adasalai.org POWERS OF IMAGINARY UNIT = i i 2001 Division algorithm : n = 4(q) + r
|
|
- Józef Jakub Tomczak
- 6 lat temu
- Przeglądów:
Transkrypt
1 .COMPLEX NUMBERS Pai POWERS OF IMAGINARY UNIT i =, i = i, i 4 = Division algorithm : n = 4(q) + r i n = (i) 4q+r = (i) 4q (i) r = (i 4 ) q (i) r if r = 0, i n = ; if r =, i n = i; if r =, i n = ; if r =, i n = i ab = a b is valid onl if at least one of a, b is non-negative. For R, > 0 EXERCISE. Simplif the following:.i i = 4(486) + ; 950 = 4(487) + i i 950 = (i 4 ) 486 (i) + (i 4 ) 487 (i) = i = i.i 948 i = 4(487) + 0 ; = 4(467) + i 948 i 869 = i 948 = i 869 (i4 ) 487 (i) 0 = = (i 4 ) 467 i i ( i ) i i = ( i i ) = + i ( i = ). n= i n n= i n = i + i + i + i 4 + i 5 + i 6 + i 7 + +i 8 + i 9 + i 0 + i + i = i + i + i + i 4 + i 4 i + (i ) + (i ) i + (i ) 4 + (i ) + (i ) 5 + (i ) 5 i + (i ) 6 = i i + + i i + + i i + = 0 4.i 59 + i = 4(4) + i 59 + = i 59 (i4 ) 4 i + (i 4 ) 4 i = i + = i + i i i i = i + i = i i = 0 5.i. i. i. i 4.. i 000 = i ( ) ai.org ai.org ai.org ai.org ai.org ai.org ai.org ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p = i TrbTnpsc = i = i 000. i 00 = (i 4 ) 50 (i 4 ) 500 i ( 00 4 = 4(500) + ) =.. i = i 6. 0 n= i n+50 0 n= i n+50 = i 5 + i 5 + i i 60 = i 50 (i + i + i + i 4 + i 5 + i 6 + i 7 + i 8 + i 9 + i 0 ) = (i 4 ) i (i i + + i i + + i ) = (i ) = i EXAMPLE. Simplif the following: (i) i 7 (ii)i 79 (iii)i 94 + i 08 (iv) 0 n= i n (v)i. i. i. i 4.. i 40 COMPLEX NUMBERS Rectangular Form Of a Comple Number: A comple number is of the form z = + i,, R. is called the real part and is called the imaginar part of the comple number. Two comple numbers z = a + ib, z = c + id are said to be equal if and onl if Re(z ) = Re(z ) and Im(z ) = Im(z ). ie. a = c and b = d Scalar multiplication of comple numbers: If z = + i and k R then kz = k( + i) = k + ki Addition of comple numbers: If z = a + ib, z = c + id, then z + z = (a + c) + i(b + d) Subtraction of comple numbers: If z = a + ib, z = c + id, then z z = (a c) + i(b d) Multiplication of comple numbers: If z = a + ib, z = c + id, then z z = (ac bd) + i(ad + bc) Multiplication of a comple z b i successivel gives a 90 0 counter clockwise rotation successivel about the origin. EXERCISE.. Evaluate the following if z = 5 i and w = + i (i)z + w (ii)z iw (iii)z + w (iv)zw (v)z + zw + w (vi)(z + w).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page
2 (i)z + w = 5 i + i = 4 + i Pai (ii)z iw = 5 i i( + i) = 5 i + i i = 5 i + i + = 8 i i = (iii)z + w = (5 i ) + ( + i) = 0 4i + 9i = 7 + 5i (iv) z z = (ac bd) + i(ad + bc); a = 5, b =, c =, d = zw = (5 i)( + i) = [(5)( ) ( )()] + i[(5)() + ( )( )] = [ 5 + 6] + i[5 + ] = + 7i (v)z = (5 i) = 5 0i + 4i = 5 0i 4 = 0i zw = (5 i )( + i) = [ + 7i] from (iv) zw = + 4i w = ( + i) = 6i + 9i = 6i 9 = 8 6i z + zw + w = 0i + + 4i 8 6i = 5 + 8i (vi)(z + w) = (4 + i) from(i) = 6 + 8i + i = 6 + 8i = 5 + 8i. Given the comple number z = + i, represent the comple numbers in Argand diagram. (i)z, iz and z + iz (ii)z, iz and z iz (i)z = + i = (,) iz = i( + i) = i + i = + i = (,) z + iz = + i + i( + i) = + i + i = + 5i = (,5) ai.org ai.org ai.org ai.org ai.org ai.org ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p (i)z = + i = (,) iz = i( + i) = i i = i = (, ) z iz = + i i( + i) = + i + i = 5 + i = (5,) ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org. Find the values of the real numbers and, if the comple numbers ( i) ( i) + i + 5 and + ( + i) + + i are equal. z = ( i) ( i) + i + 5 = i + i + i + 5 = ( + 5) + i( + + ) z = + ( + i) + + i = + i + + i = ( + ) + i( + ) Given : z = z ( + 5) + i( + + ) = ( + ) + i( + ) Equating the real and imaginar parts on both sides,.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org + 5 = = 0 = () () + () = =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P + + = = 0 = 0 ().Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org Sub. = in () = = EXAMPLE. Find the values of the real numbers and, if the comple numbers ( + i) + ( i) + i and + ( + i) + + i are equal. [Ans: = and = ] PROPERTIES OF COMPLEX NUMBERS Properties of comple numbers under addition: I. Closure propert: z, z C, (z + z ) C II. Commutative propert: z, z C, z + z = z + z III. Associative propert: z, z, z C, (z + z ) + z = z + (z + z ) IV. Additive identit: z C, z + 0 = 0 + z = z 0 = 0 + 0i is an additive.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org TrbTnpsc.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page
3 identit. Pai V. Additive inverse: z C, z C z + ( z) = ( z) + z = 0 C, so z is an additive identit. Properties of comple numbers under multiplication: I. Closure propert: z, z C, (z. z ) C II. Commutative propert: z, z C, z. z = z. z III. Associative propert: z, z, z C, (z. z ). z = z. (z. z ) IV. Multiplicative identit: z C, z. =. z = z = + 0i is a multiplicative identit. ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org V. Multiplicative inverse: z C z z C z. z = z. z = + i0 C, so z is ai.org multiplicative identit..pai.org.pai.org If z = + i then its multiplicative inverse is z = ( + ) + i ( Distributive propert: z, z, z C, (z + z ). z = z z + z z o z, z, z C, z. (z + z ) = z z + z z Comple numbers obe the laws of indices: ai.org.pai.org.pai.org (i)z m z n = z m+n (ii) zm.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z n = zm n.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (iii)(z m ) n = z m z n (iv)(z z ) m = z m m z EXERCISE..If z = i, z = 4i and z = 5, show that (i)(z + z ) + z = z + (z + z ) (ii)(z z )z = z (z z ) (i)(z + z ) + z = ( i 4i) + 5 = 7i + 5 = 6 7i () z + (z + z ) = i + ( 4i + 5) = i 4i + 5 = 6 7i () From () & (), (z + z ) + z = z + (z + z ) (ii)(z z )z = [( i)( 4i)]5 = ( 4i + i )5 = ( 4i )5 = 60 0i () z (z z ) = ( i)[( 4i)(5)] = ( i)[ 0i] = 0i + 60i = 60 0i () From () & (), (z z )z = z (z z ).If z =, z = 7i and z = 5 + 4i, show that (i)z. (z + z ) = z z + z z (ii)(z + z ). z = z z + z z (i)z. (z + z ) = ( 7i i) = (5 i) = 5 9i () z z + z z = ()( 7i) + ()(5 + 4i) = i i = 5 9i () ai.org ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org + ) (or).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p From () & (), TrbTnpsc z. (z + z ) = z z + z z (ii)(z + z ). z = ( 7i)(5 + 4i) = 5 + i 5i 8i = 5 + i 5i + 8 = 4 i () z z + z z = ()(5 + 4i) + ( 7i)(5 + 4i) = 5 + i 5i 8i = 5 + i 5i + 8 = 4 i () From () & (), (z + z ). z = z z + z z.if z = + 5i, z = 4i and z = + i, find the additive and multiplicative inverse of z, z and z Additive inverse of z is z. So, Additive inverse of z = + 5i is z = 5i, Additive inverse of z = 4i is- z = + 4i Additive inverse of z = + i is z = i.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Multiplicative inverse of z = + i is z = ( +) + i ( + ) Multiplicative inverse of z = + 5i is z = ( 5 +5) + i ( +5 ) = 5 i 9 9 Multiplicative inverse of z = 4i isz 4 = ( ) + i (.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page ( ) +( 4) = i ( ) +( 4) ) Multiplicative inverse of z = + i is z = ( +) + i ( + ) = i CONJUGATE OF A COMPLEX NUMBER The conjugate of the comple number z = + i is z = i. zz = + The conjugate is useful in division of comple numbers. PROPERTIES OF COMPLEX CONJUGATES: z + z = z + z Im(z) = z z i z z = z z (z z. z = z. z n ) = (z ) n z is real if and onl if z = z ( z z ) =, z z z 0 z is purel imaginar if and onl if z = z Re(z) = z+z z = z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org EXERCISE.4.Write the following in the rectangular form:.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
4 (i)(5 + 9i) + ( 4i) (ii) 0 5i (iii)i + Pai 6+i i (i)(5 + 9i) + ( 4i) = 5 + 9i + 4i = 5 9i + + 4i = 7 5i (ii) 0 5i = 0 5i 6 i = 60 0i 0i+0i 6+i 6+i 6 i 6 + = 60 50i 0 = 50 50i (iii)i + = i + +i i i +i ai.org ai.org = i = i + +i + = i i.if z = + i, find the following in rectangular form: = + 5i+i = 4 i (i)re ( ) (ii)re(iz ) (iii)im(z + 4z 4i) z (i) = z ai.org i = i = i +i i i ) = Re ( z ) = Re (.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org (ii)iz = i( ) + i = i( i) = i i = + i Re(iz ) = Re( + i) = (iii)z + 4z 4i = ( + i) i 4i = + i + 4( i) 4i = + i + 4 4i 4i = 7 i 4i = 7 + i( 4) Im(z + 4z 4i) = Im(7 + i( 4)) = 4. If z = i and z = 4 + i, find the inverse of z z and z ai.org ai.org.pai.org.pai.org.pai.org.pai.org z z = ( i )( 4 + i) = 8 + 6i + 4i i = 8 + 0i + = 5 + 0i Inverse of z z = ( +) + i ( + ) = ( 5 ( 5) +0 ) + i ( 0 ( 5) +0 ) = 5 0 i = i ai.org.pai.org.pai.org z = i = i 4 i = 8 6i+4i+i = 8 i z 4+i 4+i 4 i ( 4) + 5 Inverse of z = ( z +) + i ( + ) ai.org ai.org.pai.org.pai.org = ( 5 ( 5) +( =.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org ) ) + i ( i = i 5 5 ( 5) +( 5.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z.pai.org.pai.org = 5 5 i.pai.org.pai.org ) ).Pai.Org.Pai.Org 4. The comple numbers u, v and w are related b = +. If v = 4i and u v w ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p w = 4 + i, find TrbTnpsc u in the rectangular form. = + = + u v w u 4i 4+i = ( +4i ) + ( 4i +4i.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P = +4i + 4 i = 5.Pai.Org.Pai.Org u = 7+i ( + 4i + 4 i) 4 i ) 4+i 4 i 5 = 5 7 i = 5(7 i) = 5(7 i) = 7 i 7+i 7+i 7 i Pai.Org.Pai.Org u = 5 = 7 i 5.Prove the following properties: (i)z is real if and onl if z = z (ii)re(z) = z+z (iii)im(z) = z z.pai.org.pai.org.pai.org.pai.org (i)z is real z = + 0i z = + 0i = 0i = z is real if and onl if z = z (ii) Let z = + i ; Re(z) = () z = i z + z = + i + i = z+z = ().Pai.Org.Pai.Org.Pai.Org.Pai.Org From () & (), Re(z) = z+z (iii) Let z = + i ; Im(z) = () z = i z z = + i + i = i z z = ().Pai.Org.Pai.Org.Pai.Org.Pai.Org From () & (), Im(z) = z z.pai.org.pai.org.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 4 i 6.Find the least value of the positive integer n for which ( + i) n (i)real (ii)purel imaginar ( + i) = + 9i i = 8i.Pai.Org.Pai.Org.Pai.Org.Pai.Org ( + i) 6 = (( + i) ) = (8i) = 64 (i)when n = 6, ( + i) n is real.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org (ii)when n =, ( + i) n is purel imaginar 7.Show that (i)( + i ) 0 ( i ) 0 is purel imaginar..pai.org.pai.org.pai.org.pai.org i.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org i.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
5 (ii) ( 9 7i 9+i ) + ( 0 5i Pai 7 6i ) is real. (i) z = ( + i ) 0 ( i ) 0 z = ( + i ) 0 ( i ) 0 = ( + i ) 0 ( i ) 0 ai.org )0 = ( + i ( )0 0 0 i = ( i ) ( + i ) = {( + i ) 0 ( i ) 0 } = z ai.org ( + i ) 0 ( i ) 0 is purel imaginar. (ii) 9 7i = 9 7i 9+i 9+i 0 5i = 0 5i 7+6i = 40+0i 5i 0i = 70+85i 7 6i 7 6i 7+6i ai.org 9 i = 7 9i 6i+7i = 64 8i = 8( i) = i 9 i = + i z = ( 9 7i 9+i ) + ( 0 5i 7 6i ) = ( i) ( + i) z = ( i) ( + i) = ( i) ( + i) = ( + i) ( i) = z ai.org ( 9 7i 9+i ) + ( 0 5i 7 6i ) is real. EXAMPLE. 8 Show that (i)( + i ) 0 + ( i ) 0 is real and ai.org (ii) ( 9+9ii 5 i )5 ( 8+i +i )5 is purel imaginar. EXAMPLE. Write +4i in the + i form, hence find its real and imaginar 5 i parts. +4i = ai.org = +4i 5+i = 5+6i+0i 48 = +56i 5 i 5 i 5+i Real part = 69 ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org EXAMPLE. 4 Simplif ( +i 56 and imaginar part= 69 i ) ( i +i ).Pai.Org.Pai.Org +i = +i +i = +i+i+i = +i = i i i +i + i = +i (+i i ) = i ( +i ai.org.pai.org.pai.org = i + 56 i i ) ( i +i ) = (i) ( i) = i i = i z+ EXAMPLE. 5 If, find the comple number z. ai.org = +4i z 5i.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z+ = +4i z 5i.P.P (z + ) = ( + 4i)(z 5i) z + 6 = z 5i + 4zi 0i z z 4zi = 5i Pai.Org.Pai.Org z 4zi = 4 5i z( 4i) = 4 5i z = 4 5i 4i.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org = 4 5i +4i = 4+56i 5i 0i = 4+5i+0 = 4+5i = 7(+i) 4i +4i EXAMPLE. 6 If z = i and z = 6 + 4i, find z z. z = i = i 6 4i = 8 i i 8 = 0 4i = (5 i) = 5 i z 6+4i 6+4i 6 4i Pai.Org.Pai.Org.Pai.Org.Pai.Org EXAMPLE. 7 Find z, if z = ( + i)( i). z = ( + i)( i) = i + i i = + i + = 5 + i z = ( +) + i ( + ) = ( 5 5 +) + i ( 5 + ) = 5 i 6 6 MODULUS OF A COMPLEX NUMBER.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org TrbTnpsc = + i V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 5.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org If z = + i, then the modulus of z is z = + zz = z PROPERTIES OF MODULUS OF A COMPLEX NUMBER: Z = Z z + z z + z ( Triangle inequalit ) z z z z z z = z z z = z, z z z 0 z n = z n, n is an integer. Re(z) z Im(z) z z z z + z z + z The distance between the two points z and z in the comple plane is z z (or) ( ) + ( ) Formula for finding the square root of the comple number z = a + ib is.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
6 a + ib = ± ( z +a + i b ai.org If b is negative b If b is positive b b b b z a ), =, and have different signs. =, and have same signs. Eercise.5.Find the modulus of the following comple numbers: (ii) i (iii)( i) 0 (iv)i( 4i)(4 i) ai.org (i) i +4i ai.org (i) i = +4i + i +i i i = 0 + = 4 = +4i z = + (ii) i + i = +i i ( i)( i)+(+i)( i) = i i+i + i+i i (+i)( i) + = i i + i+ = 4 4i = i = + = 8 = (iii) ( i) 0 = i 0 = ( + ) 0 = 0 = 5 = ai.org (iv) i( 4i)(4 i) = i 4i 4 i = = =.5.5 = 50 EXAMPLE. 9 If z = + 4i, z = 5 i and z = 6 + 8i, find z, z, z, z + z, z z and z + z. EXAMPLE. 0 Find the following : (i) +i (ii) ( ( + i) + i)(4i ) ai.org ai.org +i (iii) i(+i) (+i).for ant two comple numbers z and z, such that z = z = and z z then show that z +z is a real number. +z z Given z = z = z = z = z z = z = z ai.org ai.org lll l z = z ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P TrbTnpsc Let w = z +z w = ( z +z z ) = +z z +z z.p +z = +z = z + z +z z +z z + zz.p V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 6 = z+z zz = z +z +zz zz +z z = w Since w = w, w is purel real..which one of the points 0 8i, + 6i is closest to + i. Distance between the two points z and z = ( ) + ( ) z = + i, z = 0 8i Distance between the two points z and z = ( 0) + ( + 8) = = 6 = 8 = 9 z = + i, z = + 6i Distance between the two points z and z = ( ) + ( 6) = = 5 = 5 5 = < 9, + 6i is the closest point to + i EXAMPLE. Which one of the points i, + i and is farthest from the origin? 4.If z =, show that 7 z + 6 8i. Let z = z and z = 6 8i W.K.T, z z z + z z + z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z + 6 8i z + 6 8i z + 6 8i z + 6 8i 7 z + 6 8i EXAMPLE. If z =, show that z + + 4i If z =, show that z 4. Let z = z and z = W.K.T, z z z + z z + z z z z + z + z 4 z 4.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org
7 6.If z =, show that the greatest and least value of Pai z are + and z respectivel..p z z = = z z z z ai.org.pai.org.pai.org z z z z a r r a r z z z z z () z z From () z z z z z + z 0 z + z z + z 0 [ z ( + )][ z ( )] 0 z ( + ) ; z ( ) ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org z ( ) ().Pai.Org.Pai.Org From () z z z z 0 [ z ( + )][ z ( )] 0 ( ) z ( + ) ai.org.pai.org.pai.org z ( + ) () From () & (), z + Hence the greatest and least value of z are + and respectivel. 7.If z, z and z are three comple numbers such that z =, z =, z = and z + z + z =, show that 9z z + 4z z + z z = 6. z = z = z z = z = zz = z z z = z = 4 z z = 4 z = 4 z z = z = 9 z z = 9 z = 9 z z + z + z = z z z z + z + z = z +4z z +9z z ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z z z.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p TrbTnpsc z + z + z = z +4z z +9z z z + z + z = z z z z z +4z z +9z z z z z z + z + z = 9z z +4z z +z z.pai.org.pai.org z z z z + z + z = 9z z +4z z +z z z z z = 9z z +4z z +z z.pai.org.pai.org.. z = z z z = z z 9z z + 4z z + z z = 6 EXAMPLE. If z, z and z are three comple numbers such that z = z = z = z + z + z =, find the value of z + z + z..pai.org.pai.org EXAMPLE. 5 If z, z and z are three comple numbers such that z = z = z = r > 0 and z + z + z 0. Prove that z z +z z +z z = r z +z +z z = r z = r z z = r z = r zz = z.pai.org.pai.org z = r z = r z z = r z = r V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 7 z z = r z = r z z = r z = r.pai.org.pai.org z + z + z = r.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z + z + z = r z.pai.org.pai.org z z + r + r = z z z r ( z +z z +z z ) z z z z +z z +z z = r z z +z z +z z z z z z.pai.org.pai.org.pai.org.pai.org z + z + z = r z z +z z +z z r.r.r.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = r z z +z z +z z z z z z + z + z = z z +z z +z z r z z +z z +z z = r z +z +z.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org 8.If the area of the triangle formed b the vertices z, iz and z + iz is 50 square units, find the value of z. Let z = a + ib = (a, b) z = a + b Vertices : z = (a, b) iz = i(a + ib) = ia + i b = b + ia = ( b, a) z + iz = a + ib b + ia = (a b) + i(a + b) = (a b, a + b).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
8 Area of the triangle = 50 sq. units Pai b a b a a b a a + b b = 50 (a ab b + ab b ) ( b + a ab + a + ab) = 50 a b + b a = 00 a b = 00 (a + b ) = ±00 a + b = 00 a + b = 0 z = 0 ( a + b is not negative) NOTE: This can also done b using distance formula, find the length of base and ai.org ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org height and use Area of the = bh.pai.org.pai.org EXAMPLE. 4 Show that the points, of an equilateral triangle. ai.org Let z =, z = + i and z = i The length of the sides of the triangle are ai.org.pai.org.pai.org + i and z z = ( + i ) = i = ( ) + (.Pai.Org.Pai.Org z z = ( + i ) ( ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org i ) = ).Pai.Org.Pai.Org + i +.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org i are the vertices.pai.org.pai.org = = 4 =.Pai.Org.Pai.Org + i = ( ) = z z = ( i ) = i = ( ) + ( = 9 + = 4 4 Since all the three sides are equal, the given points form an equilateral triangle. EXAMPLE. 8 Given the comple number = + i, represent the comple numbers z, iz and z + iz in one Argand diagram. Show that these comple numbers form the vertices of an isosceles right triangle. Given : z = + i = A(,) iz = i( + i) = + i = B(,) z + iz = + i + i = + 5i = C(,5) The length of the sides of the triangle are ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org AB = ( ) + ( ) = ( + ) + ( ) = 5 + = 6 ai.org.pai.org.pai.org.pai.org.pai.org ).Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P BC = ( TrbTnpsc ) + ( ) = ( ) + ( 5) = = CA = ( ) + ( ) = ( ) + (5 ) = = AB = 6, BC =, CA = Since (i)bc = CA = and (ii)bc + CA = + = 6 = AB, So the given vertices form an isosceles right triangle. 9.Show that the equation z + z = 0 has five solutions. z + z = 0 z = z z = z z = z z z = 0 z = 0 z = 0 is one of the solution z ( z ) = 0 { z = 0 zz = 0 z = z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Put z = in z z + z = 0 z + ( ) = 0 z z4 + 4 = 0, which provides four solution. Hence z + z = 0 has five solutions. EXAMPLE. 6 Show that the equation z = z has four solutions. 0.Find the square root of (i)4 + i (ii) 6 + 8i (iii) 5 i..pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z + a a + ib = ± ( + i b a z ) b (i)4 + i a = 4, b =, z = 4 + = 5 = i = ± ( i 5 4) = ± ( + i ).Pai.Org.Pai.Org (ii) 6 + 8i a = 6, b = 8, z = = 00 = 0.Pai.Org.Pai.Org 6 + 8i (iii) 5 i 4.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org = ± ( i ) = ±( + i 8) = ±( + i ) V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 8.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org
9 a = 5, b =, z = 5 + = 69 = 5 i ai.org = ± ( 5 + i +5 ) = ±( 4 i 9) = ±( i) EXAMPLE. 7 Find the square root of 6 + 8i GEOMETRY AND LOCUS OF COMPLEX NUMBERS A circle is defined as the locus of a point which moves in a plane such that its distance from a fied point in that plane is alwas a constant. The fied point is the centre and the constant distant is the radius of the circle. Equation of comple form of a circle is z z 0 = r. z z 0 < r represents the points interior of the circle. z z 0 > r represents the points eterior of the circle. + = r represents a circle with centre at the origin and the radius r units. r = + If z = a+ib ac+bd then Re(Z) = ai.org ai.org ai.org c+id c +d If z = a+ib bc ad then Im(Z) = c+id c +d EXERCISE.6.If z = + i is a comple number such that z 4i =. Show that the locus of z is ai.org real ais. Given: z = + i ai.org z 4i z+4i.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = z 4i = z + 4i.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z+4i.pai.org.pai.org + i 4i = + i + 4i + i( 4) = + i( + 4) + ( 4) = + ( 4) Squaring on both sides, + ( 4) = + ( 4) = = 0 = 0 The locus of z is real ais. ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P. If z = + i is TrbTnpsc a comple number such that Im ( z+ ) = 0, show that the locus.p of z is + + = 0. Given: z = + i z+ = (+i)+ = (+)+i iz+ i(+i)+ ( )+i.pai.org.pai.org.pai.org.pai.org Here a = +, b =, c =, d = Im ( z+ ) = 0 ( ) (+) iz+ + + = 0.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 9 iz+ ( ) + = 0 = 0.Pai.Org.Pai.Org Im(Z) = bc ad c +d.obtain the Cartesian form of the locus of z = + i in each of the following cases: (i)[re(iz)] = (ii)im[( i)z + ] = 0 (iii) z + i = z (iv)z = z.pai.org.pai.org.pai.org.pai.org Given: z = + i (i)iz = i( + i) = i [Re(iz)] = [Re( i )] =.Pai.Org.Pai.Org.Pai.Org.Pai.Org = (ii)( i)z + = ( i)( + i) + = + i i + + = ( + + ) + i( ) Im[( i)z + ] = 0.Pai.Org.Pai.Org.Pai.Org.Pai.Org Im[( + + ) + i( )] = 0 = 0 (or) = 0.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org (iii) z + i = z + i + i = + i + i( + ) = ( ) + i () + ( + ) = ( ) + () Squaring on both sides,.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org () + ( + ) = ( ) + () = = 0 + = 0.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org (iv)z = z z = z zz = ( + i)( i) = + = 4.Show that the following equations represent a circle, and find its centre and.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
10 radius: (i) z i = (ii) z + 4i = (iii) zpai 6 + i = 8 Equation of the circle is z z 0 = r (i) z i = z ( + i) = Centre = + i = (,) ; Radius = units (ii) z + 4i = z + i = z ( + i) = Centre = + i = (,) ; Radius = unit (iii) z 6 + i = 8 z + 4i = 8 z ( 4i) = 8 Centre = 4i = (, 4) ; Radius = 8 units ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org EXAMPLE. 9 Show that z 5 + i = 4 represent a circle, and find its centre and radius. 5. Obtain the Cartesian form of the locus of z = + i in each of the following cases: (i) z 4 = 6 (ii) z 4 z = 6 Given: z = + i (i) z 4 = 6 + i 4 = 6 ( 4) + i = 6 ( 4) + = 6 Squaring on both sides, ( 4) + = = = 0 is the locus of z. (ii) z 4 z = 6 + i 4 + i = 6 ( 4) + i ( ) + i = 6 ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org ( ( 4) + ) ( ) + = 6 ( 4) + [( ) + ] = = 6 6 = = 0 is the locus of z. EXAMPLE. Obtain the Cartesian form of the locus of z in each of the following cases: (i) z = z i (ii) z i = EXAMPLE. 0 Show that z + i < represents interior points of a circle. Find its centre and radius. ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p Consider z + TrbTnpsc i = z ( + i) =. Centre = + i = (,) ; Radius = units z + i < represents all points inside the circle. POLAR AND EULER FORM OF A COMPLEX NUMBER Polar form of z = + i is z = r(cos θ + i sin θ) (or) z = rcisθ Modulus r = +.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org α = tan ( ) θ = α ; if(+, +) θ lies in the Ist quadrant θ = π α ; if(, +) θ lies in the nd quadrant arg z = θ ; θ = π + α ; if(, ) θ lies in the rd quadrant { θ = α ; if(+, ) θ lies in the 4th quadrant In general arg z = Arg z + nπ, n z. Properties of arguments: arg(z z ) = arg(z ) + arg(z ).Pai.Org.Pai.Org.Pai.Org.Pai.Org arg ( z ) = arg(z z ) arg(z ) arg(z n ) = n argz Some of the principal argument and argument: z i i.pai.org.pai.org.pai.org.pai.org Arg z 0 π.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org argz nπ nπ + π nπ + π nπ π Euler s form of the comple number: z = re iθ ; e iθ = cos θ + i sin θ Properties of polar form: z = r(cos θ + i sin θ) z = (cos θ i sin θ) r If z = r (cos θ + i sin θ ), z = r (cos θ + i sin θ ) then z z = r r [cos(θ + θ ) + i sin(θ + θ )] If z = r (cos θ + i sin θ ), z = r (cos θ + i sin θ ) then z = r [cos(θ z r θ ) + i sin(θ θ )].Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 0 π.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org π.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
11 Some of the useful polar forms : = cis(0) ; = cis(π) ; i = cis ( π ) ; i = cis ( π ) EXAMPLE. Find the modulus and principal argument of the following comple numbers: (i) + i (ii) + i (iii) i (iv) i (i) + i ai.org Modulus r = + = + = 4 = ai.org α = tan = tan = π 6 Since the comple number + i lies in the first quadrant, principal argument θ = α θ = π 6 ai.org (ii) + i Modulus r = + = ( ) + = 4 = ai.org α = tan ( ) = tan = π 6 Since the comple number + i lies in the second quadrant, principal argument θ = π α θ = π π 6 = 5π 6 ai.org (iii) i Modulus r = + = ( ) + ( ) = 4 = ai.org α = tan ( ) = tan = π 6 Since the comple number i lies in the third quadrant, principal argument θ = π + α θ = π + π 6 = 5π 6 ai.org (iv) i.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Modulus r = + = + ( ) = 4 = ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org α = tan ( ) = tan = π 6 Since the comple number i lies in the fourth quadrant, principal argument θ = α θ = π 6 ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P EXAMPLE. 4 TrbTnpsc Find the principal argument Arg z, when z =.P argz = arg ( ) = arg( ) arg( + i ) () +i arg( ) = tan = tan 0 = 0.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page +i Since the comple number lies in the second quadrant, principal argument θ = π α θ = π 0 = π arg( + i ) = tan = tan = π Since the comple number + i lies in the first quadrant, principal argument θ = α θ = π () arg ( ) = π π = π +i EXERCISE.7.Write in polar form of the following comple numbers:.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (i) + i (ii) i (iii) i (iv).pai.org.pai.org.pai.org.pai.org (i) + i = rcis(θ) () i cos π +i sinπ r = + = () + ( ) = 4 + = 6 = 4.Pai.Org.Pai.Org.Pai.Org.Pai.Org α = tan = tan = π.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Principal argument lies in the first quadrant θ = α = π () + i = 4cis ( π ) = 4cis (kπ + π ), k z (ii) i = rcis(θ) ().Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org r = + = () + ( ) = 9 + = 4 =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org α = tan = tan = tan = π 6 Principal argument lies in the 4th quadrant θ = α = π 6 () i = cis ( π ) = cis (kπ π ), k z 6 6 (iii) i = rcis(θ) ().Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org r = + = ( ) + ( ) = = 4 =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org
12 α = tan = tan = π 4 Principal argument lies in the rd quadrant θ = π + α = π + π = π 4 4 () i = cis ( π ) = cis (kπ π ), k z 4 4 ai.org (iv) i cos π +i sinπ i = + i = rcis(θ) () r = + = ( ) + () = ai.org α = tan = tan = π 4 Principal argument lies in the nd quadrant θ = π α θ = π π 4 = π 4 ai.org () i = cis ( π 4 ) i cos π +i sinπ ai.org = cis(π 4 ) = cis ( π π 5π ) = cis cis( π ) (5π) = cis (kπ + ), k z 4 EXAMPLE. Represent the comple number (i) i (ii) + i in polar form..find the rectangular form of the comple numbers: ai.org (i) (cos π 6 + i sin π 6 ) (cos π + i sin π ) (ii) cos π 6 i sinπ 6 (i) (cos π 6 + i sin π 6 ) (cos π + i sin π ) ai.org (ii) = cis ( π 6 + π ) = cis ( π ) = cis (π) 4 = cos π + i sin π 4 4 ai.org = + i cos π 6 i sinπ 6 (cos π +i sinπ ) ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (cos π +i sinπ ) = cis ( π 6 π ) = cis ( π 6 ) = cis ( π ) = [cos ( π ) + i sin ( π )] = (cos π i sin π ) ai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org =.P = i (0 i) TrbTnpsc EXAMPLE. 5 Find the product (cos π + i sin π ). 6 (cos 5π 6 rectangular form..pai.org.pai.org EXAMPLE. 6 Find the quotient (cos 9π 4 +i sin9π 4 ) 4(cos( π )+i sin( π + i sin 5π 6 ) in )) in rectangular form..if ( + i )( + i ).. ( n + i n ) = a + ib, show that (i) ( + )( +.Pai.Org.Pai.Org ).. ( n + n ) = a + b (ii) tan ( b r V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page n r= (i)( + i )( + i ).. ( n + i n ) = a + ib Taking modulus on both sides, ( + i )( + i ).. ( n + i n ) = a + ib + i + i.. n + i n = a + ib.pai.org.pai.org.pai.org.pai.org ar ) ( + ) ( + ).. ( n + n ) = a + b = tan ( b ) + kπ, kεz6 a Squaring on both sides, ( + )( + ).. ( n + n ) = a + b (i)( + i )( + i ).. ( n + i n ) = a + ib Taking argument on both sides, arg[( + i )( + i ).. ( n + i n )] = arg(a + ib).pai.org.pai.org tan ( ) + tan ( ) +. +tan ( n n ) = tan ( b a ) 4.If +z z n r=.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org tan ( b r ar ) = tan ( b ) + kπ, kεz6 a.pai.org.pai.org = cos θ + i sin θ, show that z = i tan θ. +z z = cos θ + i sin θ Add on both sides, +z + = ( + cos θ) + i sin θ.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z +z+ z z z.pai.org.pai.org b = cos θ + i sin θ cos θ = cos θ [cos θ + i sin θ] z.p = cos θ [cos θ + i sin θ] cos θ[cos θ+i sin θ] = z.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
13 ai.org z = z = [ z =.P z = cos θ[cos θ+i sin θ] cos θ[cos θ+i sin θ] cos θ i sin θ cos θ(cos θ+sin θ) cos θ sin θ i ] cos θ cos θ.pai.org.pai.org cos θ i sin θ cos θ i sin θ z = + i tan θ z = i tan θ 5.If cosα + cosβ + cosγ = sinα + sinβ + sinγ = 0, then show that (i) cosα + cosβ + cosγ = cos(α + β + γ) (ii)sinα + sinβ + sinγ = sin (α + β + γ) Let a = cisα, b = cisβ, c = cisγ W.K.T, If a + b + c = 0 then a + b + c = abc a + b + c = (cosα + cosβ + cosγ) + i(sinα + sinβ + sinγ) = 0 a + b + c = abc ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org (cisα) + (cisβ) + (cisγ) = cisα. cisβ. cisγ cis(α) + cis(β) + cis(γ) = cis(α + β + γ) (cosα + cosβ + cosγ) + i(sinα + sinβ + sinγ) = (cos(α + β +.Pai.Org.Pai.Org γ)) + i(sin (α + β + γ)) Equating the real and imaginar parts on both sides, cosα + cosβ + cosγ = cos(α + β + γ) sinα + sinβ + sinγ = sin (α + β + γ) 6.If z = + i and arg ( z i ) = π, then show that z = 0. Given: Z = + i arg ( z i ) = π z+ 4 ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org arg(z i) arg(z + ) = π 4.Pai.Org.Pai.Org.P arg( + i i) arg( + i + ) = π 4 ai.org arg( + i( )) arg( + + i) = π 4 tan tan + = π 4 ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org TrbTnpsc tan + π + ( = + ) 4 (( ))( + ) ( + ) = tan π + 4 ( + ) + ( + ) + + ( + ) = = = = 0 EXAMPLE. 7 If z = + i and arg ( z z+ + =. De MOIVRE S THEOREM AND ITS APPLICATIONS De Moivre s theorem: Given an comple number cos θ + i sin θ and an integer n, (cos θ + i sin θ) n = cos nθ + i sin nθ Some results: (cos θ i sin θ) n = cos nθ i sin nθ (cos θ + i sin θ) n = cos nθ i sin nθ (cos θ i sin θ) n = cos nθ + i sin nθ sin θ + i cos θ = i(cos θ i sin θ) Formula for finding n th root of a comple number: z n = r ncis ( θ+kπ ), k = 0,,., (n ).P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page n.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org ω = + ω + ω = 0 The sum of all the n th roots of unit is 0.(ie., + ω + ω +. +ω n = 0) The product of all the n th roots of unit is ( ) n. (ie., + ω + ω +. +ω n = ( ) n ) All the n roots of n th roots of unit are in geometrical progression. All the n roots of n th roots of unit lie on the circumference of a circle whose.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
14 centre is at the origin and radius equal to and these Pai roots divide the circle into n equal parts and form a polgon of n sides. ai.org EXERCISE.8.If ω is a cube root of unit, then show that a+bω+cω a+bω+cω + a+bω+cω b+cω+aω c+aω+bω ai.org b+cω+aω + a+bω+cω c+aω+bω =. = ( a+bω+cω ω ) + b+cω+aω ω (a+bω+cω ω c+aω+bω ω ) = ω(a+bω+cω ) + ω (a+bω+cω ) aω +cω +bω aω +bω 4 +cω ω = ; + ω + ω = 0 ai.org = ω(a+bω+cω ) + ω (a+bω+cω ) a+bω+cω a+bω+cω = ω + ω =.Show that ( + i 5 ) + ( i 5 ) = ai.org + i.p = rcis(θ) () r = + = ( ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org ).Pai.Org.Pai.Org α = tan = tan = π 6 + ( ) = = =.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org Principal argument lies in the first quadrant θ = α = π 6 () + i = cis (π) 6 ( + i 5 ) = [cis ( π 6 )]5 = cis ( 5π ) = cos 6 (5π) + i sin 6 (5π) 6 Similarl, ( i 5 ) = cos ( 5π ) i sin 6 (5π) 6 ( + i 5 ) + ( i 5 ) = cos ( 5π ) + i sin 6 (5π) + cos 6 (5π) i sin 6 (5π) 6 ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = cos ( 5π ) = cos (5 80) = cos 50 = cos 0 = = 6 6 EXAMPLE. Simplif (i)( + i) 8 (ii)( + i) ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p TrbTnpsc.Find the value of ( +sin π 0 +i cos π 0 +sin π 0 i cos π 0 V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 4 0 ) Let z = sin π 0 + i cos π 0 z = sin π 0 i cos π 0 ( +sin π 0 +i cos π 0 0 +sin π 0 i cos π ) 0.Pai.Org.Pai.Org = ( +z + z 0 ) = ( +z +z z)0 = z 0 z 0 = (sin π 0 + i cos π 0 )0 = [i (cos π 0 i sin π 0 )]0.Pai.Org.Pai.Org.Pai.Org.Pai.Org = i 0 [cos (0 π 0 ) i sin (0 π 0 )] = [cos π i sin π] = ( 0) = EXAMPLE. 9 Simplif (sin π 6 + i cos π 6 )8 +cos θ+i sin θ EXAMPLE. 0 Simplif (.Pai.Org.Pai.Org +cos θ i sin θ )0 4.If cos α = + and cos β = +, show that (i) + = cos(α β) (ii) = i sin(α + β) (iii) m n n = i sin(mα nβ) (iv) m n + = cos(mα + nβ) m m n + = cos α = = cos α + i sin α + = cos β = cos β + i sin β (i) cos α+i sin α = = cos(α β) + i sin(α β) cos β+i sin β.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = ( ) = cos(α β) i sin(α β) = cos(α β) + (ii) = (cos α + i sin α)(cos β + i sin β) = cos(α + β) + i sin(α + β) = () = cos(α + β) i sin(α + β) = i sin(α + β).pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org (iii) m = (cos α + i sin α) m = cos mα + i sin mα.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
15 n = (cos β + i sin β) n = cos nβ + i sin nβ m cos mα+i sin mα = n cos nβ+i sin nβ n = ( m m m n ai.org = cos(mα nβ) + i sin(mα nβ) n) = cos(mα nβ) i sin(mα nβ) n = i sin(mα nβ) m (iv) m = (cos α + i sin α) m = cos mα + i sin mα n = (cos β + i sin β) n = cos nβ + i sin nβ m n = (cos mα + i sin mα)(cos nβ + i sin nβ) = cos(mα + nβ) + i sin(mα + nβ) = cos(mα + nβ) i sin(mα + nβ) n ai.org ai.org m m n + m n = cos(mα + nβ) EXAMPLE. 8 If z = cos θ + i sin θ, show that z n + = cos nθ and zn z n = sin nθ. zn 5.Solve the equation z + 7 = 0 ai.org z + 7 = 0 z = 7 z = ( 7) = (7 ) z = ( ) = [cis(π)] = [cis(kπ + π)], k = 0,, = cis(k + ) π, k = 0,, = cis ( π ), cis(π), cis (5π) ai.org ai.org 6. If ω is a cube root of unit, show that the roots of the equation (z ) + 8 = 0 are, ω, ω. (z ) + 8 = 0 (z ) = 8 (z ) = ( ) (z ) = ( ) ai.org ( z ) = ai.org z.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org = () z = () z = [ (or) ω (or) ω ] ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P z = () TrbTnpsc z = z = { z = ω z = ω z = ω z = ω Thus the roots of the equation (z ) + 8 = 0 are, ω, ω. EXAMPLE. 4 Solve the equation z + 8i = 0, where z C..Pai.Org.Pai.Org Note: z + 8i = 0 z = (8i) z = (i) find polar form for i and use de Moivre theorem EXAMPLE. 5 Find all cube roots of + i. Note: ( + i) ; find polar form for + i and use de Moivre theorem 8 7.Find the value of (cos kπ kπ + i sin.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 5 k= 9 Let = () 9 = [cis(0)] 9 = [cis(kπ + 0)] 9, k = 0,,,,8 = cis ( kπ ), k = 0,,,,8 9 Thus the roots are cis(0), cis ( π ), cis 9 (4π), cis 9 (6π), cis 9 (8π ), cis (0π ), 9 9 cis ( π ), cis (4π), cis (6π ) W.K.T, sum of all the roots Is equal to zero..pai.org.pai.org.pai.org.pai.org 9 ) cis(0) + cis ( π ) + cis 9 (4π) + cis 9 (6π) + cis 9 (8π ) + cis (0π ) cis ( π ) + cis (4π) + cis (6π ) = 0 + cis ( π ) + cis 9 (4π) + cis 9 (6π) + cis 9 (8π ) + cis (0π ) cis ( π ) + cis (4π) + cis (6π ) = 0 cis ( π ) + cis 9 (4π) + cis 9 (6π) + cis 9 (8π ) + cis (0π ) cis ( π ) + cis (4π) + cis (6π ) = 8 cis ( kπ =.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org k= 8 k=.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org 9 ) (cos kπ kπ + i sin 9 9 ) =.Pai.Org.Pai.Org.P 8. If ω is a cube root of unit, show that (i)( ω + ω ) 6 + ( + ω ω ) 6 = 8.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org
16 (ii)( + ω)( + ω )( + ω 4 )( + ω 8 ). ( + ω ) = Pai.P W.K.T, ω = ; + ω + ω = 0 (i)( ω + ω ) 6 + ( + ω ω ) 6 = ( ω ω) 6 + ( ω ω ) 6 = ( ω) 6 + ( ω ) 6 = 6 ω ω = 64(ω ) + 64(ω ) 4 = = 8 (ii)( + ω)( + ω )( + ω 4 )( + ω 8 ). ( + ω ) = ( + ω)( + ω )( + ω )( + ω ). ( + ω ) Clearl the above epression contains terms, = ( + ω)( + ω )( + ω 4 )( + ω 8 ).. terms = [( + ω)( + ω )][( + ω)( + ω )].6 terms = [( + ω)( + ω )] 6 = ( + ω + ω + ω ) 6 = (0 + ) 6 = 9.If z = i, find the rotation of z b θ radians in the counter clockwise direction about the origin when (i)θ = π (ii)θ = π (iii)θ = π z = i = rcis(θ) () r = + = () + ( ) = = 4 = α = tan = tan = π 4 Principal argument lies in the 4th quadrant θ = α = π 4 ai.org ai.org ai.org ai.org ai.org ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org () z = i = cis ( π 4 ).Pai.Org.Pai.Org (i)when θ = π z = cis ( π 4 ) cis (π ) ai.org ai.org = cis ( π 4 + π ).Pai.Org.Pai.Org = cis ( π+4π ) = cis ( π ) (ii)when θ = π z = cis ( π 4 ) cis (π ) ai.org.pai.org.pai.org = cis ( π 4 + π ).Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P TrbTnpsc = cis ( π+8π ) = cis ( 5π ) (ii)when θ = π z = cis ( π ) cis 4 (π).pai.org.pai.org.pai.org.pai.org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 6 = cis ( π 4 + π ) = cis ( π+6π ) 4 = cis ( 5π ) 4 EXAMPLE. 6 Suppose z, z and z are the vertices of an equilateral triangle inscribed in the circle z =. If z = + i, then find z and z. z = represents the circle with centre (0,0) and radius. Let A, B and C be the vertices of the given triangle. Since the vertices z, z and z form an equilateral triangle inscribed in the circle z =, the sides of this triangle.pai.org.pai.org AB, BC and CA subtend π radian at the origin. We obtain z and z b the rotation of z b π and 4π respectivel..pai.org.pai.org Given: z = + i z = z cis ( π ) = ( + i ) [cos (π ) + i sin (π )].Pai.Org.Pai.Org.Pai.Org.Pai.Org = ( + i )[cos(80 60) + i sin(80 60)] = ( + i )( cos 60 + i sin 60) = ( + i ) ( + i = ) z = z cis ( π ) = [cos (π ) + i sin (π )].Pai.Org.Pai.Org = [cos(80 60) + i sin(80 60)] = ( cos 60 + i sin 60) = ( + i ) = i 4 0.Prove that the values of are ± ( ± i).pai.org.pai.org 4 Let =.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org
17 = ( ) 4 4 = 4 + = 0 ( ) () = 0 ( + ) ( ) = 0 ( + + )( + ) = 0 ( + + ) = 0 ; ( + ) = 0 ai.org ai.org = ± ( ) 4()() ai.org () = ± 4 = ± = ± i ai.org = ± i = ai.org.p.pai.org.pai.org.pai.org.pai.org = b ± b 4ac a ; ( )± ( ) 4()() () ; ± 4 ; ± ; ± i ; ± i.pai.org.pai.org.pai.org.pai.org ( ± i) ; ( ± i) = ± ( ± i) EXAMPLE. Find the cube roots of unit..pai.org.pai.org Let z = z = () = [cis(0)] ai.org ai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org z = [cis(kπ + 0)], k = 0,, z = cis ( kπ ), k = 0,, z = cis(0), cis ( π ), cis (4π).Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z = cis(0), cis (π π ), cis (π + π ) z = cos 0 + i sin 0, cos (π π ) + i sin (π π ), cos (π + π ) + i sin (π + π ) ai.org z =, cos π + i sin π, cos π i sin π z =, + i, +i + i z =, ai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org, i.pai.org.pai.org Pai.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P TrbTnpsc The cube roots of unit, ω, ω are, +i EXAMPLE. Find the fourth roots of unit. Let z 4 = z = () 4 = [cis(0)] 4.Pai.Org.Pai.Org.Pai.Org.Pai.Org V.GNANAMURUGAN, M.Sc.,M.Ed., P.G.T, GHSS, S.S.KOTTAI, SIVAGANGAI DT , Page 7, i z = [cis(kπ + 0)] 4, k = 0,,, z = cis ( kπ ), k = 0,,, 4 z = cis(0), cis ( π ), cis 4 (4π), cis 4 (6π) 4 z = cis(0), cis ( π ), cis(π), cis (π ) z = cos 0 + i sin 0, cos ( π ) + i sin (π ), cos(π) + i sin(π), cos (π ) + i sin (π ) z =, i,, i The fourth roots of unit, ω, ω, ω are, i,, i..prove that the multiplicative inverse of a non- zero comple number z = + i.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org is z = ( +) + i ( + ) PROOF: Let z = u + iv be the inverse of z = + i W.K.T, zz = ( + i)(u + iv) = (u v) + i(v + u) = + i0 Equating the Real and Imaginar parts on both sides, u v = () ; v + u = 0 () = = + ; u = 0 = ; v= 0 = u = u = ; v = v = + +.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.P.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org.Pai.Org z = u + iv z = ( +) + i ( + ).For an two comple numbers z and z prove that z + = z + z PROOF: Let z = a + ib and z = c + id, a, b, c, d R z + z = (a + ib) + (c + id) = (a + c) + i(b + d) = (a + c) i(b + d) = (a ib) + (c id).pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.p.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org.pai.org
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Standardized Test Practice
Standardized Test Practice 1. Which of the following is the length of a three-dimensional diagonal of the figure shown? a. 4.69 units b. 13.27 units c. 13.93 units 3 d. 16.25 units 8 2. Which of the following
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Chapter 1: Review Exercises
Chpter : Review Eercises Chpter : Review Eercises - Evlute the following integrls:..... 6. 8. ( + ) 9. +.. ( + ). ( ). 8. 9....... 6. 7. (csc + + ) sin tn 6. ( )( + ) 7. ) 8.. + ( + )( ). ( ) sin sin sec
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
n [2, 11] 1.5 ( G. Pick 1899).
1. / / 2. R 4k 3. 4. 5. 6. / 7. /n 8. n 1 / / Z d ( R d ) d P Z d R d R d? n > 0 n 1.1. R 2 6 n 5 n [Scherrer 1946] d 3 R 3 6 1.2 (Schoenberg 1937). d 3 R d n n = 3, 4, 6 1.1. d 3 R d 1.3. θ θ/π 1.4. 0
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów
07 R. Robert Gajewski: Mathcad Prime 4 0. Calculate numerically and present results in different formats and precision. 0. Oblicz numerycznie i przedstaw wyniki w różnych formatach i z różną precyzją.
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations
A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations G. Seregin & W. Zajaczkowski A sufficient condition of regularity for axially symmetric solutions to
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Matematyczne Metody Fizyki I
Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
GAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw
harmonic functions and the chromatic polynomial
harmonic functions and the chromatic polynomial R. Kenyon (Brown) based on joint work with A. Abrams, W. Lam The chromatic polynomial with n colors. G(n) of a graph G is the number of proper colorings
7.1. Lecture 8 & 9. f(x)dx =lim f(x)dx (7.1) I = f(x)dx (7.3) f(z), z (0 argz π), zf(z) 0. f(z)dz = I R := f(z)dz = f(re iθ )ire iθ dθ (7.
Lecture 8 & 9 7, r f(x) =lim f(x) (7.) r r f(x) =lim f(x) +lim f(x) (7.) r r r 7. f(z) I = f(x) (7.) f(z), z ( argz π), zf(z) [ R, R], : z = R Jordan C f(z). C f(z)dz = R R f(x) + f(z)dz =πi i Res z=zi
Rachunek lambda, zima
Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli
CS 6170: Computational Topology, Spring 2019 Lecture 09
CS 6170: Computtionl Topology, Spring 2019 Lecture 09 Topologicl Dt Anlysis for Dt Scientists Dr. Bei Wng School of Computing Scientific Computing nd Imging Institute (SCI) University of Uth www.sci.uth.edu/~beiwng
Aerodynamics I Compressible flow past an airfoil
Aerodynamics I Compressible flow past an airfoil transonic flow past the RAE-8 airfoil (M = 0.73, Re = 6.5 10 6, α = 3.19 ) Potential equation in compressible flows Full potential theory Let us introduce
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Some Linear Algebra. Vectors operations = =(,, ) =( 1 + 2, 1 + 2, ) λ =(λ,λ,λ ) Addition. Scalar multiplication.
Basic Geometry Vectors operations Some Linear Algebra Addition + 2 =( 1 + 2, 1 + 2, 1 + 2 ) =(,, ) + Scalar multiplication λ =(λ,λ,λ ) Norm = 2 + 2 + 2 2 Scalar Product Commutative Linear Orthogonally
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Assignment 3.1 (SA and LA)
AW 11 Name u J2T0v1V9g XKru_ttaF NS^oQfOtXwUagr\eu GLHLOC^.F C XAqldlO FrEiIg\hXtHsO xrcewsqeprtvheed`. Assignment 3.1 (SA and LA) Find the area of each. 1) 11 m 2) 6.5 m 5 km 2.9 km 3) 4) 4.3 ft 6.2 km
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Midterm Review (2) Trigonometry L R2V0C1K9U XKhuptOaT GSUoefUtowraqrleQ aldlscv.a X VA[ltlB LrmizgNhStesM krgeoseefrzvte_di.
Trigonometr L RV0K9U XKhutOaT GSUoefUtowraqrleQ aldlsv.a X V[ltl LrmizgNhStesM krgeoseefrzvte_di. Midterm Review () Name ID: Date Period Find the amlitude, the eriod in radians, the hase shift in radians,
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
Kolorowa płaszczyzna zespolona
Kolorowa płaszczyzna zespolona Marta Szumańska MIMUW/IX LO w Warszawie Sielpia, 27 października 2018 p. 1 of 64 Liczby zespolone Przez i oznaczamy jednostkę urojoną. Jest to obiekt spełniający warunek
Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo
POPRAWKA do POLSKIEJ NORMY ICS 29.060.10 PNEN 50182:2002/AC Wprowadza EN 50182:2001/AC:2013, IDT Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo Poprawka do Normy Europejskiej
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Factor each completely.
Math 2 Final Exam Packet Part I Name ID: 1 Date Block Factor each completely. 1) p 2 + p 28 A) ( p + 7)( p + 4) B) Not factorable C) ( p + 7)( p 4) D) ( p + 2)( p 14) 2) r 2 14r + 45 A) (r 5)(r + 9) B)
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin
Stability of Tikhonov Regularization 9.520 Class 07, March 2003 Alex Rakhlin Plan Review of Stability Bounds Stability of Tikhonov Regularization Algorithms Uniform Stability Review notation: S = {z 1,...,
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
(3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin
Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature
A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA
Steeple #3: Gödel s Silver Blaze Theorem Selmer Bringsjord Are Humans Rational? Dec 6 2018 RPI Troy NY USA Gödels Great Theorems (OUP) by Selmer Bringsjord Introduction ( The Wager ) Brief Preliminaries
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Title: On the curl of singular completely continous vector fields in Banach spaces
Title: On the curl of singular completely continous vector fields in Banach spaces Author: Adam Bielecki, Tadeusz Dłotko Citation style: Bielecki Adam, Dłotko Tadeusz. (1973). On the curl of singular completely
Lecture 20. Fraunhofer Diffraction - Transforms
Lecture 20 Fraunhofer Diffraction - Transforms Fraunhofer Diffraction U P ' &iku 0 2 zz ) e ik PS m A exp ' &iku 0 2 zz ) e ik PS exp ik 2z a [x 2 m % y 2 m ]. m A exp ik 2z a & x m ) 2 % (y 0 & y m )
Unitary representations of SL(2, R)
Unitary representations of SL(, R) Katarzyna Budzik 8 czerwca 018 1/6 Plan 1 Schroedinger operators with inverse square potential Universal cover of SL(, R) x + (m 1 4) 1 x 3 Integrating sl(, R) representations
DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion
DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions
Matematyka 3 Suma szeregu? Sum i max Sum[f, {i, i max }] evaluates the sum f. Sum[f, {i, i min, i max }] starts with i = i min. Sum[f, {i, i min, i max, di}] uses steps di. Sum[f, {i, {i 1, i 2, }}] uses
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4
Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4 Strona 1 z 23 Andrzej Sładek, Instytut Matematyki UŚl sladek@math.us.edu.pl Letnia Szkoła Instytutu Matematyki 20-23 września
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Wykład 2 Układ współrzędnych, system i układ odniesienia
Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training
H γ0 - the standard enthalpy of g phase. H β γ - the transition enthalpy of b to g
H α0 - the standard enthalpy of a phase H β0 - the standard enthalpy of b phase H γ0 - the standard enthalpy of g phase H α β - the transition enthalpy of a to b phase at T t1 H β γ - the transition enthalpy
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
Zadania o liczbach zespolonych
Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i
Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS
Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Counting quadrant walks via Tutte s invariant method
Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver,
RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS
SCIENTIFIC BULLETIN OF LOZ TECHNICAL UNIVERSITY Nr 78, TEXTILES 55, 997 ZESZYTY NAUKOWE POLITECHNIKI ŁÓZKIEJ Nr 78, WŁÓKIENNICTWO z. 55, 997 Pages: 8- http://bhp-k4.p.loz.pl/ JERZY ZAJACZKOWSKI Loz Technical
Maths - matematyka calculator kalkulator
Maths - matematyka calculator kalkulator equals równa się times tables tabliczka mnożenia hundred square tabela numeryczna do stu addition dodawanie subtraction odejmowanie multiplication mnożenie evaluate
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )
5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin
ZASADY ZALICZANIA PRZEDMIOTU:
WYKŁADOWCA: dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, paw. C-1, p. 317, III p. tel. 617 29 01, tel. kom. 0 601 51 33 35 zak@agh.edu.pl http://home.agh.edu.pl/~zak 2012/2013, zima
PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Section Mark Polish Unit 1 Reading and Writing General Certificate of Education Advanced Subsidiary
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia
Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia gów: ( 1, 1, 1, 1), (2, 3, 1, 4), (4, 3, 2, 1), (4, 0, 3, 1) sa rozwia 2 zaniami
HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07
HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L0 HAPPY ANIMALS L07 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K ZW W8 W7 Ø x 6 szt. / pcs Ø7 x 70 Narzędzia / Tools DO MONTAŻU POTRZEBNE
PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH!
TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH! ASEMBLERY Pola Separatory Wizytówki Kody operacji Pseudo operacje adresy I dane Dyrektywy Stałe Komentarze SZKICE
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08
HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTIONS Akcesoria / Fittings K O G ZW W8 W4 20 szt. / pcs 4 szt. / pcs 4 szt. / pcs 4 szt. / pcs
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION
INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION Kiedy otrzymana przez Ciebie z Jeunesse, karta płatnicza została zarejestrowana i aktywowana w Joffice, możesz przejść do aktywacji swojego konta płatniczego
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Country fact sheet. Noise in Europe overview of policy-related data. Poland
Country fact sheet Noise in Europe 2015 overview of policy-related data Poland April 2016 The Environmental Noise Directive (END) requires EU Member States to assess exposure to noise from key transport
KINEMATYKA (punkt materialny)
KINEMATYKA (punkt materialny) Wykład 2 2012/2013, zima 1 MECHANIKA KINEMATYKA DYNAMIKA Opis ruchu Przyczyny ruchu Wykład 2 2012/2013, zima 2 1 Y RUCH KRZYWOLINIOWY P XY - Układ odniesienia r y - wektor
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Mixed-integer Convex Representability
Mixed-integer Convex Representability Juan Pablo Vielma Massachuse=s Ins?tute of Technology Joint work with Miles Lubin and Ilias Zadik INFORMS Annual Mee?ng, Phoenix, AZ, November, 2018. Mixed-Integer
Ciało liczb zespolonych
Ciało liczb zespolonych Twierdzenie: Niech C = R 2.Wzbiorze Cokreślamydodawanie: oraz mnożenie: (a,b) + (c,d) = (a +c,b +d) (a,b) (c,d) = (ac bd,ad +bc). Wówczas (C, +, ) jest ciałem, w którym elementem
Jak zasada Pareto może pomóc Ci w nauce języków obcych?
Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o
Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski
Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
How to translate Polygons
How to translate Polygons Translation procedure. 1) Open polygons.img in Imagine 2) Press F4 to open Memory Window 3) Find and edit tlumacz class, edit all the procedures (listed below) 4) Invent a new
Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw
Strategic planning Jolanta Żyśko University of Physical Education in Warsaw 7S Formula Strategy 5 Ps Strategy as plan Strategy as ploy Strategy as pattern Strategy as position Strategy as perspective Strategy
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP VFR POLAND VFR GEN 3.2-1 VFR GEN 3.2 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
Date Period Find the area of each regular polygon. Round your answer to the nearest tenth if necessary. 1) 10.3 yd. 6 m 11.2 m -1-
Geometry c A20^16 bkeumtias csgorfvtswfarem JLELE_.t c AKlzly XrmiqgyhptKsL nrge^slewravieydw. hapter est eview. Name I: 1 ate eriod Find the area of each regular polygon. ound your answer to the nearest