7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.
|
|
- Jakub Kuczyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Lecture 8 & 9 7, r f(x) =lim f(x) (7.) r r f(x) =lim f(x) +lim f(x) (7.) r r r 7. f(z) I = f(x) (7.) f(z), z ( argz π), zf(z) [ R, R], : z = R Jordan C f(z). C f(z)dz = R R f(x) + f(z)dz =πi i Res z=zi f(z) (7.4). f(z) z i π I R := f(z)dz = f(re iθ )ire iθ dθ (7.5)
2 Figure 7.: C, ϵ>, R θ π θ Rf(Re iθ ) <ϵ I R ϵ π dθ = πϵ (7.6) lim I R = (7.7) R f(x) =πi i Res z=zi f(z) (7.8) 7.. x + = π (7.9) x =tanθ = dθ cos θ π x + = dθ = π π [ R, R], : z = R Jordan C f(z) = C, z +
3 C f(z)dz = Figure 7.: R R f(x) + f(z)dz =πir(i) (7.) z = i f(z) R(i) =(z i) z + = z=i i (7.) f(z)dz z + πr dz (R ) (7.) R lim f(z)dz = (7.) R x + =πi i = π (7.4) : 7.. (7.5) x 4 +, x 4 + = (7.6) x 4 + 4
4 Figure 7.: C :[ R, R] R, f(z) = +z 4. f(z) z = ω ±, ω ±, ω = e iπ/4 C f(z) dz πi + C f(z) dz πi f(z) dz πi = Res z=ω f(z)dz +Res z= ω f(z)dz (7.7) = R f(x) (R ) (7.8) πi R πi +x 4, z = Re iθ, z 4 + z 4, π f(z)dz R π f(z) dz = +R 4 e 4iθ dθ R dθ (R ) (7.9) R 4, Res z=ω f(z)dz = z ω lim z ω z 4 + = 4ω = ω 4 Res z= ω f(z)dz = z + ω lim z ω z 4 + = 4( ω ) = ω 4 = ω 4 +x 4 = +x 4 = πi ( 7.. a> ) ω4 ω + = πi ( e iπ ) iπ + e 4 = π (7.) (7.) a + x (7.) (a + x ) (7.) (7.) a (7.) 5
5 7. I = 6 a>, f(z) f(z) lim z f(z) =( argz π) f(x)e iax (7.4) [ R, R], : z = R Jordan C f(z), C f(z)e iaz dz = R R f(z)e iaz dz + f(z)e iaz dz =πi i Res z=zi f(z)e iaz (7.5) f(z) z i, z = Re iθ I R := f(z)e iaz dz = π f(re iθ )e iar cos θ ar sin θ ire iθ dθ (7.6) ϵ>, R, θ π θ f(re iθ ) <ϵ π I R ϵr e ar sin θ dθ =ϵr π/ Jordan e ar sin θ dθ (7.7) Jordan r> π π e r sin θ dθ < π r e r sin θ dθ < π r (7.8) (7.9) 6 Fourier.5 6
6 θ π, sinθ π θ, r> e r sin θ e r π θ π e r sin θ dθ π e r π θ dθ = π π r r e π θ = π r ( e r ) < π r [ π,π], θ = π ϕ π π e r sin θ dθ = π e r sin ϕ ( dϕ) = π e r sin ϕ dϕ (7.) ( ) Figure 7.4: Jordan I R Jordan I R ϵr π/ e arθ/π dθ =ϵr e ar ar/π < π a ϵ (7.) lim I R = (7.) R f(x)e iax =πi i Res z=zi (f(z)e iaz ) (7.) 7
7 7.. Re(e iax )=cosax cos ax b + x = π b e ab (a>,b>) (7.4) ( ) f(z) = eiaz z + b (7.5) e iax (7.6) x + b C ib -R O R Figure 7.5: [ R, R] (R>b) : z = Re iθ ( θ π) C f(z). C f(z) z = ib Res z=ib f(z)dz = eiaz z + ib = e ab z=ib ib R e iax f(z)dz = b + x + f(z)dz =πires CR z=ib f(z)dz = πe ab b C R f(z) f(z)dz f(z) dz π R sin θ e R b Rdθ (7.7) (7.8) Rπ R b (7.9) R lim R f(z)dz = e iax = lim b + x R (7.4) R R e iax πe ab = b + x b (7.4) 8
8 7.4. x sin x +x = π e (7.4) x sin x xe ix =Im +x +x, xe ix [ R, R] R C +x R, xe ix +x + ze CR iz +z dz =πir(i) =πi e +z dz Re R sin θ R rdθ CR ze iz π Jordan (7.9) < R e R sin θ dθ R < R π (R ) (7.4) R R x sin x +x =Imπi e = π e : πi = e iax x ib { e ab (a >) (a<) (b >,a : ) (7.4) (7.4) b + (b ) lim b + πi e iax x ib = (step function) θ(x) { (x>) θ(x) := (x<) { (a>) (a<) (7.44) (7.45) 9
9 7.. e ixt θ(x) = lim dt (7.46) ϵ + πi t iϵ cos x (a >,b>) (7.47) (x + a )(x + b ) x = π (7.48) f(z) = +z z =, 7.6. r +x + C r Figure 7.6: dz z + + re πi πir(e πi )=πi z C r z=e πi dz z + r π r dz πi =πir(e z ) + =πi e πi (r )
10 re πi dz z + = r = e πi +x =πi e πi e πi ds s + r (z = se πi ) x + e πi = π (7.49) 7.. +x 5 (7.5) 7.6. sin x x = eix e ix ix sin x x = π (7.5) sin x x = lim R ϵ f(z) = eiz z R ϵ e ix e ix ix = lim R ϵ ( R + i ϵ ϵ R ) e ix (7.5) x eiz, z C r C ε Figure 7.7: ( r ϵ + + C r ϵ r ) e iz + dz = (7.5) C ϵ z
11 . C r Jordan e Cr iz z dz π r sin θ e ire iθ dθ re iθ π r (r ) (7.54) C ϵ Cϵ e iz z dz (7.5) π = = i π i iϵ(cos θ+i sin θ) e ϵe iθ iϵe iθ dθ e iϵ(cos θ+i sin θ) dθ iπ (ϵ ) (7.55) sin x iπ = (7.56) x sin x x = π (7.57) Cauchy f(x), x f(x) x δ P f(x) := lim f(x) + f(x) (7.58) δ + x +δ (principal value) a, f(z) f(x) P (7.59) x a Imz > z z k f(z) <M(k >,M > : )
12 z = a C C f(z) f(x) dz =P iπf(a) (7.6) C z a x a f(z) f(x) dz =P + iπf(a) (7.6) z a x a C f(z)dz R π f(re iθ ) dθ < R a R R a πm (R ) (7.6) Rk C ϵ z = a + ϵe iθ f(z)dz = f(a + ϵe iθ )idθ iπf(a) (ϵ ) (7.6) C ϵ π (7.6) Figure 7.8: C, C f(z) (7.6) = f(a) = iπ P f(x) (7.64) x a Ref(a) = π P Imf(x) (7.65) x a Imf(a) = π P Ref(x) (7.66) x a (dispersion formula)
13 Dirac delta (7.6) z = x + iϵ (ϵ >) ϵ (7.6) lim ϵ + lim ϵ + ( lim ϵ + δ(x a) := πi lim ϵ + f(x) =P x a + iϵ f(x) =P x a iϵ x a + iϵ x a iϵ ( ) x a + iϵ x a iϵ Dirac delta 7 (7.69) (7.67) (7.68) ϵ f(x) iπf(a) x a (7.67) f(x) + iπf(a) x a (7.68) ) f(x) = πif(a) (7.69) = lim ϵ + π ϵ (x a) + ϵ (7.7) δ(x a)f(x) = f(a) (7.7) x a + iϵ =P iπδ(x a) x a (7.7) x a iϵ =P + iπδ(x a) x a (7.7) log x (7.74) +x I r C r ϵ C ϵ f(z) = log z +z r f(x) + f(z)dz + f(z)dz + f(z)dz =πir(z = e iπ/ ) (7.75) C r re πi/ C ϵ 4
14 Figure 7.9: z = e iπ/, (z z )logz R(z )= lim = log z z z +z z = z=z log z dz = eπi/ +z re πi/ r πi/ πi = eπi/ 9 e πi (7.76) log r +πi/ dr e πi/ I πi dr +r eπi/ (7.77) +r C r f(z)dz = π/ r r I = e ± πi = ± i dr +r I e πi/ I πi eπi/ log(re iθ ) +r e iθ rieiθ dθ (7.78) dr +r =πiπi 9 e πi/ (7.79) ( e πi πi )I e πi I = π πi 9 e (7.8), (7.8) I + π I = π 9 I + π I = 7 π 9 (7.8) (7.8) 5
15 I = π 7, I = π 9 (7.8) log x (7.85) (x +) 7.8. x a +x = π, ( <a<) (7.86) sin aπ f(z) = z a +z z = 9 z a C argz =, z a, C (e πi z) a C - C ε C R C dr +r = π Figure 7.: I = π 7 (7.84) 9 c C z c := exp(c log z) log z Logz+πik (k Z), z c exp(c(logz+ πik)) 6
16 R x a R ϵ +x + e πia x a f(z)dz C r ϵ +x + f(z)dz C ϵ = πires z= f(z) =πie πia (7.87) C ϵ π f(z)dz ϵe πi+iθ a ϵdθ = ϵ a π ( <a<,ϵ ) (7.88) C ϵ ϵ ϵ C r π f(z)dz (re iθ ) a r a rdθ = πr ( <a<,r ) (7.89) C r r r. ( e πia x a ) +x =πie πia (7.9) x a +x = π sin πa (7.9) 7.5. x a ( <a<) (7.9) (x +) 7.5 sin θ, cosθ F (sin θ, cos θ) I = π C : z = e iθ ( θ π) F (sin θ, cos θ)dθ (7.9) sin θ = z z, cos θ = z + z i I = C F ( z z i, z + z ) dz iz dz = izdθ (7.94) 7
17 7.9. π dθ +asin θ = π, ( <a<) (7.95) a az +iz a = I = = C C +a z z i dz iz dz (7.96) az +iz a z = ± a i (7.97) a z ( ) z ( ). z C I =πir(z ) =πi az +i π = a (7.98) 7.6. π cos nθ dθ ( <a<,n=,,,...) (7.99) a cos θ + a 7.6 Fresnel 7.. cos x = sin x = π (7.) Fresnel, (Fresnel ) Gauss e x = π (7.) 8
18 f(z) =e z Figure 7.: Fresnel C R e x e x = π (R ) (7.) C z = Re iθ π/4 dz R e R cos θ dθ C e z = R R π/ π/ e R sin ϕ dϕ e R ϕ π dϕ = R R π ( e R ) (R ) (7.4) I = e x, I = π π I = dye x y = drr dθe r =π e r = π (7.) 9
19 C : z = re iπ/4 dz = C e z C +C +C e z dz = R e ri e iπ/4 dr = +i R (cos r i sin r )dr +i (cos r i sin r )dr (R ) (7.5) (cos r i sin r )dr = i π (7.6), (7.) 7.7 : 7.. b a b a (x a)(b x) = π (a <b) (7.7) (x a)(b x) = π 8 (a b) (a<b) (7.8) f(z) =((z a)(z b)) ±/ z =
R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )
5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin
4.1. Lecture 4 & 5. Riemann. f(t)dt. a = t 0 <t 1 < <t n 1 <b= t n (4.1) , n [t i 1,t i ] t i t i 1 (i =1,...,n) f(ξ i )(t i t i 1 ) (4.
Lecture 4 & 5 4 4.1 Riemnn t f(t) [, b] (Riemnn ) f(t)dt [, b] n 1 t 1,...,t n 1 t 0
1 Warunki Cauchy'ego-Riemanna itd. 2 Caªki bez u»ycia residuów
Analiza zespolona, lista zada«nr Warunki Cauchy'ego-Riemanna itd.. Dla nast puj cych funkcji wypisa ich cz ±ci rzeczywiste i urojone. Sprawdzi, czy nast puj ce funkcje speªniaj w caªej pªaszczy¹nie równania
6. Punkty osobliwe, residua i obliczanie całek
6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
Funkcje Analityczne, ćwiczenia i prace domowe
Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich
Zadania z funkcji zespolonych. III semestr
Zadania z funkcji zespolonych III semestr 1 Spis treści 1. Liczby zespolone - dzia lania i w lasności Zad. 1 1. Pochodna funkcji zmiennej zespolonej, holomorficzność Zad. 11-19 3. Funkcje elementarne Zad.
dkowanych par liczb rzeczywistych postaci z = (a, b). W zbiorze tym wprowadzamy dzia lania +, w naste dziemy z liczba
1. Liczby zespolone Cia lo liczb rzeczywistych be dziemy oznaczać symbolem R, pierścień liczb ca lkowitych symbolem Z, a zbiór liczb naturalnych symbolem N. Przyjmujemy, że 0 / N. Rozważmy zbiór C = R
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 7 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 7 1 / 11 Reprezentacja
1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.
WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R
Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę
MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),
Analiza Matematyczna 3 Całki wielowymiarowe
[wersja z X 008] Analiza Matematyczna 3 Całki wielowymiarowe Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego 008/009 Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Matematyczne Metody Fizyki I
Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka
Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o
Wykłady z Funkcji Analitycznych (Wykład jednosemestralny)
Uniwersytet Jagielloński Wydział Matematyki i Informatyki Instytut Matematyki Wykłady z Funkcji Analitycznych (Wykład jednosemestralny Marek Jarnicki (Wersja z 6 czerwca 2010 Spis treści Rozdział 1.
TRANSFORMATA FOURIERA
TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.
, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0
A. Definicje. z = z z, z = z (cos θ + i sin θ) (argument z - każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla z n z 0 Rez n Rez 0, Imz n Imz
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
adasalai.org POWERS OF IMAGINARY UNIT = i i 2001 Division algorithm : n = 4(q) + r
.COMPLEX NUMBERS Pai POWERS OF IMAGINARY UNIT i =, i = i, i 4 = Division algorithm : n = 4(q) + r i n = (i) 4q+r = (i) 4q (i) r = (i 4 ) q (i) r if r = 0, i n = ; if r =, i n = i; if r =, i n = ; if r
Mechanika kwantowa - zadania 1 (2007/2008)
Wojciech Broniowski Instytut Fizyki, Akademia Świetokrzyska Mechanika kwantowa - zadania (007/008) Elementy algebry (powtórka). Ortoganalizacja Gramma-Schmidta. Rozważ wektory w przestrzeni R 3 v = 0,
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Elektrostatyka Potencjały I linie sił pola. Symetria cylindryczna Odwzorowania konforemne
Elektrostatyka Potencjały I linie sił pola Symetria cylindryczna Odwzorowania konforemne Metoda rozdzielania zmiennych Dwa wymiary Laplasjan. Symetria cylindryczna. 1 r r V (r r )+ 1 V r ϕ = 0; V = R(
FUNKCJE ZMIENNEJ ZESPOLONEJ
FUNKCJE ZMIENNEJ ZESPOLONEJ MiNI - zbiór zadań (wybór i opracowanie zadań Agnieszka Badeńska) Spis treści I. Liczby zespolone dzia lania i w lasności 3 II. Pochodna funkcji zespolonej, holomorficzność
Funkcje Analityczne Grupa 3, jesień 2008
Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego
O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine
Analiza obrazów w systemie wizyjnym
Parametryzacja sylwetek Marek Wnuk < marek.wnuk@pwr.edu.pl > KCiR(W4 K7) PWr MW:CPOSB p.1 Analiza obrazów w systemie wizyjnym Podstawowe problemy decyzyjne: klasyfikacja(rozpoznawanie- identification)
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
Funkcje analityczne. Wykład 12
Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać
Funkcje. Granica i ciągłość.
Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica
Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.
Zasady zachowania Pęd i moment pędu Praca, moc, energia Ruch pod działaniem sił zachowawczych Pęd i energia przy prędkościach bliskich prędkości światła Pęd i moment pędu dp/dt = F p = const, gdy F = 0
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Funkcje zespolone. Agata Pilitowska. dkowana (x, y) liczb rzeczywistych x, y R. Definicja 1.1. Liczba zespolona jest to para uporza
Funkcje zespolone. Agata Pilitowska 2007 1 Liczby zespolone Definicja 1.1. Liczba zespolona jest to para uporza dkowana (x, y) liczb rzeczywistych x, y R. Dwie liczby zespolone z = (x, y) i w = (u, v)
Wstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.
Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami
KilkazadańzAMII Tekst poprawiony 14 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakichbyłowięcej... inietylkopań.
KilkazadańzAMII Tekst poprawiony 4 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakihbyłowięej... inietylkopań. Zadanie.Wykazać,żejednorodnakulaprzyiagapunktow amas e mztakasam
KU 0114 pozycja wydawnictw naukowych Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie
KU 0114 pozycja wydawnictw naukowych Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie c Wydawnictwa AGH, Kraków 2004 ISBN 83-89388-86-3 Komitet Naukowy UWND AGH: prof. dr. hab. inż. Janusz
3 Ewolucja układu w czasie, trajektorie kwantowe
3 Ewolucja układu w czasie, trajektorie kwantowe Pytanie: jak ewoluuje funkcja falowa stanu kwantowego ψ? W tym rozdzoale zajmiemy się ruchem cząstki w jednym wymiarze. 3.1 Trajektorie klasyczne Klasyczne
Matematyczne Metody Fizyki II
Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura
[wersja z 5 X 2010] Wojciech Broniowski
[wersja z 5 X 1] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki Akademia Świętokrzyska 1/11 Wojciech Broniowski 1 Analiza funkcji wielu zmiennych Przestrzeń wektorowa unormowana : X
1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach
Mathematics A Brief Guide for Engineers and Technologists. Chapter 2. Second. Properties. S is a vector space. Note
Mathematics A Brief Guide for Engineers and Technologists Dział. Drugi Chapter 2. Second. Dystrybucje wolnorosnące.. Przestrzeń funkcji testowych S S = S (IR n ) to wszystkie funkcje klasy C (IR n ) malejące
Analiza Matematyczna 3 Całki wielowymiarowe
[wersja z 6 X 9] Analiza Matematczna 3 Całki wielowmiarowe Konspekt wkładu dla studentów II r. fizki Uniwerstet Jana Kochanowskiego 9/ Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra
czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda
Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania
Analiza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć
FAN: wybór zadań przygotowawczych do egzaminu. styczeń 2014r. Egzamin będzie z całości materiału również i tej jego części, która objęta była poprzednimi zadaniami przygotowawczymi i samym kolokwium. Poniższy
EGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
Analiza Matematyczna część 4
[wersja z 1 IV 8] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 7/8 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
n p 2 i = R 2 (8.1) i=1
8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Analiza Matematyczna 3
[wersja z 5 X ] Analiza Matematyczna 3 Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego / Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra Butelka Kleina
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Fizyka Laserów wykład 5. Czesław Radzewicz
Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12
Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Analiza I.2*, lato 2018
Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv
Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego
VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Analiza matematyczna dla informatyków 4 Zajęcia 5
Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie
Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.
Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,
Spis treści. Spis treści 2
Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................
1. Definicja granicy właściwej i niewłaściwej funkcji.
V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła.
Szeregi Fouriera Grzegorz Lysik 1. Motywacja szeregów Fouriera, równanie ciepła. Rozważmy problem rozchodzenia się ciepła w pręcie o długości l. Temperatura pręta w punkcie x i w chwili t spełnia równanie
Unitary representations of SL(2, R)
Unitary representations of SL(, R) Katarzyna Budzik 8 czerwca 018 1/6 Plan 1 Schroedinger operators with inverse square potential Universal cover of SL(, R) x + (m 1 4) 1 x 3 Integrating sl(, R) representations
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie
Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.
CAŁKA OZNACZONA JAKO SUMA SZEREGU
CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o
Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008
Liczby zespolone Katarzyna Grabowska Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki Letnia Szkoła Fizyki, Płock 2008 Katarzyna Grabowska (KMMF) Liczby zespolone LSF2008 1 /
Ń Ż ż ć ś ą ą ż ą ą ś ś ą ą Ą Ą ą Ż ą ą ź ć ąż ą ś ą ą Ł ŁÓ ą Ą Ą Ł ą ą ą ąą ż ć ą Ń Ś Ą ą ż ą ż ć ąż ą ś Ż Ł ż ż ś ś ż ś ż ą ą ż ż ś Ó ś ż ą ą ą ż ś ś Ą Ą ą Ł ą ż ż ą ą ż ą ż ś ą ą ż ś ś ą ś ż ś ś ż
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Wykład 2: Szeregi Fouriera
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową
Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.
Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.