowityc (B - b) Problem przydziału ma zatem tę samą własność Istnieje jednak prostsza metoda rozwiązania problemu przydziału 22

23 Macierz efektywności C[ ] o wymiarac m m przydział niedopuszczalny Przydział do polega na wyborze konkretnego elementu Tyc m wybranyc elementów ma dać minimalną sumę 23

24 Operacje arytmetyczne na macierzy efektywności C[ ] nie powodujące zmiany rozwiązania optymalnego: Dodanie lub odjęcie dowolnej stałej od dowolnego wiersza lub kolumny macierzy C[ ] Np. odejmując 3 od wiersza i oraz dodając 2 do kolumny j otrzymamy: z gdyż m i j m m j c ij ij ij 3 m i ij m j ij + 2 m i ij m i j 3 + 2, tzn. funkcja celu ulega tylko przesunięciu o pewna stałą m c ij ij 2

25 Odejmijmy zatem najmniejszy element różny od zera w każdym wierszu i w każdej kolumnie:

26 Odejmijmy zatem najmniejszy element różny od zera w każdym wierszu i w każdej kolumnie:

27 Otrzymujemy macierz efektywności C[ ] z co najmniej m elementami zerowymi: Warunkiem koniecznym optymalnego przydziału jest dokonanie go według współrzędnyc elementów zerowyc macierzy C[ ] Warunkiem dostatecznym optymalnego przydziału jest niezależność m wybranyc elementów zerowyc macierzy C[ ], według któryc nastąpił przydział (para elementów niezależnyc elementy w dwóc różnyc wierszac i w dwóc różnyc kolumnac) 27

28 Twierdzenie Königa: Maksymalna liczba niezależnyc elementów zerowyc dowolnej macierzy C równa jest minimalnej liczbie linii koniecznyc do pokrycia wszystkic elementów zerowyc tej macierzy Na powyższyc elementac zerowyc macierzy C nie da się stworzyć optymalnego przydziału (3 linie 3 elementy zerowe niezależne < ) 28

29 Algorytm metody węgierskiej (dla minimalizacji łącznego kosztu przydziału). W każdym wierszu wyznacz minimalny element i odejmij go od każdego elementu tego wiersza

30 2. W każdej kolumnie wyznacz minimalny element i odejmij go od każdego elementu tej kolumny Jeśli w danym wierszu jest dokł. jedno nienaznaczone zero, to naznacz je symbolem i skreśl inne zera w odpowiadającej mu kolumnie.. Jeśli w danej kolumnie jest dokł. jedno nienaznaczone zero, to naznacz je symbolem i skreśl inne zera w odpowiadającym mu wierszu. 3

31 . Kroki 3 powtarzaj do wyczerpania. Jeśli znaleziono przydział do m zer, to jest on optymalny STOP.. Jeśli są jeszcze nienaznaczone zera, to naznacz jedno z nic symbolem ( północno-zacodnie ) i skreśl inne zera w odpowiadającej mu kolumnie i wierszu np. # # # # # # # # # # Zaznacz wiersze bez przydziału. 8. Zaznacz kolumny, które mają zero w dowolnym zaznaczonym wierszu. 9. Zaznacz wiersze, które mają przydział w zaznaczonyc kolumnac.. Powtarzaj kroki 8 9 do wyczerpania. 3

32 . Pokryj liniami niezaznaczone wiersze i zaznaczone kolumny Jeśli liczba linii pokrywającyc wszystkie zera jest równa liczbie naznaczonyc zer, to znajdź minimalny niepokryty element, odejmij go od niepokrytyc (zaznaczonyc) wierszy i dodaj do pokrytyc (zaznaczonyc) kolumn, po czym wróć do kroku 3. W przeciwnym razie przejdź do kroku 3. 32

33 . Pokryj liniami niezaznaczone wiersze i zaznaczone kolumny Jeśli liczba linii pokrywającyc wszystkie zera jest równa liczbie naznaczonyc zer, to znajdź minimalny niepokryty element, odejmij go od niepokrytyc (zaznaczonyc) wierszy i dodaj do pokrytyc (zaznaczonyc) kolumn, po czym wróć do kroku 3. W przeciwnym razie przejdź do kroku 3. 33

34 Kroki 3,, : Optymalny przydział: wykonawca zadanie koszt w z3 9 + w2 z2 + w3 z + w z 28 3

35 3. Skonstruuj graf skierowany o 2m+2 wierzcołkac: s, w,,w m, z,,z m, t. Dla każdego naznaczonego zera ( ) o współrzędnyc (i,j) utwórz łuk z j w i ; dla zer skreślonyc ( ) o współrzędnyc (i,j) łuk w i z j ; dla wierszy i bez przydziału łuk s w i ; dla kolumn j bez przydziału łuk z j t. np Konieczne są linie do pokrycia wszystkic zer, czyli istnieją zera niezależne, a przydziału dokonano tylko do 3 zer. 3

36 3. Skonstruuj graf skierowany o 2m+2 wierzcołkac: s, w,,w m, z,,z m, t. Dla każdego naznaczonego zera ( ) o współrzędnyc (i,j) utwórz łuk z j w i ; dla zer skreślonyc ( ) o współrzędnyc (i,j) łuk w i z j ; dla wierszy i bez przydziału łuk s w i ; dla kolumn j bez przydziału łuk z j t. w z s w2 w3 w z2 z3 z t wiersz (wykonawca) kolumna (zadanie) 3

37 3. Skonstruuj graf skierowany o 2m+2 wierzcołkac: s, w,,w m, z,,z m, t. Dla każdego naznaczonego zera ( ) o współrzędnyc (i,j) utwórz łuk z j w i ; dla zer skreślonyc ( ) o współrzędnyc (i,j) łuk w i z j ; dla wierszy i bez przydziału łuk s w i ; dla kolumn j bez przydziału łuk z j t. w z s w2 w3 w z2 z3 z t wiersz (wykonawca) kolumna (zadanie) 37

38 3. Skonstruuj graf skierowany o 2m+2 wierzcołkac: s, w,,w m, z,,z m, t. Dla każdego naznaczonego zera ( ) o współrzędnyc (i,j) utwórz łuk z j w i ; dla zer skreślonyc ( ) o współrzędnyc (i,j) łuk w i z j ; dla wierszy i bez przydziału łuk s w i ; dla kolumn j bez przydziału łuk z j t. w z s w2 w3 w z2 z3 z t wiersz (wykonawca) kolumna (zadanie) 38

39 . Z otrzymanego grafu utwórz sieć warstwową: do pierwszej warstwy wstaw wierzcołek s, do warstwy i+ wstaw każdy wierzcołek, którego nie ma w warstwie wcześniejszej, i do którego docodzi łuk z dowolnego wierzcołka warstwy i. W ostatniej warstwie znajdzie się wierzcołek t. w z s w2 w3 w z2 z3 z t wiersz (wykonawca) kolumna (zadanie) 39

40 . Z otrzymanego grafu utwórz sieć warstwową: do pierwszej warstwy wstaw wierzcołek s, do warstwy i+ wstaw każdy wierzcołek, którego nie ma w warstwie wcześniejszej, i do którego docodzi łuk z dowolnego wierzcołka warstwy i. W ostatniej warstwie znajdzie się wierzcołek t. w z s w2 z2 t w3 z3 w z sieć warstwowa s w z w z3 w2 z t z2 w3

41 . Przesuwając się po dowolnej ścieżce od t do s utwórz tzw. ścieżkę powiększającą przepływ. Naznacz ( ) zera skreślone o współrzędnyc (i,j), odpowiadające łukowi w i z j na tej ścieżce; cofnij ( ) przydział zer naznaczonyc o współrzędnyc (i,j), odpowiadającyc łukowi z j w i na tej ścieżce. W poniższej sieci są ścieżki powiększające przepływ sieć warstwowa s w z w z3 w2 z t z2 w3

42 . Przesuwając się po dowolnej ścieżce od t do s utwórz tzw. ścieżkę powiększającą przepływ. Naznacz ( ) zera skreślone o współrzędnyc (i,j), odpowiadające łukowi w i z j na tej ścieżce; cofnij ( ) przydział zer naznaczonyc o współrzędnyc (i,j), odpowiadającyc łukowi z j w i na tej ścieżce. ścieżka powiększająca przepływ s w z w z3 w2 z t 2

43 . Przesuwając się po dowolnej ścieżce od t do s utwórz tzw. ścieżkę powiększającą przepływ. Naznacz ( ) zera skreślone o współrzędnyc (i,j), odpowiadające łukowi w i z j na tej ścieżce; cofnij ( ) przydział zer naznaczonyc o współrzędnyc (i,j), odpowiadającyc łukowi z j w i na tej ścieżce.. Jeśli znaleziono przydział do m zer, to jest on optymalny STOP. 7. Wróć do kroku 7. w z w z3 w2 z z w z3 w2 3 Przydział optymalny 3

44 Uwagi uzupełniające: Ten sam algorytm można zastosować dla problemu maksymalizacji funkcji celu (zysku), jeśli zamieni się znaki elementów macierzy C[ ] na przeciwne. Jeśli macierz C[ ] nie jest kwadratowa, to można ją uzupełnić elementami zerowymi w kolumnac lub wierszac, tak aby uzyskać macierz kwadratową. Jeśli przydział i do j jest zakazany, to przyjmujemy.

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM VI METODA WĘGIERSKA 1. Proble przydziału. Należy przydzielić zadań do wykonawców. Każde zadanie oże być wykonywane przez co najwyżej jednego wykonawcę

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Klasyczne zagadnienie przydziału

Klasyczne zagadnienie przydziału Klasyczne zagadnienie przydziału Można wyodrębnić kilka grup problemów, w których zadaniem jest odpowiednie rozmieszczenie posiadanych zasobów. Najprostszy problem tej grupy nazywamy klasycznym zagadnieniem

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE(ZT)

ZAGADNIENIE TRANSPORTOWE(ZT) A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1 A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=

Bardziej szczegółowo

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia

Bardziej szczegółowo

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba

Bardziej szczegółowo

Definicja problemu programowania matematycznego

Definicja problemu programowania matematycznego Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.

[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych

BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

ZAGADNIENIA TRANSPORTOWE

ZAGADNIENIA TRANSPORTOWE ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych

Bardziej szczegółowo

OPTYMALIZACJA W LOGISTYCE

OPTYMALIZACJA W LOGISTYCE OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

OPTYMALIZACJA DYSKRETNA

OPTYMALIZACJA DYSKRETNA Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi

Bardziej szczegółowo

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1

Bardziej szczegółowo

BADANIA OPERACYJNE pytania kontrolne

BADANIA OPERACYJNE pytania kontrolne DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 4 BADANIA OPERACYJNE dr inż. Maciej Wolny AGENDA I. Badania operacyjne podstawowe definicje II. Metodologia badań operacyjnych III. Wybrane zagadnienia badań operacyjnych

Bardziej szczegółowo

Programowanie nieliniowe

Programowanie nieliniowe Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce

Bardziej szczegółowo

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe

BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp

Bardziej szczegółowo

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe

Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie

Bardziej szczegółowo

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

PROGRAMOWANIE NIELINIOWE

PROGRAMOWANIE NIELINIOWE PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda

BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Teoretyczne podstawy programowania liniowego

Teoretyczne podstawy programowania liniowego Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Rozwiązywanie problemów z użyciem Solvera programu Excel

Rozwiązywanie problemów z użyciem Solvera programu Excel Rozwiązywanie problemów z użyciem Solvera programu Excel Podstawowe czynności: aktywować dodatek Solver oraz ustawić w jego opcjach maksymalny czas trwania algorytmów na sensowną wartość (np. 30 sekund).

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Standardowe zadanie programowania liniowego. Gliwice 1

Standardowe zadanie programowania liniowego. Gliwice 1 Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Programowanie dynamiczne. Tadeusz Trzaskalik

Programowanie dynamiczne. Tadeusz Trzaskalik Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Zadanie transportowe

Zadanie transportowe Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE (część 1)

ZAGADNIENIE TRANSPORTOWE (część 1) ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

BADANIA OPERACYJNE Zagadnienie transportowe

BADANIA OPERACYJNE Zagadnienie transportowe BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n

) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że Stwierdzeń będzie. Przy każdym będzie należało ocenić, czy jest to stwierdzenie prawdziwe, czy fałszywe i zaznaczyć x w tabelce odpowiednio przy prawdzie, jeśli jest ono prawdziwe lub przy fałszu, jeśli

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

G. Wybrane elementy teorii grafów

G. Wybrane elementy teorii grafów Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo