ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =
|
|
- Mariusz Orzechowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne Jo ór wetorów eponh w pune O W te nterpret est to trówmrow prestre rtes Jo ór wssth wetorów swoodnh odnów serownh Jel punt est potem wetor punt ego oem to ] ] 0 0 0] 0 0] 0 ] Wetor ] s równoległe wted tlo wted λ l wted tlo wted gd m proporonlne współrdne l wted tlo wted gd Ilonem slrnm wetorów ] nwm l rewst orelon worem ] ] Z pomo lonu slrnego wnm: Długo wetor: Ztem Kt pomd wetorm : ros Prostopdło wetorów: 0 Wnn Grm udown n wetorh : G Wnn Grm udown n wetorh : G Wnn Grm udown n dwu wetorh est wdrtem pol równoległoou udownego n th wetorh W prestren wnn Grm udown n dwu wetorh uprs s do post G Wnn Grm udown n treh wetorh est wdrtem oto równoległonu udownego n th wetorh W prestren 3 wnn Grm udown n treh wetorh uprs s do post G Wnn wstpu po prwe strone równo wr lon mesn wetorów Oto równoległonu roptego n treh wetorh w prestren 3 wgodne est l w opru o wór Vol s Ilonem wetorowm wetorów ] nwm wetor orelon worem
2 Wetor est prostopdł równo do do ; el ne s równoległe to wn płsn do tóre est prostopdł Wetor m długo równ polu równoległoou o dwu ssednh oh ; tem sn G Tr wetor s omplnrne współpłsnowe wted tlo wted gd 0 oto udownego n nh równoległonu est równ ero ] Olm pole trót o werhołh ; ;3 8; Rowne Pole trót est połow pol odpowednego równoległoou 3 ] 4] 8 ] 6 ] Do olen pol równoległoou stosuem wnn Grm G Pole równoległoou udownego n wetorh wnos G 6 4 pole trót est równe 4 Pole równoległoou 4 6 ] Olm pole trót o werhołh ;; 4 ; ;3 7;; 3 Rowne Pole trót est połow pol odpowednego równoległoou 0 7] 5 7] Do olen pol równoległoou stosuem wnn Grm G Pole równoległoou udownego n wetorh wnos 776 pole trót est równe 766 Pole równoległoou e e e3 e e e3 0 7 e 35e 0e3 35 0] 5 7 Pole ] Olm t md wetorm 0 ] 0] Rowne Ponew wetor s neerowe w osϕ Std ϕ 3 π 4] Sprwd e trót o werhołh 3; ;5 ;; 3 5;; est ostrotn Rowne Ponew 53 8] 3 6] > 0 w t pr werhołu w tróe est ostr St Kowls Włd mtemt dl studentów erunu Mehn włd
3 Z wrunów 5 38] 70 ] > 0 70 ] 36] 4 0 > 0 wn e poostłe t tego trót s ostre 5] Sprwd e wetor ] 3] 3 47] s omplnrne lee w edne płsne Rowne Tr wetor s omplnrne el oto udownego n nh równoległonu est równ ero ponew Vol s w wstr stwerd e ] Ol oto równoległonu udownego n wetorh ] 3] 0 ] Rowne 3 Vol s s 0 7] Ol pole powerhn łowte równoległonu udownego n wetorh ] 3] 0 ] 6 0 G G 0 G 4 4 Pole powerhn łowte tego równoległonu wnos 84 4 Zn werhołe 53 or wetor 4 ] 3 5] wn poostłe werhoł trót Ol lon el 473 ] 3 5] 3 Dne s tr olene werhoł równoległoou D : 6; 3; ;7 równoległoou 4 Ol pole trót o werhołh Ol pole trót o werhołh Ol t md wetorm 0 ] 0 ] 7 Sprwd e trót o werhołh est ostrotn 8 Ol oto równoległonu udownego n wetorh ] 3 ] 0 ] 9 Sprwd e wetor ] 3] 3 47] s omplnrne Wn werhołe D or pole tego 0 Ol pole powerhn łowte równoległonu udownego n wetorh ] 3] 0 ] Sprwd e trót o werhołh est rowrtotn Ol ego pole Sprwd e trót o werhołh 40 est prostotn Ol ego pole ] 3 D 6 Pole 0 4 Pole 0 5 Pole Kt 3 π 8 Vol St Kowls Włd mtemt dl studentów erunu Mehn włd 3
4 Płsn w 3 Równne ogólne wrte w 3 płsn σ est post D 0 gde prnmne edn l lu est rón od er Wetor n ] nwm wetorem normlnm płsn σ n Równne płsn σ prehode pre punt P P P P prostopdłe do wetor n ] m post σ : P P P 0 Płsn prehod pre tr newspółlnowe punt wnm ednego e worów 0 Odległo puntu P P P P od płsn σ: D 0 nlepe est ol e woru P P P D d Płsn σ : D 0 σ : D 0 s równoległe wted tlo wted gd h wetor normlne n ] n ] s równoległe l wted tlo wted gd n ] λ ] λ n Jel pondto D λ D to płsn te porw s Płsn σ : D 0 σ : D 0 s prostopdłe wted tlo wted gd h wetor normlne n ] n ] s prostopdłe l wted tlo wted gd n n 0 0 Kt md płsnm Ktem md płsnm nwm t ostr md wetorm normlnm th płsn n n σ σ ros n n ] Nps równne ogólne płsn prehode pre punt prostopdłe do wetor n ] Rowne Równne płsn σ prehode pre punt P P P P prostopdłe do wetor n ] m post σ : P P P 0 Płsn σ rown w tm dnu m równne σ : 0 Osttene po prestłenu σ : 0 St Kowls Włd mtemt dl studentów erunu Mehn włd 4
5 ] Nps równne ogólne płsn σ prehode pre punt J est odległo potu ułdu od te płsn? Rowne Sorstm e woru σ : 0 P P P D σ : σ : d Zdn Nps równne płsn prehode pre tr punt M ; ; M ;; ;0; 7 Ol odległo puntu M 3 od płsn P : Znle odległo med płsnm P : P : M 3 4 Nps równne płsn prehode pre punt M prostopdłe do dwóh płsn P : 0 P : 0 5 Znle t md płsn 5 0 płsn O 6 Nps równne płsn prehode pre punt M ;; M ;; or prostopdłe do płsn P : 0 7 Nps równne płsn równoległe do płsn P : odległe od ne o 3 8 Nps równne płsn równoodległe od płsn P : 0 P : Wn płsn prehod pre o pre punt M ; ; 0 Wn płsn prehod pre punt M ;3; 4 równoległ do płsn Ol oto ostrosłup ogrnonego płsn π : 3 0 płsnm ułdu współrdnh Punt M ; ; est rutem potu ułdu współrdnh n płsn Wn e równne 3 Znd t md płsnm π : 0 π : Wn płsn do tóre nle punt: ; ; ;0; 0;0; 5 Wn płsn do tóre nle punt: 0;; ;0;0 ; ;0 6 Wn płsn prehod pre punt P ; 3; 7 równoległ do płsn σ : Wn płsn prehod pre punt P ;3; Q ;5;3 prostopdł do płsn σ : Wn płsn prehod pre punt P ; 3; 7 równoległ do wetorów: 3 ] 3 ] 9 Wn płsn prehod pre punt P ;0;4 ego rut n płsn: π : 7 0 σ : Ol długo wsoo ostrosłup poprowdone werhoł S ;4; n n wer werhoł 0; ; 3;5; ; 3; Ol oto woronu o werhołh ;; 0;; ;;3 D ;;3 3 0 ; 3 ; 3 3 ; ; 5 60 ; 6 0 ; ; 8 0 ; 9 0 ; 0 0 ; 9 ; 7 0 ; 3 ros ; ; ; ; ; ; ; St Kowls Włd mtemt dl studentów erunu Mehn włd 5
1. Algebra wektorów. Rys Wektor w układzie współrzędnych (jego współrzędne i kąty)
1. Alger wetorów Welość wetorową chrterue wrtość, cl moduł, erune, wrot. Możn ą predstwć w sposó grfcn o odcne serown o długośc proporconlne do modułu lu te w sposó nltcn. Sposó nltcn poleg n podnu rutów,,
Bardziej szczegółowodr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Bardziej szczegółowoWykład 2: Wektory DR INŻ. ZBIGNIEW SZKLARSKI
Włd 2: Wetor DR INŻ. ZIGNIEW SZKLRSKI SZKL@GH.EDU.PL HTTP://LYER.UCI.GH.EDU.PL/Z.SZKLRSKI/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, ntężene prądu eletrcnego, nprężene, ntężene
Bardziej szczegółowoELEMENTY RACHUNKU WEKTOROWEGO
Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn
Bardziej szczegółowo2.3.1. Iloczyn skalarny
2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi
Bardziej szczegółowoo zasilaniu napięciowym Gałąź normalna o zasilaniu mieszanym
o silniu npięiowm Głąź normln o silniu miesnm w w Głąź normln o silniu prądowm w w iern Siei e źródłmi npięiowmi [ ] [ ] [ ][ ]... W prpdu siei owodmi sprężonmi ( ) ( ) ( ) ω ω ω ω ω ω ω ω ω... M j M j
Bardziej szczegółowoŃ Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż
Bardziej szczegółowo0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D
Bardziej szczegółowoKlucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Bardziej szczegółowokwartalna sprzeda elazek
Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch 996-999 wosł: 4 5 6 7 8 9 4 45 5 57 6 64 68 65 68 67 69 7 7 7 75 Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec
Bardziej szczegółowokrystaliczne amorficzne monokrystaliczne polikrystaliczne Kryształ to obiekt dający ostry, dyskretny obraz dyfrakcyjny
Włd I. Bors, M. Ggl, K. Sróż, M. Surowe, Krslogrf, Wdwnwo Nuowe PWN, Wrsw 7. rs Durs, H. rs Durs, Podsw rslogrf sruurlne rengenowse Wdwnwo Nuowe PWN, Wrsw 994. Kosurew, Meod rslogrf, Wdwnwo nuowe UAM,
Bardziej szczegółowoS.A RAPORT ROCZNY Za 2013 rok
O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c
Bardziej szczegółowohttp://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html
O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016
Bardziej szczegółowoProsta w 3. t ( t jest parametrem).
Prosta w 3 by wyacy rówaie prostej w 3 wystarcy a jede put tej prostej i wetor adajcy jej ierue (way wetore ieruowy) Jei P = ( P yp P ) = [ p] to rówaia paraetryce prostej aj posta = P t : y = yp t t (
Bardziej szczegółowoH. Dąbrowski, W. Rożek Próbna matura, grudzień 2014 r. CKE poziom rozszerzony 1. Zadanie 15 różne sposoby jego rozwiązania
H ąrowski, W Rożek Prón mtur, grudzień 014 r K poziom rozszerzony 1 Zdnie 15 różne sposoy jego rozwiązni Henryk ąrowski, Wldemr Rożek Zdnie 15 Punkt jest środkiem oku prostokąt, w którym Punkt leży n oku
Bardziej szczegółowoDokumentacja techniczna IQ3 Sterownik z dostępem poprzez Internet IQ3 Sterownik z dostępem poprzez Internet Opis Charakterystyka
Bardziej szczegółowo
Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź
Bardziej szczegółowoĄ Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć
Bardziej szczegółowoŃ Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó
Bardziej szczegółowoń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń
Bardziej szczegółowoĄ ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm
Bardziej szczegółowoŚ ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
Bardziej szczegółowoŚrodek masy i geometryczne momenty bezwładności figur płaskich 1
Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej
Bardziej szczegółowoWYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm
Bardziej szczegółowoMacierze hamiltonianu kp
Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej
Bardziej szczegółowoRozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o
Bardziej szczegółowoPlan wykładu. Literatura. Układ odniesienia. Współrzędne punktu na płaszczyźnie XY. Rozkład wektora na składowe
Leu. D. Hlld, R. Resnc, J. Wle, Podsw f, om -5, PWN, 7. D. Hlld, R. Resnc F om,, PWN, 974. 3. J. Blnows, J. Tls F dl nddów n wŝse ucelne PWN 986 4. P. W. Ans Chem fcn, PWN, 3. Pln włdu ) Podswowe wdomośc
Bardziej szczegółowoCałki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
Bardziej szczegółowoδ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
Bardziej szczegółowoRównania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
Bardziej szczegółowoTechnologia i Zastosowania Satelitarnych Systemów Lokalizacyjnych GPS, GLONASS, GALILEO Szkolenie połączone z praktycznymi demonstracjami i zajęciami na terenie polig onu g eodezyjneg o przeznaczone dla
Bardziej szczegółowoInstytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej
Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe
Bardziej szczegółowoWZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego.... (tytuł zadania publicznego) w okresie od... do...
Złąn nr 3 WZÓR SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) wnn dn publneg... (uł dn publneg) w rese d... d... reślneg w umwe nr... wrej w dnu pmęd... (nw Zleendw)... (nw Zleenbr/(-ów), sedb, nr Krjweg Rejesru
Bardziej szczegółowoMetody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak
Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj
Bardziej szczegółowoChorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
Bardziej szczegółowoPodstawy wytrzymałości materiałów
Podst trmłośi mteriłó IiR - Wkłd Nr 7 Zgi prętó prost sił eętre sił eętre belk, trde Sedler Żurskgo, kresó sił popre i mometó giją Wdił Iżrii eej i Robotki Ktedr Wtrmłośi, Zmęei teriłó i Kostrukji Dr b
Bardziej szczegółowoRozpraszania twardych kul
Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne
Bardziej szczegółowoSpis świadectw wydanych przez COCH w 2006 r.
Numer świadectwa Spis świadectw wydanych przez COCH w 2006 r. Numer rejestracyjny (punkt 3 świadectwa) Uznaje się jako (punkt 6 świadectwa) Nr protokołu badań (punkt 7.2.3 świadectwa) Data waŝności świadectwa
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Bardziej szczegółowo2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE
.. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm
Bardziej szczegółowoWektory w przestrzeni
Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem
Bardziej szczegółowoKompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
Bardziej szczegółowoAlgorytm I. Obliczanie wymaganej powierzchni absorpcji
Algorytm I. Oblcne wymgnej powerchn bsorpcj Wsp. prewodnośc olcj λ Zewnętrny wsp. wnn cepł α Prerój ew. olcj d Prerój wew. olcj d Grubość olcj d r Wsp. prenn cepł r α d π d + * ln λ d + α d Wsp. prenn
Bardziej szczegółowoMechanika i wytrzymałość materiałów
1 eik i trmłość mteriłó Wkłd Nr 11 Zgi prętó prost sił eętre belk podd giiu, trde Sedler Żurskgo, kresó sił popre i mometó giją Wdił Iżrii eej i Robotki Ktedr Wtrmłośi, Zmęei teriłó i Kostrukji Dr b iż
Bardziej szczegółowoĆWICZENIE 6. Mimośrodowe rozciąganie. Redukcja do środka ciężkości PROJEKT
ĆWICZENIE 6 Mmośrodowe rocągne Redukcj do środk cężkośc N P M P0 M P0 PROJEKT Zprojektowć prmetr prekroju, wncć oś obojętną or brłę nprężeń. Wncć rdeń prekroju. Prekrój obcążono słą N=00 kn prłożoną w
Bardziej szczegółowoObliczenia naukowe Wykład nr 14
Obliczeni nuowe Wyłd nr 14 Pweł Zielińsi Ktedr Informtyi, Wydził Podstwowych Problemów Technii, Politechni Wrocłws Litertur Litertur podstwow [1] D. Kincid, W. Cheney, Anliz numeryczn, WNT, 2005. [2] A.
Bardziej szczegółowo2.5. RDZEŃ PRZEKROJU
.5. RDZEŃ RZEKRJU Rdenem rekru nwm sr wukł wkół eg śrdk cężkśc w którm rłżn sł rcągąc (ścskąc) wwłue nrężen ednkweg nku w cłm rekru Równne s ętne mżn redstwć w dwóc lterntwnc stcc 0 () l () gde () Równne
Bardziej szczegółowo4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
Bardziej szczegółowoGeometria analityczna w przestrzeni. Kierunek. Długość. Zwrot
- podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.
Bardziej szczegółowoSPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.
SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab
Bardziej szczegółowoArkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoArkusz 4. Elementy geometrii analitycznej w przestrzeni
Arkusz 4. Elementy geometrii analitycznej w przestrzeni Zadanie 4.1. Obliczy dªugo±ci podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\Nieciagly.doc. Drgania i fale II rok Fizyki BC
Fle w ośrodu o struturze periodycznej: N ogół roziry nieciągłości ośrod
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Bardziej szczegółowoUkład okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Bardziej szczegółowo< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Bardziej szczegółowoPIERWIASTKI W UKŁADZIE OKRESOWYM
PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy
Bardziej szczegółowoI n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p
A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )
Bardziej szczegółowoWykªad 8. Pochodna kierunkowa.
Wykªd jest prowdzony w opriu o podr znik Anliz mtemtyzn 2. enije, twierdzeni, wzory M. Gewert i Z. Skozyls. Wykªd 8. ohodn kierunkow. enij Nieh funkj f b dzie okre±lon przynjmniej n otozeniu punktu (x
Bardziej szczegółowoMatematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
Bardziej szczegółowo2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Bardziej szczegółowoMatematyka I. WYKŁAD 8. UKŁADY RÓWNAŃ LINIOWYCH II Macierzowa Postać Eliminacji Gaussa. gdzie
Mtemtk I /9 WYKŁD 8. UKŁDY RÓWNŃ LINIOWYCH II Mcierow ostć limincji Guss B gdie nn n n n B n Metod elimincji: () Odejmownie od pewnego równni wielokrotności (nieerowej) wrnego innego równni, nie mienijąc
Bardziej szczegółowor = x x2 2 + x2 3.
Przestrze«aniczna Def. 1. Przestrzeni aniczn zwi zan z przestrzeni liniow V nazywamy dowolny niepusty zbiór P z dziaªaniem ω : P P V (które dowolnej parze elementów zbioru P przyporz dkowuje wektor z przestrzeni
Bardziej szczegółowoZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Bardziej szczegółowoGranica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych
Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si
Bardziej szczegółowoT = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s
Bardziej szczegółowoZastosowania całki oznaczonej
Przkłd 9 Nie kd funkcj okrelon i ogrniczon n [, b] jes cłkowln n [, b], np funkcj Dirichle nie jes cłkowln n przedzile [, ], gd f ( ), gd liczb wmiern odcink [,] liczb niewmiern odcink [,] Gdbm dl kdego
Bardziej szczegółowon ó g, S t r o n a 2 z 1 9
Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z
Bardziej szczegółowoRozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 33 2 0 1 7 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o C e
Bardziej szczegółowoTrapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu
9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion
Bardziej szczegółowoPrzestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Bardziej szczegółowoWYKŁAD 5. MODELE OBIEKTÓW 3-D3 część 1. Plan wykładu: V 1 , V 2 E 1 , E 2 P 1. frame) 1. Modele szkieletowe (wire. Modele szkieletowe
WYKŁAD 5 MODL OBIKTÓW -D ęść. Modele skeletowe (wre rme) V, V, - werhołk (verte),, - krwęde (edge) V 4 Pln wkłdu: Modele skeletowe Równne powerhn w post uwkłnej P, P, - śn (polgon sure) Model skeletow
Bardziej szczegółowoTWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Inżynieri i Gospodrk Wodn w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt
Bardziej szczegółowoElektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś
Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w
Bardziej szczegółowoStosując II zasadę dynamiki Newtona dla ruchu postępowego otrzymujemy
Zadania do rozdziału 6 Zad.6.. Wprowadzić równanie ruchu drgań wahadła matematcznego. Obicz okres wahadła matematcznego o długości =0 m. Wahadło matematczne jest to punkt materian (np. w postaci kuki K
Bardziej szczegółowoGdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
Bardziej szczegółowoAntoni Gronowicz. Podstawy analizy uk³adów kinematycznych
nton Gronowcz Podstw nlz u³dów nemtcznch Ofcn Wdwncz Poltechn Wroc³wse Wroc³w Wdne pulc dofnnsowne przez nsterstwo Educ Nrodowe Sportu Opnodwc Frncsze SIEIENIKO Stns³w WOJCIECH Oprcowne redcne ln KCZK
Bardziej szczegółowoa) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy
04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Bardziej szczegółowoPrawo Coulomba i pole elektryczne
Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku
Bardziej szczegółowo4. Podzielnica uniwersalna 4.1. Budowa podzielnicy
4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest
Bardziej szczegółowoGrupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Bardziej szczegółowoN(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2
Zdnie X,..., X 5 N(6, 5 ) Y,..., Y 6 N(7, 5 ) X N(6, 5 6 ) Ȳ N(7, 5 6 ) Przy złożeniu niezleżności zmiennych mmy: X Ȳ N(, ) po stndryzcji otrzymmy: Ȳ X N(, ) Pr(Ȳ X < ) = Pr(Ȳ X < ) = φ(, 3) = φ(, 3) =,
Bardziej szczegółowoStosunki międzynarodowe Studia II stopnia plan dwuletni 2012-2014. I semestr, rok 1
tosun ęnroo tu II stopn pln ultn - Lb po uośnu (/) orśl r goo nh ję n stuh stjonrnh (nh) Zj rón l runu: I sstr, ro N protu Wpron o nu o stosunh ęnrooh t s sstr N protu ono rooju Męnroo ohron pr o t s /
Bardziej szczegółowoKlauzule dodatkowe S warancyjna*
WN-08.03 WN-08.03 10. Rozd III OWU - Ubezpieczenie odpowiedzialno ci cywilnej. S arancyjna na wszystkie zdarzenia 25 PLN 5 LN 1 LN PLN 3 LN wiedzialno ci na jedno zdarzenie %s war %s warancyjnej OC za
Bardziej szczegółowoMATURA PRÓBNA 2 KLASA I LO
IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE
Bardziej szczegółowoElektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Bardziej szczegółowof(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Bardziej szczegółowo14. Krzywe stożkowe i formy kwadratowe
. Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33
Bardziej szczegółowoPochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Bardziej szczegółowoAlgebra liniowa z geometria. - zadania Rok akademicki 2010/2011
1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy
Bardziej szczegółowoElektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Bardziej szczegółowo