TECHNIKA WIELKICH CZĘSTOTLIWOŚCI

Wielkość: px
Rozpocząć pokaz od strony:

Download "TECHNIKA WIELKICH CZĘSTOTLIWOŚCI"

Transkrypt

1 TCNIKA WILKIC CZĘSTOTLIWOŚCI Flowod Krol Aniserowi Pln wkłdu Tp i rodje fl w flowodh n prkłdie flowodu dwupłtoweo Oólne włśiwośi fl w flowodh Flowód prostokątn Flowód kołow Inne tp flowodów Prowdenie fl płskih (tpu TM) Skrętki wieloprowe (prowdenie fl TM) Fle elektromnetne w wolnej prestreni, w tw. strefie dlekiej źródł promieniowni, mją hrkter fli płskiej (fli tpu TM). U/UTP (dwniej UTP) skrętk 4-prow nieekrnown F/UTP (dwniej FTP) skrętk 4-prow w folii luminiowej Chrkterstną ehą fli płskiej jest brk skłdowh wdłużnh wektorów ntężeń pól i (li skłdowh i ). Do prowdeni fl płskih są prenone linie dwuprewodowe i wieloprewodowe (np. kbel konentrn, lini dwuprewodow, teroprow skrętk komputerow, wieloprow kbel telefonin). 3 kble telekomunikjne wieloprowe 4

2 Fle nieerową skłdową wdłużną Powżej pewnej ęstotliwośi rninej, dl której hoćb jeden wmirów poprenh linii stje się porównwln połową dłuośi fli, ostją wbudone pol o nieerowej skłdowej lub. Te tw. flowodowe tp pól są niepożądne w prowdnih fl płskih, tem wspomnin ęstotliwość rnin jest jednoeśnie órną rnią prktnej użtenośi dnej prowdni fli TM. Flowodowe tp pól są wkorstwne w prowdnih fl wkonnh wkle w posti jedneo prewodu (njęśiej w kstłie rur) w flowodh. Propję (rohodenie się) fl w flowodh możn objśnić n podstwie opisu wielokrotnh odbić spolrownej liniowo fli płskiej od prewodąh śin flowodu. 5 Odbiie fli od powierhni metlu Prenliujm wżn w prkte prpdek, d wektor fli pdjąej n powierhnię płt metlowej jest do niej równoleł i prostopdł do osi. Tuż pr rni dielektrk-metl (n rsunku wsstkie odlełośi są << /4): fl pdją (inident wve) DILKTRYK MTAL i i i i i i r fl odbit r i (refleted wve) r i r i Tk możn wtłumć pojwienie się skłdowej wdłużnej:. r 6 Tp fl w flowodh b Fle tpu T (tpu skłdową wdłużną m pole mnetne) Trnsverse letri wve Prkłd: flowód prostokątn Fle tpu TM (tpu skłdową wdłużną m pole elektrne) Trnsverse Mneti wve Fle tpu skłdową wdłużną m pole elektrne i mnetne (w flowodh niejednorodnm wpełnieniem dielektrnm). W flowodh nie rohodą się fle tpu TM! 7 Tp fl W pewnm uproseniu możn powiedieć, że fl płsk (tpu TM) premies się równolele do śinek (prewodów) prowdni flowej (linii dłuiej), nie odbijją się od śinek. Tp TM Tp flowodowe powstją wskutek wielokrotnh odbić fli od śinek prowdni flowej (flowodu). Tp T lbo Tp TM 8

3 Tp fl w flowodh Jko njprosts prkłd predstwion ostnie propj fl tpu T w flowodie wkonnm dwóh równolełh płt prewodąh. Cęstotliwość rnin i rnin dłuość fli Wektor m tlko jedną skłdową:. Skłdow t jest równoleł do powierhni płt metlowej. Musi on werowć się n tej powierhni, odnie wrunkiem breowm n stku dielektrk-metl. r r r r + r skłdow wdłużn sin π Odlełość międ płtmi metlowmi wnosi. Międ płtmi może rohodić się fl tpu T tlko wted, d: > / < - dłuość fli w powietru dl dnej ęstotliwośi 9 Cęstotliwość rnin i rnin dłuość fli Międ płtmi może rohodić się fl tpu T tlko wted, d: > / < - dłuość fli w powietru dl dnej ęstotliwośi Wrtość nwn jest rniną dłuośią fli. Cęstotliwość, powżej której międ płtmi może pojwić się fl tpu T, nwn jest ęstotliwośią rniną (ęstotliwośią odięi): f Rodje fl tpu T w flowodie dwupłtowm Wr e wrostem ęstotliwośi (mniejsniem dłuośi fli ) międ płtmi moą pojwić się kolejne miejs, w którh ntężenie pol prjmuje wrtość erową (płsn węłmi pol). Międ płtmi może odkłdć się m połówek sinusoid (m,, 3,...). Kżdej wrtośi m odpowid inn rokłd mplitud pol wdłuż osi (li w prekroju poprenm), odpowidją kolejnemu rodjowi pol.

4 Rodje fl tpu T w flowodie dwupłtowm Rodje fl tpu T w flowodie dwupłtowm Rokłd skłdowej wrunek breow: Γ sin Rokłd skłdowej wrunek breow: n Γ os d d Numer rodju pol m, m, m 3, /3 m 4, / 3 Numer rodju pol m m m 3 m 4 4 Rokłd pol rodju T skłdow Rokłd pol rodju T skłdow UWAGA nleż odróżnić newnitwo: - tp pol (fli) - nw tpu określ obeność skłdowh wdłużnh pol lub pol (TM, T, TM); skłdow skłdow - rodj pol (fli) - nw rodju określ hrkterstn rokłd mplitud pol w prekroju poprenm flowodu. Zmist słow rodj użw się również mod. 5 6

5 Rodje fl tpu T w flowodie dwupłtowm Rodje fl tpu T międ dwiem równolełmi płtmi onne są smbolem T m, die indeks m jest numerem kolejnm rodju. Odpowidją im kolejne ęstotliwośi rnine i kolejne rnine dłuośi fli: f m m m m Możn wobrić sobie nieskońenie wiele rodjów (modów) pol (m,, 3,...). W prkte wkorstwn jest tlko jeden rodj, odpowidją njmniejsej ęstotliwośi rninej, nwn rodjem podstwowm: T. 7 Fle tpu TM międ dwiem płtmi Jeżeli nie wektor, le wektor jest prostopdł do osi i równoleł do powierhni płt, to tką ehę mją fle tpu TM (Trnsverse Mneti wve). Inn nw: fle tpu. Dl odpowiednio dużh ęstotliwośi moą współistnieć różne rodje fl. Jest to jwisko niekorstne, bo urądeni ndwe i odbiore są prstosowne do tlko jedneo rodju pol. Psmo ęstotliwośi roboh tpoweo flowodu jest ornione: - od dołu pre f (ęstotliwość rniną rodju podstwoweo); - od ór pre pojwienie się tw. wżsh rodjów fl (li pre njmniejsą ęstotliwość rniną kolejneo rodju). 8 Ruh flow Dłuość fli w flowodie dwupłtowm Dl fli rodju T : / / sin R M W polskiej literture ęsto on się smbolem f 9

6 Dłuość fli w flowodie dwupłtowm Dl fli rodju T : Dłuość fli w flowodie dwupłtowm Dl fli rodju T : R / M N / os W polskiej literture ęsto on się smbolem f sin + / R M N / sin os + os + sin > ( ) ( ) ( ) f + π µε Równnie dspersjne ( j π) + ( j ) ( j ) ( j ) + ( j ) γ µε Równnie dspersjne opisuje leżność współnnik propji γ od ęstotliwośi. 3 Prędkość fow Powierhni ekwifow fli odbijjąej się od śinek flowodu rohodi się prędkośią. W iąu jedneo okresu drń pokonuje on droę. W tm smm sie powierhni t pokonuje wdłuż osi droę >. W efekie prędkość fow wdłuż osi wnosi:? ( ) p > T T ( )

7 Prędkość rupow Oólne włśiwośi fl w flowodh jednorodnh. Współnnik propji: Prędkość fow jest pojęiem mtemtnm, opisująm ruh powierhni stłej f fli. Dlteo może on bć więks od. Pojęiem opisująm prędkość trnsportu enerii jest prędkość rupow: ( ) sin < p 5 γ µε γ µε jest wse lbo rewist (γ α - fl wkłdnio tłumion), lbo urojon (γ j - fl rohodi się be strt enerii pr odpowiednio dużej ęstotliwośi).. Dl kżdeo rodju fli możn dobrć ęstotliwość n tle dużą, b współnnik propjiγ bł libą urojoną. Cęstotliwość, pr której γ mieni hrkter rewisteo n urojon (γ ), nw się ęstotliwośią rniną (odięi) [n. ut-off ]: f π π µε 6 Oólne włśiwośi fl w flowodh jednorodnh Oólne włśiwośi fl w flowodh jednorodnh 3. Psmo ęstotliwośiowe snłu użtkoweo możn dobrć tk, b w flowodie rohodił się tlko jeden rodj fli, o njmniejsej ęstotliwośi rninej f. Tki rodj nwn jest rodjem podstwowm. Rodj podstwow jest wse tpu T (). 4. Dłuość fli w flowodie jest więks od dłuośi fli w wolnej prestreni: π > 4b. Prędkość fow fli w flowodie jest więks od prędkośi fli w wolnej prestreni: p > 4. Prędkość rupow fli jest mniejs od prędkośi fli w wolnej prestreni: < p 7 8

8 3.5 γ γ Współnnik propji Współnnik propji.5 α.5 dl< tłumienie; dl > propj be strt Dłuość fli Prędkość fow i rupow p p

9 b Flowód prostokątn Rokłd pol może mienić się sinusoidlnie (kosinusoidlnie) równo wdłuż boku, jk i b. 33 m, n lib nturlne, wskźniki rodju pol Rokłd pól w flowodie prostokątnm b rodje T m,n ( m,n ) - skłdow rodje TM m,n ( m,n ) - skłdow m m m m m nπ (, ) os os (, ) (, ) (, ) (, ) b γ nπ sin os b nπγ nπ os sin b b jµ nπ nπ os sin b b jµ nπ sin os b m m m m m nπ, sin sin b γ nπ, os sin b (, ) ( ) (, ) (, ) (, ) nπγ nπ sin os b b jε nπ nπ sin os b b jε nπ os sin b Grnin dłuość fli w flowodie prostokątnm Rodj podstwow w flowodie prostokątnm Grnine dłuośi fl kolejnh rodjów pól (dłuość fli odpowidją ęstotliwośi odięi jest lion dl wolnej prestreni): π m n + b W flowodie pr ęstotliwośi odięi (ptr: wkres): p Rodj podstwow: T, (, ) dl m, n :,, π m j os e π m j j sin e π µ π m j j sin e π + b 35 36

10 Rodj podstwow w flowodie prostokątnm Rodj podstwow w flowodie prostokątnm wrunki breowe n stku dielektrk-metl: r r n r r r n JS r r n D ρs r r n B JS T, f Lini pomirow e seliną Flowód kołow Prkłd wkorstni wied o rokłdie linii pol wewnątr flowodu T, (,) Problem polrją:, π π κ,,84 κ,, pierws pierwistek pohodnej funkji Bessel pierwseo rędu 4

11 Inne tp flowodów Inne tp flowodów flowód Goubu metl dielektrk flowód eliptn serokie psmo ęstotliwośi roboh np.: M G G 8 G 8 G 4 G nten tubow dwurbietow (double-rided wveuide horn ntenn) flowód rbietow flowód dwurbietow 4 4 Flowod DODATKI 43 44

12 Dłuość fli w flowodie dwupłtowm Dl fli rodju T : Wrtośi smptotne sin + R sin / M N / os + os + > ( ) ( ) ( ) f W polskiej literture ęsto on się smbolem f sin 45 sin p ( ) ( ) ( ) ( ) Gd mleje, dążą do, to: sin, p Jeśli <, to wielkośi te stją się urojone, li fl nie może się rohodić. Gd rośnie, dążą do, to: sin, 9 p 46 Fle tpu TM międ dwiem płtmi Międ dwiem płtmi metlowmi może rohodić się fl płsk tpu TM (Trnsverse letromneti wve). Zhodi to wted, d wektor jest prostopdł do ih powierhni ( wektor jest do nih równoleł) jk w tpowej linii dwuprewodowej. Fl płsk może istnieć dl dowolnej ęstotliwośi: f <. Rokłd pól rodjów T i TM linie iąłe, linie prerwne Linie jednkowh wrtośi i dl rodju T 47 Linie jednkowh wrtośi i dl rodju TM N rsunkh powżej niedbno ięi linii pol n breh płt prewodąh ( bekowt kstłt linii pol): 48

13 Rokłd pol tpu TM międ dwiem płtmi, 49 Dielektrk stun o współnniku łmni mniejsm od jednośi Rowżm ośrodek utworon nieskońenie rolełh, równolełh płt metlowh, umiesonh w powietru. Obsr międ dwiem płtmi jest seólnm prpdkiem flowodu prostokątneo, w którm jeden bok jest nieornion. W tkiej strukture fl elektro- mnetn może rohodić się n dw sposob: jeśli wektor jest prostopdł do płsn, to prędkość fow fli p ; jeśli wektor jest równoleł do płsn, to prędkość fow fli p > : p ( ) Dl prpdku współnnik łmni rowżnej struktur jest mniejs od : n ( ) < p W elu pewnieni rohodeni się tlko rodju podstwoweo fli w tk utworonh flowodh nleż spełnić wrunek / < <. Stąd wnik, że < n <, 75. Współnnik łmni jest funkją ęstotliwośi, tem jest to ośrodek dspersjn 5 Soewki metlowe Skłdowe wdłużne (,,, ) i (,,, ) pól tpu T i TM są rowiąnimi równń flowh: + µε + µε pr wrunkh breowh: n Γ Tp fl T i TM Γ Soewk dielektrk nturlneo Soewk metlow Mją i możn oblić poostłe skłdowe:,,,, korstją równń Mwell. 5 5

14 Rodje fl w flowodh Rodje fl w flowodh Rowiąni równń flowh mją postć oólną: mγ mγ (,, ) (, ) e (,, ) (, ) e m m Kżd wrtość włsn poprenh flowodu. leż od kstłtu i wmirów Współnniki γ wn się leżnośi nwnej równniem dspersjnm: γ µε Kżdej wrtośi włsnej odpowid inn rokłd mplitud pol m (, ) i m (, ), li inn funkj włsn. m m Kżd pr: wrtość włsn funkj włsn opisuje inn rodj fli (mod fli). Lib są tw. wrtośimi włsnmi opertor równni floweo. Jest ih nieskońenie wiele. indeks on: rnin 53 Istnieje nieskońenie wiele rodjów fl tpu T or nieskońenie wiele rodjów fl tpu TM. 54 Rodj podstwow w flowodie prostokątnm Rodj T w flowodie prostokątnm

15 Rodj TM w flowodie prostokątnm Rodj TM w flowodie prostokątnm Flowód kołow Flowód kołow TM ( ) 59 6

16 Lini selinow (n. slot line) 6

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato

Struktura energetyczna ciał stałych-cd. Fizyka II dla Elektroniki, lato Struktur energetyczn cił stłych-cd Fizyk II dl Elektroniki, lto 011 1 Fizyk II dl Elektroniki, lto 011 Przybliżenie periodycznego potencjłu sieci krystlicznej model Kronig- Penney potencjł rzeczywisty

Bardziej szczegółowo

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia. Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Zapis wskaźnikowy i umowa sumacyjna

Zapis wskaźnikowy i umowa sumacyjna Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie

Matematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc

Bardziej szczegółowo

III.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera

III.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera r. kd. 5/ 6 III.3 Trnsformj Lorentz prędkośi i przyspieszeni. Efekt Doppler Trnsformj prędkośi Trnsformj przyspieszeni Efekt Doppler Jn Królikowski Fizyk IBC r. kd. 5/ 6 Trnsformj prędkośi Bdmy ruh punktu

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

2.2. ZGINANIE UKOŚNE

2.2. ZGINANIE UKOŚNE .. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

REZONATORY MIKROFALOWE

REZONATORY MIKROFALOWE RZONATORY MIKROFALOW Reonto mikofow jest to pewien obs mknięt. Pe obs mknięt oumie się obs pe bei któeo nie m pepłwu eneii, tn. wunki beowe wmusją w kżdm punkcie beu niknie skłdowej stcnej po eektcneo

Bardziej szczegółowo

A. Zaborski, Rozciąganie proste. Rozciąganie

A. Zaborski, Rozciąganie proste. Rozciąganie . Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

Momenty bezwładności figur płaskich - definicje i wzory

Momenty bezwładności figur płaskich - definicje i wzory Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem

Bardziej szczegółowo

Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii

Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu

Bardziej szczegółowo

6. Kinematyka przepływów

6. Kinematyka przepływów 6. Kinemk pepłwów Podswowe deinije To jekoi elemenu płnu jes o miejse geomene kolejnh położeń pousjąego się elemenu płnu upłwem su. Równnie óżnikowe ou elemenu płnu: d d d d Lini pądu o lini spełniją wunek

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

Elementy teorii linii transmisyjnej (linii długiej)

Elementy teorii linii transmisyjnej (linii długiej) ini dłu Eementy teorii inii trnsmisyjnej (inii dłuiej) Kro Aniserowic E E E (), () we y x = - pryjęty ukłd współrędnych Schemt stępcy odcink inii dłuiej Wymiry poprecne inii spełniją wrunek qusi-stcjonrności.

Bardziej szczegółowo

Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN

Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN Zminy w wydniu drugim skryptu Konstrukcje stlowe. Prykłdy obliceń według PN-EN 99- Rodił. Dodno nowy punkt.. Inormcje o minch (str. 0.) obecnym wydniu uwględniono miny: wynikjące wprowdeni pre PKN w cerwcu

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

WYKRESY PARĆ HYDROSTATYCZNYCH

WYKRESY PARĆ HYDROSTATYCZNYCH dm Pweł Koioł WYKESY PĆ HYOSTTYNYH Prykłdy Wersj 1.d PK (2006-2013) Od utor Skrypt (eook) Wykresy prć hydrosttycnych jest prencony dl studentów studiów diennych, wiecorowych i ocnych wydiłów o kierunkch

Bardziej szczegółowo

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT

ĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w

Bardziej szczegółowo

Sposób opisu symetrii figur lub brył skończonych

Sposób opisu symetrii figur lub brył skończonych Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.

Bardziej szczegółowo

Sieć odwrotna. Fale i funkcje okresowe

Sieć odwrotna. Fale i funkcje okresowe Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus

Bardziej szczegółowo

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =

ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b = St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne

Bardziej szczegółowo

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania

H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku

Bardziej szczegółowo

WYKŁAD 9 TRANSFORMACJE W 3-D, 3 USUWANIE ELEMENTÓW NIEWIDOCZNYCH. Plan wykładu: 1. Transformacje elementarne w 3-D3

WYKŁAD 9 TRANSFORMACJE W 3-D, 3 USUWANIE ELEMENTÓW NIEWIDOCZNYCH. Plan wykładu: 1. Transformacje elementarne w 3-D3 WYKŁAD 9 TRANSFORMAJE W 3-D, 3 USUWANIE ELEMENTÓW NIEWIDOZNYH Pln wkł: Trnsforje eleentrne w 3-D 3 Skłnie trnsforji Wnnie powierhni wionh Algort sortowni śin Algort -bfor. Trnsforje eleentrne w 3-D3 Prwoskrętn

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu . Wrwł Wkłd mechniki mteriłów 0. ROT ZGINNI 0.. tn nprężeni i odkstłceni pr prostm ginniu Zginnie proste (jednokierunkowe) wstępuje wówcs gd obciążenie ewnętrne redukuje się do wektor momentu ginjącego

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC

G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC 3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)

Bardziej szczegółowo

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9

Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9 ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Próbn Mtur OPERONEM Fiyk i stronoi Poio roserony Listopd 0 W niniejsy schecie ocenini dń otwrtych są preentowne prykłdowe poprwne odpowiedi. W tego typu ch nleży również unć

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego

Bardziej szczegółowo

Ćwiczenie M-6 Pomiar modułu sprężystości metalu metodą ugięcia pręta. I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. Fi Rys 1.

Ćwiczenie M-6 Pomiar modułu sprężystości metalu metodą ugięcia pręta. I. Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. Fi Rys 1. Pomir moułu sprężstości metu metoą ugięci pręt.. Ce ćwiceni: wncenie moułu sprężstości połużnej E (moułu Young ) że, uminium i mosiąu. Porównnie ugięć prętów wkonnch tego smego mteriłu o różnch kstłtch

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT)

EGZAMIN PRÓBNY CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 50 ZADANIE 1 (1 PKT) ZADANIE 2 (1 PKT) ZADANIE 3 (1 PKT) ZADANIE 4 (1 PKT) ZADANIE 5 (1 PKT) IMIE I NAZWISKO EGZAMIN PRÓBNY CZAS PRACY: MIN. SUMA PUNKTÓW: 5 ZADANIE ( PKT) Dziedzina funkcji f (x) = x jest zbiór x 2 +x 6 A) R \ {, 2} B) (, 2) C) (, ) (2, + ) D) (, 2) (, + ) ZADANIE 2 ( PKT) W pewnej

Bardziej szczegółowo

EPR. W -1/2 =-1/2 gµ B B

EPR. W -1/2 =-1/2 gµ B B Hamiltonian spinow Elektronow reonans paramanetcn jest wiąan absorpcją pola wsokiej cęstotliwości, która towars mianie orientacji spin w ewnętrnm polu manetcnm. Niesparowane spinowe moment manetcne µ s

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC

G:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,

Bardziej szczegółowo

Wykªad 8. Pochodna kierunkowa.

Wykªad 8. Pochodna kierunkowa. Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom rozszerzony KRYTER OCENN ODPOWEDZ Próbn Mtur z OPERONEM Fizyk i tronoi Pozio rozzerzony Litopd 3 W niniejzy checie ocenini zdń otwrtych ą prezentowne przykłdowe poprwne odpowiedzi. W teo typu ch nleży również uznć

Bardziej szczegółowo

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y Mciej Grzesik Iloczyn sklrny. Iloczyn sklrny wektorów n płszczyźnie i w przestrzeni Iloczyn sklrny wektorów i b określmy jko b = b cos ϕ. Bezpośrednio z definicji iloczynu sklrnego mmy, że i i = j j =

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki

Bardziej szczegółowo

o zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym

o zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym o silniu npięiowm Głąź normln o silniu miesnm w w Głąź normln o silniu prądowm w w iern Siei e źródłmi npięiowmi [ ] [ ] [ ][ ]... W prpdu siei owodmi sprężonmi ( ) ( ) ( ) ω ω ω ω ω ω ω ω ω... M j M j

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN UEZPIECZENI GRUPOWE - sus srn sus łąngo żi i osnigo rżwągo UTORZY MICHŁ OCZEK MŁGORZT CZUPRYN Rowż gruę osób. Owiśi s lib nurlną więs od. Nih i on wi i osob dl i=,,... us gru sus łąngo żi sus osnigo rżwągo

Bardziej szczegółowo

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim

Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,

Bardziej szczegółowo

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki

Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia:

XI. Rachunek całkowy funkcji wielu zmiennych. 1. Całka podwójna Całka podwójna po prostokącie. Oznaczenia: XI. Rhunek łkowy funkji wielu zmiennyh. 1. Cłk podwójn. 1.1. Cłk podwójn po prostokąie. Oznzeni: P = {(x, y) R 2 : x b, y d} = [, b] [, d] - prostokąt n płszzyźnie, f(x, y) - funkj określon i ogrnizon

Bardziej szczegółowo

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx& LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI

Aparatura sterująca i sygnalizacyjna Czujniki indukcyjne zbliżeniowe LSI Aprtur sterując i sygnlizcyjn Czujniki indukcyjne zbliżeniowe LSI Czujnik indukcyjny zbliżeniowy prcuje n zsdzie tłumionego oscyltor LC: jeżeli w obszr dziłni dostnie się metl, to z ukłdu zostje pobrn

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

=I π xy. +I π xz. +I π yz. + I π yz

=I π xy. +I π xz. +I π yz. + I π yz GEMETRIA MAS moment ewłdności i dewicji Zsd ogólne: 1) Moment ewłdności wględem osi ówn jest sumie momentów ewłdności wględem dwóc postopdłc płscn wiejącc tę oś: I =I π + I π I =I π + I π I = I π +I π

Bardziej szczegółowo

Pierwiastek z liczby zespolonej

Pierwiastek z liczby zespolonej Pierwistek z liczby zespolonej Twierdzenie: Istnieje dokłdnie n różnych pierwistków n-tego stopni z kżdej liczby zespolonej różnej od zer, tzn. rozwiązń równni w n z i wszystkie te pierwistki dją się zpisć

Bardziej szczegółowo

Do wyznaczania obrazów przekształceń stosuje się macierze 4-wierszowe w tzw. zapisie jednorodnym

Do wyznaczania obrazów przekształceń stosuje się macierze 4-wierszowe w tzw. zapisie jednorodnym Presunięie (trnslj): u w v Sklownie: s s s Orót wokół osi X: os os Orót wokół osi Y: os os Orót wokół osi Z: os os Do wnni orów prekstłeń stosuje się miere 4-wiersowe w tw. pisie jednorodnm https://pl.wikipedi.org/wiki/wsp%c3%b3%c5%82r%c4%99dne_jednorodne

Bardziej szczegółowo

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE

2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE .. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor

Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem

Bardziej szczegółowo

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32

PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32 PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D.

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D. Sprwdzin Potęgi i pierwistki. Piąt potęg liczby jest równ: A. 0 B. C. D. 4. Iloczyn jest równy: A. B. C. D.. Odległość Ziemi od Słońc jest równ 0 000 000 km. Odległość tą możn zpisć w postci iloczynu:

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Sprawdzian całoroczny kl. III

Sprawdzian całoroczny kl. III Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m

Bardziej szczegółowo

f(g(x))g (x)dx = 6) x 2 1

f(g(x))g (x)dx = 6) x 2 1 Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:

Bardziej szczegółowo

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH

MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo