WYKŁAD 9 TRANSFORMACJE W 3-D, 3 USUWANIE ELEMENTÓW NIEWIDOCZNYCH. Plan wykładu: 1. Transformacje elementarne w 3-D3
|
|
- Anatol Marszałek
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYKŁAD 9 TRANSFORMAJE W 3-D, 3 USUWANIE ELEMENTÓW NIEWIDOZNYH Pln wkł: Trnsforje eleentrne w 3-D 3 Skłnie trnsforji Wnnie powierhni wionh Algort sortowni śin Algort -bfor. Trnsforje eleentrne w 3-D3 Prwoskrętn kł współręnh: oś oś oś Jeśli ptr otniego kiernk osi w stronę śrok kł współręnh, to obrót o 9 w kiernk preiwn o rh wskówek egr, prekstłi jeną otnią oś w rgą. Trnsforje eleentrne: presnięie, in skli, obrot wokół posególnh osi kł. Współręne jenorone ( ) ( ) ( ) ( ) [ ] [ ] Presnięie: Sklownie: Obrot wokół osi: [ ] [ ] [ ] [ ] t s Jeśli ptr otniego kiernk osi w stronę śrok kł współręnh, obrót o kąt otni wż się obrót w kiernk preiwn o rh wskówek egr. t s t s
2 Obrót wokół osi : [ ] [ ] Obrót wokół osi : [ ] [ ] Obrót wokół osi : [ ] [ ] osθ sinθ osθ sinθ osθ sinθ sinθ osθ sinθ osθ sinθ osθ. Skłnie trnsforji Obrót pnkt (obiekt) wokół owolnie nej osi : Sforłownie ni: Dne: opis osi obrot (,, ), (,, ), opis obiekt (np. sitk wieloboków), kąt obrot Θ oś obrot Nleż wnć ier trnsforji relijąej obrót obiekt o kąt Θ. Θ (,, ) (,, ) obiekt Repreentj osi obrot: oś obrot Θ (,, ) (,, ) Oś obrot repreentown bęie pre wektor [ b ] obiekt epion w pnkie (,, ), pr b v v v v ( ) + ( ) + ( ) Kroki proer obrot obiekt wokół osi:. Presnięie osi i obiekt, tk b oś obrot prehoił pre śroek kł współręnh.. Obróenie osi i obiekt, tk b oś obrot stł się współliniow jeną osi kł współręnh (np. osią ). - położenie osi n płsźnie (-), - obrót wokół osi 3. Obrót obiekt wokół osi o kąt Θ. 4. Trnsforj owrotn o wkonnej w krok. 5. Trnsforj owrotn o wkonnej w krok.
3 Krok Presnięie osi i obiekt, tk b oś prehoił pre śroek kł współręnh. Wkonne presnieie opisje ier T (,, ) Θ Krok Obróenie osi i obiekt, tk b oś stł się współliniow osią. Położenie osi obrot n płsźnie (-). b α [ b ] [ b ] [ ] Położenie osi obrot n płsźnie (-) jest równowżne obrotowi wektor o kąt α. Jk wnć α, lb jese lepiej sinα i osα? Ilon sklrn + b + osα b + os α Ilon wektorow os α et b b sinα sinα b α b sin α Położenie osi obrot n płsźnie (-) ożn wkonć pre obrót wokół osi o kąt α. Obrót ten opisje ier. R ( α ) Położenie osi obrot n osi. β b b [ ] [ ] [ ] 3
4 Ilon sklrn + + os β + Ilon wektorow et os β ( ) sin β sin β β sin β Położenie osi obrot n osi ożn preprowić pre obrót wokół osi o kąt β. Obrót ten opisje ier. R ( β ) Krok 3 Obróenie obiekt wokół osi o kąt Θ. Obrót ten opisje ier. R ( Θ ) os Θ sinθ sinθ osθ Krok 4 Trnsforj owrotn o wkonnej w krok Mier trnsforji: R ( β ) R ( α ) Krok 5 Trnsforj owrotn o wkonnej w krok Mier trnsforji: T (,, ) Osttenie, ier reliją trnsforję obrot obiekt wokół nej osi o kąt Θ prjje postć R ( Θ ) T (,, ) R ( α ) R ( β ) R ( Θ ) R ( β ) R ( α ) T (,, ) Jk wić, jest to ilon siei ier. 3. Wnnie powierhni wionh Jk pokć n rtni tlko te eleent sen, które są wione l obserwtor? Prkł: Wniosek: Rs. Rs. Rt pokją wsstkie krwęie śin obiekt (tk jk n pierws rsnk), oże bć niejenonn. Rs.3 4
5 Algort wnni śin wionh: Złożeni:. Sen trójwirow jest opisn jko biór śin S { s,s,...,s,..., } i s n. Śin są płskii wieloboki. 3. Kżej e śin prpisn jest lib określją jej stopień srośi lb kolor si v i 4. Wświetlnie rtów śin (wełg stlonego sposob projekji) obw się w ssteie rstrow. Roje lgortów wnni śin wionh: lgort nlijąe senę lgort nlijąe obr Algort nlijąe senę:. Porąkje się biór śin, tk b skć pnkt wieni obserwtor, seregownie o njlsej o njbliżsej śin.. Dokonje się projekji śin wełg stlonego weśniej porąk. Kżą e śin nleż porównć poostłi. Lib porównń jest proporjonln o n. Algort nlijąe obr:. Dl kżego piksel ekrn wn się njbliżej leżąą śinę.. Z stopień srośi lb kolor nliownego piksel prjje się stopień srośi lb kolor wnonej śin. Dl kżego piksel nleż porównć n śin. Lib porównń jest proporjonln o n N, pr N jest libą pikseli ekrn. 4. Algort sortowni śin Algort sortowni wglęe głębokośi (Depth-sorting) Ogóln shet lgort: Krok. Wstępne porąkownie bior śin. Krok. Porównwnie wstępnie porąkownh śin pri i poprw porąkowni. Krok 3. Projekj śin n ekrn wełg porąk sknego w krok. Krok. Wstępne porąkownie bior śin Dl kżej e śin nleżąej o bior { s,s,..., s,..., } S i s n wn się kslną wrtość współręnej wierhołk. s s Śin e bior S porąkje się wełg prenio wnonej wrtośi o wrtośi njwięksej, o njniejsej. Prkł: v s p s s Wstępne porąkownie ło włśiw reltt. s v s s v s Wstępne porąkownie nie ło włśiwego reltt. s v 5
6 Krok. Porównnie wstępnie porąkownh śin pri i poprw porąkowni Posególne pr śin iąg, wstępnie porąkowne w krok, poje się pięi testo. v s s Jeśli kolejn test je wnik potwn, koń się testownie i poostwi się eleent pr n poprenih iejsh. Test są porąkowne wełg rosnąej skli trnośi. Test. Porównwnie współręnh in in Potwn wnik test Test. Porównwnie współręnh v Jeżeli l pr śin s i s preił [, ] i [, ] in są rołąne, to wnik test jest potwn. in Jeżeli l pr śin s i s preił [, ] i [, ] in in są rołąne, to wnik test jest potwn. Test 3. Bnie położeni śin s wglęe płsn, n której leż śin s Test 4. Bnie położeni śin s wglęe płsn, n której leż śin s Jeżeli ( ptrą włż kiernk obserwji ) śin s leż łkowiie po płsną wnoną pre śinę s, to wnik test jest potwn v s s Kiernek obserwji Jeżeli ( ptrą włż kiernk obserwji ) śin s leż łkowiie pre płsną wnoną pre śinę s, to wnik test jest potwn v s s Kiernek obserwji v v Inej ówią, wnik test jest potwn jeśli l wsstkih wierhołków,, śin s spełnion jest nierówność Inej ówią, wnik test jest potwn jeśli l wsstkih wierhołków,, śin s spełnion jest nierówność A + B + + D > A + B + + D < gie A, B,, D są współnniki równni płsn, n której leż śin s. gie A, B,, D są współnniki równni płsn, n której leż śin s. 6
7 s s Test 5. Porównnie rtów śin s i s n płsnę (-) Jeżeli rt śin s i s n płsnę (-) są biori rołąni, to wnik test jest potwn. v s s Jeśli żen pięi testów nie ł wnik potwnego, prestwi się eleent bnej pr śin i powtr testownie. G kolejne pięć testów nie prniosło wnik potwnego, porąkownie pr śin nie jest ożliwe. Prkł: v v Prktnie, wkonnie test poleg n sprweni posególne pr oinków rtów śin preinją się. Preprow się go rowiąją opowienie pr kłów równń liniowh i bją ih rowiąni. Jk postąpić w tki prpk? v Możn poielić (preiąć) jeną e śin. Sposób preięi nie jest jenk obojętn. 5. Algort -bfor (Depth - bffer) Ogóln shet lgort: s s s v v (, ) rtni v prost rtowni Piksel (,) ostnie wświetlon w kolore (stopni srośi) tej śin, l której współręn pnkt preięi śin prostą rtowni jest njniejs. Opis lgort: Dostępne są wie pięi: pięć obr ( refresh bffer ) pięć głębokośi ( epth bffer ) Obie pięi ją tle słów, ile jest pikseli obr. Krok. Inijlij pięi obr i głębokośi Dl kżego piksel obr o współręnh (, ) postwić refresh (, ) epth (, ) v t refresh(, ) - wrtość pięi obr l piksel (,), epth(, ) - wrtość pięi głębokośi l piksel (,), v t - kolor tł, - ksln wrtość współręnej. 7
8 Krok. Porównnie głębokośi (l kżego piksel ekrn) Dl piksel o współręnh (, ), wlić wrtość (, ), l śin s (, ) < epth (, ) Jeżeli to postwić: refresh (, ) v epth (, ) Krok powtrć l kolejnh śin s, s 3, ż o werpni list śin. Postwow problee oblieniow lgort - bfor jest oblinie (,). Algort oblini (,) l śin. Wbrć tr pnkt niewspółliniowe śin (np. tr wierhołki). Oblić współnniki A,B,,D, równni płsn, n której leż śin. Oblić wrtość e wor A B D Oblinie wrtośi ożn prośić, bowie strktr ekrn w rstrow ssteie wświetlni jest skretn v Oblinie (w kolnie). - Oblinie (w linii). + v stą A B( ) D A B D + + B B stą A( + ) B D A B D A A 8
2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci
ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.
Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót
1. Podstawy rachunku wektorowego
1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
Temat 1. Afiniczne odwzorowanie płaszczyzny na płaszczyznę. Karol Bator. GGiIŚ, II rok, niestac. grupa 1
Temt Afiniczne odwzorownie płszczyzny n płszczyznę Krol Btor GGiIŚ, II rok, niestc. grp SPRAWOZDANIE DANE FORMALNO-PRAWNE:. Zleceniodwc: Akdemi Górniczo-Htnicz Wydził Geozdezji Górniczej i Inżynierii Środowisk.
= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny.
Z 6 sei I ozszezone Chce znleźć to ch cił n któe ził sił centln: F, pz złożeni iż wtość oent pę cił jest óżn o ze: Do ozwiązni ożn wkozstć np wzó l ównowżn je wzó const ± spowzjąc pole po wpowzeni postwini
- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia
1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej
Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta
WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać
Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.
Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.
IV.5. Promieniowanie Czerenkowa.
Jansz B. Kępka Rh absoltny i względny IV.5. Promieniowanie Czerenkowa. Fizyk rosyjski Pawieł A. Czerenkow podjął badania (1934 r.) nad znanym słabym świeeniem niebiesko-białym wydzielanym przez silne preparaty
14. Krzywe stożkowe i formy kwadratowe
. Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33
Do wyznaczania obrazów przekształceń stosuje się macierze 4-wierszowe w tzw. zapisie jednorodnym
Presunięie (trnslj): u w v Sklownie: s s s Orót wokół osi X: os os Orót wokół osi Y: os os Orót wokół osi Z: os os Do wnni orów prekstłeń stosuje się miere 4-wiersowe w tw. pisie jednorodnm https://pl.wikipedi.org/wiki/wsp%c3%b3%c5%82r%c4%99dne_jednorodne
TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2
WYKŁAD TRANSFORMACJE -D PROCEDURA WIZUALIZACJI -D Plan wkładu: Transforaje eleentarne w przestrzeni -D Składanie transforaji Ogólna proedura wizualizaji w -D Obinanie w oknie prostokątn tn 1. Transforaje
Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe
lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci
I 06 B. Arbeitsanweisung. Berechnung von Linsenradien. Instrukcja. Wyliczanie promienia soczewek
I 6 B Abeitsnweisung Beecnung von Linsenien Instukcj Wlicnie pomieni socewek Äneungsbestätigung von Abeitsnweisung / Potwieenie min instukcji Äneung / Zmin 1 3 5 6 Seitenumme / Nume ston tum / t Untescift
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
J. Szantyr - Wykład 7 Ruch ogólny elementu płynu
J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia
1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił
. REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Sprawdzian całoroczny kl. III
Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0
2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar
2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.
a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
Zapis wskaźnikowy i umowa sumacyjna
Zpis wskźnikow i mow smcjn Pokzć, że e ikm e ikm Pokzć, że e e δ ikm jkm Dn jest mcierzow reprezentcj tensor 7 7 7 ), ), c) 7 7 Podć dziewięć skłdowch d zdefiniownch związkiem: Wrnki nierozdzielności możn
Sposób opisu symetrii figur lub brył skończonych
Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
III.3 Transformacja Lorentza prędkości i przyspieszenia. Efekt Dopplera
r. kd. 5/ 6 III.3 Trnsformj Lorentz prędkośi i przyspieszeni. Efekt Doppler Trnsformj prędkośi Trnsformj przyspieszeni Efekt Doppler Jn Królikowski Fizyk IBC r. kd. 5/ 6 Trnsformj prędkośi Bdmy ruh punktu
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
Izba Rozliczeniowa. Fundusz Rozliczeniowy. projekt wersja 2.c r.
Izb Rozliczeniow Fnsz Rozliczeniowy projekt wersj 2.c 25-06-2009r. Spis treści Spis treści... 2 Wstęp... 3 1 Obliczeni ryzyk niepokrytego... 4 2 Obliczeni wrtości fnsz i wpłty... 5 2.1 Aktlizcj fnsz rozliczeniowego...
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Roztwory rzeczywiste (1) Roztwory rzeczywiste (2) Funkcje nadmiarowe. Również w temp. 298,15K, ale dla CCl 4 (A) i CH 3 OH (B).
Roztwory rzezywiste (1) Również w tep. 98,15K, le dl CCl 4 () i CH 3 OH (). 15 Τ S 5 H,,4,6,8 1-5 - -15 G - Che. Fiz. TCH II/1 1 Roztwory rzezywiste () Ty rze dl (CH 3 ) CO () i CHCl 3 (). 15 5 Τ S -5,,4
WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie
WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v
Modelowanie układów prętowych
Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie
6. Kinematyka przepływów
6. Kinemk pepłwów Podswowe deinije To jekoi elemenu płnu jes o miejse geomene kolejnh położeń pousjąego się elemenu płnu upłwem su. Równnie óżnikowe ou elemenu płnu: d d d d Lini pądu o lini spełniją wunek
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
D l. D p. Rodzaje baz jezdnych robotów mobilnych
ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
H. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania
H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku
Płaska fala monochromatyczna
Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s P s s - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich
Momenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
ź ź ó ó ś ó ó ś ż ź ź ż ż ó ż ó ó ó ż ż
Ł Ł ż ó ż Ż ź Ę ż ś ś ś Ę ś Ź ź ź ó ó ś ó ó ś ż ź ź ż ż ó ż ó ó ó ż ż ł ż ó ŚĆ ż ż ź ż ż ż ź Ź ś ś ó ś ń ł ś ś ó ż ć ó ść ś ść ś Ę ś ś ć ś ś ł ś ś ó ś ś ś ż ć ż ó ść ć łó ść Ść Ź ó ł ś ś ć ó ł ń ń ć ł
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU
ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn
Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.
Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników
Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji
Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://ler.uci.gh.edu.pl/z.szklrski/ Wstęp Opis ruchu KINEMATYKA Dlczego tki ruch? Przczn ruchu DYNAMIKA MECHANIKA Podstwowe pojęci dl ruchu prostoliniowego
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l
Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej
Definicje. r r r r. Struktura kryształu. Sieć Bravais go. Baza
Definije Sieć Brvis'go - Nieskońzon sieć punktów przestrzeni tkih, że otozenie kżdego punktu jest identyzne Nieskońzon sieć punktów przestrzeni otrzymnyh wskutek przesunięi jednego punktu o wszystkie możliwe
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania =
Vdemecum GIELDAMATURALNA.PL ODBIERZ KOD DOSTĘPU* Mtemtyk - Twój indywidulny klucz do wiedzy! *Kod n końcu klucz odpowiedzi KRYTERIA OCENIANIA ODPOWIEDZI Prón Mtur z OPERONEM Operon 00% MATURA 07 VA D EMECUM
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
Ł ż ż ż Ź Ż ć Ś Ż ź ż ć Ł Ń ż Ł ż ż Ż Ż Ż Ę ż Ż Ż Ż ż ć Ź Ź ż ż Ż ż ć ż ć Ż Ż Ś ż Ę ż Ż Ż Ż ź Ż Ę ź ż ż ż Ż Ą ź Ż Ż ż ż Ż Ś ż ż ż Ż ż ź Ż ż ć Ż Ż Ó Ź Ż Ź ż Ł Ż ż Ś ć ć Ś ż Ż ć Ś ć Ą Ś Ń ć Ż ć Ę Ę Ż ć ż
Ó Ź Ź Ł Ź Ą Ź Ś Ź Ź Ą Ó Ź Ź Ź Ź Ź Ź Ź Ź Ź Ź Ś Ż Ś Ś Ś Ź Ź Ś Ó Ó Ż Ó Ć Ź Ś Ż Ś Ć Ó Ś Ź Ó Ó Ź Ś Ć Ś Ż Ź Ó Ź Ź Ż Ą Ó Ó Ó Ź Ź Ź Ż Ź Ź Ż Ź Ś Ź Ś Ź Ś Ś Ż Ó Ż Ż Ź Ź Ś Ó Ó Ż Ź Ż Ś Ź Ś Ż Ż Ś Ś Ż Ó Ć Ć Ń Ś ŁÓ
Ł ź Ś Ł ń Ż ć ź ć Ł Ś Ś Ś Ł Ł Ź Ś Ś Ś Ł Ś ź ć ć ć Ś Ś Ś Ł Ż Ś ń Ś Ł Ś Ł Ł Ź ć ć Ł ć Ń Ś Ą Ł ŁÓ Ź ń ń Ó ć Ł Ł ź ń ć ć ć Ś Ł Ł Ź Ś Ś ń Ż Ż Ż ć ć Ś Ś Ł Ź ć ń ć ć Ś Ł Ę ń Ś Ł Ł ź ć Ź ć ć ć ń ć Ś Ś Ż ć Ś ń
Ł ŁÓ ź ń ć ń ń Ó ć ń ć Ś Ś ń Ś Ś Ś ć ć Ć Ś ć Ż Ć Ś ć Ś ń Ł ć ć ć ź ń ń ń ń ń ń ź ń ń ń ź ń Ś Ś ć ć ń Ś ć Ś Ś Ć ź ń ń ź ń ń ń ń ć ć ć ć ć ć ć ź ń ź ć ć ć ć ń ń ć ć Ś ń ń ń ń ź ć Ę ń ń ć Ł ź ź ź Ć ć ć ź
Ł Ś ń ń ń ź ź Ę Ś Ś Ć Ą Ę ź Ź Ń ń Ę Ą ń Ź ń ń ź Ś ń Ź ź ć Ł Ś Ą Ś ź Ą ń Ń Ź Ś Ó ŁÓ Ę Ó Ś ć ź Ę Ą Ś Ś Ś Ś ć Ą ź ń Ą ń Ź ź ź Ę Ł ń ń ń ź Ź Ą Ń Ą Ą ć Ź ń Ą Ń ń ń ź ć ń Ę Ś Ź ć ć ć ń ń ć ń ć ć Ź Ą ć ć ć ć
Ż Ł Ó ź Ł ź Ł ź Ó Ó Ź Ó ŁÓ ź Ł Ś Ł Ź ź ŁÓ ź Ł ć Ć ć ż ć ż ż ć ż ż Ó ć ć ż ć Ł ź ż ż Ł Ź Ó Ż ć ć Ł ż ż ź ż Ć Ó Ł Ó ż Ż ż ż ż Ł Ó ż Ą ż Ł Ł ć Ł Ł Ł ż Ł Ó ż Ł ź Ż Ś Ł ż Ł ć Ż Ą Ł ż ż Ó ć ż ć Ń ć ć ż ż ć
MECHANIKA OGÓLNA (II)
MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale
A. Zaborski, Rozciąganie proste. Rozciąganie
. Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin
Prawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź
Ż ź ź ź Ę Ą Ł ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź Ś Ź Ń Ź Ę Ę ź Ł ź Ż Ę ź Ż Ż Ż Ź Ź Ń ź Ź ź ć Ż Ę ć ć Ą ź ź Ź Ż Ś ź Ę Ę Ż Ż Ś Ę Ę ć Ż Ż Ń Ł Ń Ż Ż ź Ą Ą ź ź ź ć Ą ć ź Ż ć Ż Ę Ń Ę Ż Ż Ż Ó Ż Ż Ż Ż Ą Ł Ż Ł Ł Ł Ż Ż
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
2.2. ZGINANIE UKOŚNE
.. ZGINNIE UKŚNE Zginnie ukśne (dwukierunkwe) wstępuje wówcs, gd bciążenie ewnętrne redukuje się d wektr mmentu ginjąceg, leżąceg w płscźnie prekrju, któreg kierunek nie pkrw się żdną głównch, centrlnch
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x