7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.

Wielkość: px
Rozpocząć pokaz od strony:

Download "7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7."

Transkrypt

1 Lecture 8 & 9 7, r f(x) =lim f(x) (7.) r r f(x) =lim f(x) +lim f(x) (7.) r r r 7. f(z) I = f(x) (7.) f(z), z ( argz π), zf(z) [ R, R], : z = R Jordan C f(z). C f(z)dz = R R f(x) + f(z)dz =πi i Res z=zi f(z) (7.4). f(z) z i π I R := f(z)dz = f(re iθ )ire iθ dθ (7.5)

2 Figure 7.: C, ϵ>, R θ π θ Rf(Re iθ ) <ϵ I R ϵ π dθ = πϵ (7.6) lim I R = (7.7) R f(x) =πi i Res z=zi f(z) (7.8) 7.. x + = π (7.9) x =tanθ = dθ cos θ π x + = dθ = π π [ R, R], : z = R Jordan C f(z) = C, z +

3 C f(z)dz = Figure 7.: R R f(x) + f(z)dz =πir(i) (7.) z = i f(z) R(i) =(z i) z + = z=i i (7.) f(z)dz z + πr dz (R ) (7.) R lim f(z)dz = (7.) R x + =πi i = π (7.4) : 7.. (7.5) x 4 +, x 4 + = (7.6) x 4 + 4

4 Figure 7.: C :[ R, R] R, f(z) = +z 4. f(z) z = ω ±, ω ±, ω = e iπ/4 C f(z) dz πi + C f(z) dz πi f(z) dz πi = Res z=ω f(z)dz +Res z= ω f(z)dz (7.7) = R f(x) (R ) (7.8) πi R πi +x 4, z = Re iθ, z 4 + z 4, π f(z)dz R π f(z) dz = +R 4 e 4iθ dθ R dθ (R ) (7.9) R 4, Res z=ω f(z)dz = z ω lim z ω z 4 + = 4ω = ω 4 Res z= ω f(z)dz = z + ω lim z ω z 4 + = 4( ω ) = ω 4 = ω 4 +x 4 = +x 4 = πi ( 7.. a> ) ω4 ω + = πi ( e iπ ) iπ + e 4 = π (7.) (7.) a + x (7.) (a + x ) (7.) (7.) a (7.) 5

5 7. I = 6 a>, f(z) f(z) lim z f(z) =( argz π) f(x)e iax (7.4) [ R, R], : z = R Jordan C f(z), C f(z)e iaz dz = R R f(z)e iaz dz + f(z)e iaz dz =πi i Res z=zi f(z)e iaz (7.5) f(z) z i, z = Re iθ I R := f(z)e iaz dz = π f(re iθ )e iar cos θ ar sin θ ire iθ dθ (7.6) ϵ>, R, θ π θ f(re iθ ) <ϵ π I R ϵr e ar sin θ dθ =ϵr π/ Jordan e ar sin θ dθ (7.7) Jordan r> π π e r sin θ dθ < π r e r sin θ dθ < π r (7.8) (7.9) 6 Fourier.5 6

6 θ π, sinθ π θ, r> e r sin θ e r π θ π e r sin θ dθ π e r π θ dθ = π π r r e π θ = π r ( e r ) < π r [ π,π], θ = π ϕ π π e r sin θ dθ = π e r sin ϕ ( dϕ) = π e r sin ϕ dϕ (7.) ( ) Figure 7.4: Jordan I R Jordan I R ϵr π/ e arθ/π dθ =ϵr e ar ar/π < π a ϵ (7.) lim I R = (7.) R f(x)e iax =πi i Res z=zi (f(z)e iaz ) (7.) 7

7 7.. Re(e iax )=cosax cos ax b + x = π b e ab (a>,b>) (7.4) ( ) f(z) = eiaz z + b (7.5) e iax (7.6) x + b C ib -R O R Figure 7.5: [ R, R] (R>b) : z = Re iθ ( θ π) C f(z). C f(z) z = ib Res z=ib f(z)dz = eiaz z + ib = e ab z=ib ib R e iax f(z)dz = b + x + f(z)dz =πires CR z=ib f(z)dz = πe ab b C R f(z) f(z)dz f(z) dz π R sin θ e R b Rdθ (7.7) (7.8) Rπ R b (7.9) R lim R f(z)dz = e iax = lim b + x R (7.4) R R e iax πe ab = b + x b (7.4) 8

8 7.4. x sin x +x = π e (7.4) x sin x xe ix =Im +x +x, xe ix [ R, R] R C +x R, xe ix +x + ze CR iz +z dz =πir(i) =πi e +z dz Re R sin θ R rdθ CR ze iz π Jordan (7.9) < R e R sin θ dθ R < R π (R ) (7.4) R R x sin x +x =Imπi e = π e : πi = e iax x ib { e ab (a >) (a<) (b >,a : ) (7.4) (7.4) b + (b ) lim b + πi e iax x ib = (step function) θ(x) { (x>) θ(x) := (x<) { (a>) (a<) (7.44) (7.45) 9

9 7.. e ixt θ(x) = lim dt (7.46) ϵ + πi t iϵ cos x (a >,b>) (7.47) (x + a )(x + b ) x = π (7.48) f(z) = +z z =, 7.6. r +x + C r Figure 7.6: dz z + + re πi πir(e πi )=πi z C r z=e πi dz z + r π r dz πi =πir(e z ) + =πi e πi (r )

10 re πi dz z + = r = e πi +x =πi e πi e πi ds s + r (z = se πi ) x + e πi = π (7.49) 7.. +x 5 (7.5) 7.6. sin x x = eix e ix ix sin x x = π (7.5) sin x x = lim R ϵ f(z) = eiz z R ϵ e ix e ix ix = lim R ϵ ( R + i ϵ ϵ R ) e ix (7.5) x eiz, z C r C ε Figure 7.7: ( r ϵ + + C r ϵ r ) e iz + dz = (7.5) C ϵ z

11 . C r Jordan e Cr iz z dz π r sin θ e ire iθ dθ re iθ π r (r ) (7.54) C ϵ Cϵ e iz z dz (7.5) π = = i π i iϵ(cos θ+i sin θ) e ϵe iθ iϵe iθ dθ e iϵ(cos θ+i sin θ) dθ iπ (ϵ ) (7.55) sin x iπ = (7.56) x sin x x = π (7.57) Cauchy f(x), x f(x) x δ P f(x) := lim f(x) + f(x) (7.58) δ + x +δ (principal value) a, f(z) f(x) P (7.59) x a Imz > z z k f(z) <M(k >,M > : )

12 z = a C C f(z) f(x) dz =P iπf(a) (7.6) C z a x a f(z) f(x) dz =P + iπf(a) (7.6) z a x a C f(z)dz R π f(re iθ ) dθ < R a R R a πm (R ) (7.6) Rk C ϵ z = a + ϵe iθ f(z)dz = f(a + ϵe iθ )idθ iπf(a) (ϵ ) (7.6) C ϵ π (7.6) Figure 7.8: C, C f(z) (7.6) = f(a) = iπ P f(x) (7.64) x a Ref(a) = π P Imf(x) (7.65) x a Imf(a) = π P Ref(x) (7.66) x a (dispersion formula)

13 Dirac delta (7.6) z = x + iϵ (ϵ >) ϵ (7.6) lim ϵ + lim ϵ + ( lim ϵ + δ(x a) := πi lim ϵ + f(x) =P x a + iϵ f(x) =P x a iϵ x a + iϵ x a iϵ ( ) x a + iϵ x a iϵ Dirac delta 7 (7.69) (7.67) (7.68) ϵ f(x) iπf(a) x a (7.67) f(x) + iπf(a) x a (7.68) ) f(x) = πif(a) (7.69) = lim ϵ + π ϵ (x a) + ϵ (7.7) δ(x a)f(x) = f(a) (7.7) x a + iϵ =P iπδ(x a) x a (7.7) x a iϵ =P + iπδ(x a) x a (7.7) log x (7.74) +x I r C r ϵ C ϵ f(z) = log z +z r f(x) + f(z)dz + f(z)dz + f(z)dz =πir(z = e iπ/ ) (7.75) C r re πi/ C ϵ 4

14 Figure 7.9: z = e iπ/, (z z )logz R(z )= lim = log z z z +z z = z=z log z dz = eπi/ +z re πi/ r πi/ πi = eπi/ 9 e πi (7.76) log r +πi/ dr e πi/ I πi dr +r eπi/ (7.77) +r C r f(z)dz = π/ r r I = e ± πi = ± i dr +r I e πi/ I πi eπi/ log(re iθ ) +r e iθ rieiθ dθ (7.78) dr +r =πiπi 9 e πi/ (7.79) ( e πi πi )I e πi I = π πi 9 e (7.8), (7.8) I + π I = π 9 I + π I = 7 π 9 (7.8) (7.8) 5

15 I = π 7, I = π 9 (7.8) log x (7.85) (x +) 7.8. x a +x = π, ( <a<) (7.86) sin aπ f(z) = z a +z z = 9 z a C argz =, z a, C (e πi z) a C - C ε C R C dr +r = π Figure 7.: I = π 7 (7.84) 9 c C z c := exp(c log z) log z Logz+πik (k Z), z c exp(c(logz+ πik)) 6

16 R x a R ϵ +x + e πia x a f(z)dz C r ϵ +x + f(z)dz C ϵ = πires z= f(z) =πie πia (7.87) C ϵ π f(z)dz ϵe πi+iθ a ϵdθ = ϵ a π ( <a<,ϵ ) (7.88) C ϵ ϵ ϵ C r π f(z)dz (re iθ ) a r a rdθ = πr ( <a<,r ) (7.89) C r r r. ( e πia x a ) +x =πie πia (7.9) x a +x = π sin πa (7.9) 7.5. x a ( <a<) (7.9) (x +) 7.5 sin θ, cosθ F (sin θ, cos θ) I = π C : z = e iθ ( θ π) F (sin θ, cos θ)dθ (7.9) sin θ = z z, cos θ = z + z i I = C F ( z z i, z + z ) dz iz dz = izdθ (7.94) 7

17 7.9. π dθ +asin θ = π, ( <a<) (7.95) a az +iz a = I = = C C +a z z i dz iz dz (7.96) az +iz a z = ± a i (7.97) a z ( ) z ( ). z C I =πir(z ) =πi az +i π = a (7.98) 7.6. π cos nθ dθ ( <a<,n=,,,...) (7.99) a cos θ + a 7.6 Fresnel 7.. cos x = sin x = π (7.) Fresnel, (Fresnel ) Gauss e x = π (7.) 8

18 f(z) =e z Figure 7.: Fresnel C R e x e x = π (R ) (7.) C z = Re iθ π/4 dz R e R cos θ dθ C e z = R R π/ π/ e R sin ϕ dϕ e R ϕ π dϕ = R R π ( e R ) (R ) (7.4) I = e x, I = π π I = dye x y = drr dθe r =π e r = π (7.) 9

19 C : z = re iπ/4 dz = C e z C +C +C e z dz = R e ri e iπ/4 dr = +i R (cos r i sin r )dr +i (cos r i sin r )dr (R ) (7.5) (cos r i sin r )dr = i π (7.6), (7.) 7.7 : 7.. b a b a (x a)(b x) = π (a <b) (7.7) (x a)(b x) = π 8 (a b) (a<b) (7.8) f(z) =((z a)(z b)) ±/ z =

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

1 Warunki Cauchy'ego-Riemanna itd. 2 Caªki bez u»ycia residuów

1 Warunki Cauchy'ego-Riemanna itd. 2 Caªki bez u»ycia residuów Analiza zespolona, lista zada«nr Warunki Cauchy'ego-Riemanna itd.. Dla nast puj cych funkcji wypisa ich cz ±ci rzeczywiste i urojone. Sprawdzi, czy nast puj ce funkcje speªniaj w caªej pªaszczy¹nie równania

Bardziej szczegółowo

6. Punkty osobliwe, residua i obliczanie całek

6. Punkty osobliwe, residua i obliczanie całek 6. Punkty osobliwe, residua i obliczanie całek Mówimy, że funkcja holomorficzna f ma w punkcie a zero krotności k, jeśli f(a) = f (a) = = f (k ) (a) = 0, f (k) (a) 0. Rozwijając f w szereg Taylora w otoczeniu

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Lista nr 1 - Liczby zespolone

Lista nr 1 - Liczby zespolone Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)

v = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z) v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Zadania z funkcji zespolonych. III semestr

Zadania z funkcji zespolonych. III semestr Zadania z funkcji zespolonych III semestr 1 Spis treści 1. Liczby zespolone - dzia lania i w lasności Zad. 1 1. Pochodna funkcji zmiennej zespolonej, holomorficzność Zad. 11-19 3. Funkcje elementarne Zad.

Bardziej szczegółowo

dkowanych par liczb rzeczywistych postaci z = (a, b). W zbiorze tym wprowadzamy dzia lania +, w naste dziemy z liczba

dkowanych par liczb rzeczywistych postaci z = (a, b). W zbiorze tym wprowadzamy dzia lania +, w naste dziemy z liczba 1. Liczby zespolone Cia lo liczb rzeczywistych be dziemy oznaczać symbolem R, pierścień liczb ca lkowitych symbolem Z, a zbiór liczb naturalnych symbolem N. Przyjmujemy, że 0 / N. Rozważmy zbiór C = R

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 7 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 7 1 / 11 Reprezentacja

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę

Lista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),

Bardziej szczegółowo

Analiza Matematyczna 3 Całki wielowymiarowe

Analiza Matematyczna 3 Całki wielowymiarowe [wersja z X 008] Analiza Matematyczna 3 Całki wielowymiarowe Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego 008/009 Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera

Bardziej szczegółowo

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,

Bardziej szczegółowo

Matematyczne Metody Fizyki I

Matematyczne Metody Fizyki I Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Praca domowa - seria 2

Praca domowa - seria 2 Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Wykłady z Funkcji Analitycznych (Wykład jednosemestralny)

Wykłady z Funkcji Analitycznych (Wykład jednosemestralny) Uniwersytet Jagielloński Wydział Matematyki i Informatyki Instytut Matematyki Wykłady z Funkcji Analitycznych (Wykład jednosemestralny Marek Jarnicki (Wersja z 6 czerwca 2010 Spis treści Rozdział 1.

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0

, sin z = eiz e iz. = f (z 0 ) (równoważnie f(z 0 + h) = f(z 0 ) + f (z 0 )h + α(h), gdzie lim h 0 A. Definicje. z = z z, z = z (cos θ + i sin θ) (argument z - każdy kąt θ spełniający tę równość; każde dwa argumenty z różnią się o całkowitą wielokrotność 2π). Ponadto dla z n z 0 Rez n Rez 0, Imz n Imz

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

adasalai.org POWERS OF IMAGINARY UNIT = i i 2001 Division algorithm : n = 4(q) + r

adasalai.org     POWERS OF IMAGINARY UNIT = i i 2001 Division algorithm : n = 4(q) + r .COMPLEX NUMBERS Pai POWERS OF IMAGINARY UNIT i =, i = i, i 4 = Division algorithm : n = 4(q) + r i n = (i) 4q+r = (i) 4q (i) r = (i 4 ) q (i) r if r = 0, i n = ; if r =, i n = i; if r =, i n = ; if r

Bardziej szczegółowo

Mechanika kwantowa - zadania 1 (2007/2008)

Mechanika kwantowa - zadania 1 (2007/2008) Wojciech Broniowski Instytut Fizyki, Akademia Świetokrzyska Mechanika kwantowa - zadania (007/008) Elementy algebry (powtórka). Ortoganalizacja Gramma-Schmidta. Rozważ wektory w przestrzeni R 3 v = 0,

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. Drgania i fale ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera

Bardziej szczegółowo

Analiza Matematyczna Praca domowa

Analiza Matematyczna Praca domowa Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x

Bardziej szczegółowo

Elektrostatyka Potencjały I linie sił pola. Symetria cylindryczna Odwzorowania konforemne

Elektrostatyka Potencjały I linie sił pola. Symetria cylindryczna Odwzorowania konforemne Elektrostatyka Potencjały I linie sił pola Symetria cylindryczna Odwzorowania konforemne Metoda rozdzielania zmiennych Dwa wymiary Laplasjan. Symetria cylindryczna. 1 r r V (r r )+ 1 V r ϕ = 0; V = R(

Bardziej szczegółowo

FUNKCJE ZMIENNEJ ZESPOLONEJ

FUNKCJE ZMIENNEJ ZESPOLONEJ FUNKCJE ZMIENNEJ ZESPOLONEJ MiNI - zbiór zadań (wybór i opracowanie zadań Agnieszka Badeńska) Spis treści I. Liczby zespolone dzia lania i w lasności 3 II. Pochodna funkcji zespolonej, holomorficzność

Bardziej szczegółowo

Funkcje Analityczne Grupa 3, jesień 2008

Funkcje Analityczne Grupa 3, jesień 2008 Funkcje Analityczne Grupa 3, jesień 2008 Czternasta porcja zadań. Uwaga: i) W każdym zadaniu można korzystać z poprzednich jego części i innych zadań, nawet, jeśli się ich nie rozwiązało. ii) Wcześniejsze

Bardziej szczegółowo

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego

O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego O pewnym twierdzeniu S. Łojasiewicza, J. Wloki, Z. Zieleżnego Jan Ligęza Instytut Matematyki Wisła Letnia Szkoła Instytutu Matematyki wrzesień 2010 r. [1] S. Łojasiewicz, J. Wloka, Z. Zieleżny; Über eine

Bardziej szczegółowo

Analiza obrazów w systemie wizyjnym

Analiza obrazów w systemie wizyjnym Parametryzacja sylwetek Marek Wnuk < marek.wnuk@pwr.edu.pl > KCiR(W4 K7) PWr MW:CPOSB p.1 Analiza obrazów w systemie wizyjnym Podstawowe problemy decyzyjne: klasyfikacja(rozpoznawanie- identification)

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

Funkcje. Granica i ciągłość.

Funkcje. Granica i ciągłość. Ćwiczenia 10.1.01: zad. 344-380 Kolokwium nr 9, 11.1.01: materiał z zad. 1-380 Ćwiczenia 17.1.01: zad. 381-400 Kolokwium nr 10, 18.1.01: materiał z zad. 1-400 Konw. 10,17.1.01: zad. 401-44 Funkcje. Granica

Bardziej szczegółowo

Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O.

Pęd i moment pędu. dp/dt = F p = const, gdy F = 0 (całka pędu) Jest to zasada zachowania pędu. Moment pędu cząstki P względem O. Zasady zachowania Pęd i moment pędu Praca, moc, energia Ruch pod działaniem sił zachowawczych Pęd i energia przy prędkościach bliskich prędkości światła Pęd i moment pędu dp/dt = F p = const, gdy F = 0

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Funkcje zespolone. Agata Pilitowska. dkowana (x, y) liczb rzeczywistych x, y R. Definicja 1.1. Liczba zespolona jest to para uporza

Funkcje zespolone. Agata Pilitowska. dkowana (x, y) liczb rzeczywistych x, y R. Definicja 1.1. Liczba zespolona jest to para uporza Funkcje zespolone. Agata Pilitowska 2007 1 Liczby zespolone Definicja 1.1. Liczba zespolona jest to para uporza dkowana (x, y) liczb rzeczywistych x, y R. Dwie liczby zespolone z = (x, y) i w = (u, v)

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

KilkazadańzAMII Tekst poprawiony 14 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakichbyłowięcej... inietylkopań.

KilkazadańzAMII Tekst poprawiony 14 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakichbyłowięcej... inietylkopań. KilkazadańzAMII Tekst poprawiony 4 sierpnia po skrytykowaniu poprzedniej wersji przez dwie rozsądne panie. Obytakihbyłowięej... inietylkopań. Zadanie.Wykazać,żejednorodnakulaprzyiagapunktow amas e mztakasam

Bardziej szczegółowo

KU 0114 pozycja wydawnictw naukowych Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie

KU 0114 pozycja wydawnictw naukowych Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie KU 0114 pozycja wydawnictw naukowych Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie c Wydawnictwa AGH, Kraków 2004 ISBN 83-89388-86-3 Komitet Naukowy UWND AGH: prof. dr. hab. inż. Janusz

Bardziej szczegółowo

3 Ewolucja układu w czasie, trajektorie kwantowe

3 Ewolucja układu w czasie, trajektorie kwantowe 3 Ewolucja układu w czasie, trajektorie kwantowe Pytanie: jak ewoluuje funkcja falowa stanu kwantowego ψ? W tym rozdzoale zajmiemy się ruchem cząstki w jednym wymiarze. 3.1 Trajektorie klasyczne Klasyczne

Bardziej szczegółowo

Matematyczne Metody Fizyki II

Matematyczne Metody Fizyki II Matematyczne Metody Fizyki II Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 1 M. Przybycień (WFiIS AGH) Matematyczne Metody Fizyki II Wykład 1 1 / 16 Literatura

Bardziej szczegółowo

[wersja z 5 X 2010] Wojciech Broniowski

[wersja z 5 X 2010] Wojciech Broniowski [wersja z 5 X 1] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki Akademia Świętokrzyska 1/11 Wojciech Broniowski 1 Analiza funkcji wielu zmiennych Przestrzeń wektorowa unormowana : X

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki WYKŁAD Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2006 Spis treści 1. CIĄGI LICZBOWE 2 1.1. Własności ciągów liczbowych o wyrazach

Bardziej szczegółowo

Mathematics A Brief Guide for Engineers and Technologists. Chapter 2. Second. Properties. S is a vector space. Note

Mathematics A Brief Guide for Engineers and Technologists. Chapter 2. Second. Properties. S is a vector space. Note Mathematics A Brief Guide for Engineers and Technologists Dział. Drugi Chapter 2. Second. Dystrybucje wolnorosnące.. Przestrzeń funkcji testowych S S = S (IR n ) to wszystkie funkcje klasy C (IR n ) malejące

Bardziej szczegółowo

Analiza Matematyczna 3 Całki wielowymiarowe

Analiza Matematyczna 3 Całki wielowymiarowe [wersja z 6 X 9] Analiza Matematczna 3 Całki wielowmiarowe Konspekt wkładu dla studentów II r. fizki Uniwerstet Jana Kochanowskiego 9/ Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra

Bardziej szczegółowo

czastkowych Państwo przyk ladowe zadania z rozwiazaniami: karpinw adres strony www, na której znajda

czastkowych Państwo przyk ladowe zadania z rozwiazaniami:   karpinw adres strony www, na której znajda Zadania z równań różniczkowych czastkowych Za l aczam adres strony www, na której znajda Państwo przyk ladowe zadania z rozwiazaniami: http://math.uni.lodz.pl/ karpinw Zadanie 1. Znaleźć wszystkie rozwiazania

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć

5. wykładu.) x 2 +2x+5dx. (Wskazówka: wykorzystać to, że sin = Im(exp) na osi rzeczywistej; użyć lematu Jordana.) 3. Obliczyć FAN: wybór zadań przygotowawczych do egzaminu. styczeń 2014r. Egzamin będzie z całości materiału również i tej jego części, która objęta była poprzednimi zadaniami przygotowawczymi i samym kolokwium. Poniższy

Bardziej szczegółowo

EGZAMIN Z ANALIZY II R

EGZAMIN Z ANALIZY II R EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić

Bardziej szczegółowo

Analiza Matematyczna część 4

Analiza Matematyczna część 4 [wersja z 1 IV 8] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 7/8 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Analiza Matematyczna 3

Analiza Matematyczna 3 [wersja z 5 X ] Analiza Matematyczna 3 Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego / Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra Butelka Kleina

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)

(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i) (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin

Bardziej szczegółowo

Analiza I.2*, lato 2018

Analiza I.2*, lato 2018 Analiza I.2*, lato 218 Marcin Kotowski 14 czerwca 218 Zadanie 1. Niech x (, 1) ma rozwinięcie binarne.x 1 x 2.... Niech dla x, 1: oraz f() = f(1) =. Pokaż, że f: f(x) = lim sup n (a) przyjmuje wszystkie

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv

stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży

Bardziej szczegółowo

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,

Bardziej szczegółowo

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego

VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego VI.5 Zderzenia i rozpraszanie. Przekrój czynny. Wzór Rutherforda i odkrycie jądra atomowego Jan Królikowski Fizyka IBC 1 Przekrój czynny Jan Królikowski Fizyka IBC Zderzenia Oddziaływania dwóch (lub więcej)

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Spis treści. Spis treści 2

Spis treści. Spis treści 2 Spis treści Spis treści Algebra. Liczby zespolone.................................................. Liczby zespolone - odpowiedzi.......................................... 5. Macierze......................................................

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła.

Szeregi Fouriera. Grzegorz Lysik. 1. Motywacja szeregów Fouriera, równanie ciepła. Szeregi Fouriera Grzegorz Lysik 1. Motywacja szeregów Fouriera, równanie ciepła. Rozważmy problem rozchodzenia się ciepła w pręcie o długości l. Temperatura pręta w punkcie x i w chwili t spełnia równanie

Bardziej szczegółowo

Unitary representations of SL(2, R)

Unitary representations of SL(2, R) Unitary representations of SL(, R) Katarzyna Budzik 8 czerwca 018 1/6 Plan 1 Schroedinger operators with inverse square potential Universal cover of SL(, R) x + (m 1 4) 1 x 3 Integrating sl(, R) representations

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

CAŁKA OZNACZONA JAKO SUMA SZEREGU

CAŁKA OZNACZONA JAKO SUMA SZEREGU CAŁKA OZNACZONA JAKO SUMA SZEREGU Rozwżmy funkcję ciągłą x f(x) o wrtościch nieujemnych określoną n przedzile [, b]. Ustlmy [będzie to problem sttystyczny polegjący n dokłdnym sprecyzowniu informcji o

Bardziej szczegółowo

Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008

Liczby zespolone. Katarzyna Grabowska. Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki. Letnia Szkoła Fizyki, Płock 2008 Liczby zespolone Katarzyna Grabowska Uniwersytet Warszawski, Wydział Fizyki, Katedra Metod Matematycznych Fizyki Letnia Szkoła Fizyki, Płock 2008 Katarzyna Grabowska (KMMF) Liczby zespolone LSF2008 1 /

Bardziej szczegółowo

Ń Ż ż ć ś ą ą ż ą ą ś ś ą ą Ą Ą ą Ż ą ą ź ć ąż ą ś ą ą Ł ŁÓ ą Ą Ą Ł ą ą ą ąą ż ć ą Ń Ś Ą ą ż ą ż ć ąż ą ś Ż Ł ż ż ś ś ż ś ż ą ą ż ż ś Ó ś ż ą ą ą ż ś ś Ą Ą ą Ł ą ż ż ą ą ż ą ż ś ą ą ż ś ś ą ś ż ś ś ż

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo