Analiza Matematyczna 3 Całki wielowymiarowe
|
|
- Bronisława Antczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 [wersja z X 008] Analiza Matematyczna 3 Całki wielowymiarowe Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego 008/009 Wojciech Broniowski
2 Powierzchnie kawałkami gładkie RYS Sfera Alexandra Butelka Kleina
3 3
4 Całki wielowymiarowe Uogólnienie calki Riemanna: P= [ a, b] [ a, b ]... [ a, b ] P = ( b a )... ( b a ) δ = ( b a ) ( b a ) n n Dokonujemy podzialu prostokąta n m = inf{ f( x): x P}, M = sup{ f( x): x P} i i i i s = m P m P, S = M P M P k k * * n n n Rozważamy normalny ( δ 0) ciąg podzialów n n n s = lim s calka dolna, S = lim S calka górna funkcji f na prostokącie P S n * * Jeżeli s = to wielkosć tę nazywamy wielokrotną calka Riemanna n k k Notacja: P dxdy f ( x, y), dxdydz g( x, y, z) P 4
5 Całka iterowana P= [ a, b] [ a, b ] b b b b dy dx f ( x, y), dx dy f ( x, y) calki iterowane a a a a Tw. Fubiniego: Jeżeli f : P R jest ciągla, to obie calki iterowane są równe calce Riemanna dxdy f ( x, y). P (analogicznie dla większej liczby wymiarów) Przyklad: P = [0,] [0, ] P xy dxdy (x y + ) = dx dy (x y + ) = dx ( + y) = dx(x + 4) = y= xy y dy dx y + = dy ( + x) = ( ) 4 3 dx + = x= 0 0 = (x ) 0 0 5
6 Całki po dowolnym obszarze A R n f( x) dla x A F( x) = 0 dla x P\ A ϕψ, :[ ab, ] R A= {( x, y) : a x b, ϕ( x) y ψ( x)} zbiór normalny względem Ox Tw. Jeżeli f : A R jest ciągla, to jest calkowalna, oraz ψ ( x) dxdy f ( x, y) = dx dy f ( x, y) A a ϕ ( x) b Przyklad: A={( xy, ) : 0 x, 0 y x} trójkąt x dxdy dx dy dx x x xy = xy = ( ) = 4 A
7 Zastosowania całek wielokrotnych V = A dxdydz A= {( x, y, z): x, y, x 0, x+ y+ z } xy, ustalone z x y x ustalone, szukamy największego możliwego y: y x z, ponieważ najmniejsze z = 0 y x x x y x ( x) V = dx dy dz = dx dy( x y) = dx ( x) = Jest to tzw. objetosć sympleksu. W n wymiarach V = n! 7
8 Środek ciężkości x = x dxdy y y dxdy A = A A figura -wym. x = x dxdydz, z z dxdydz bryla V = V V A V Objętosć bryly obrotowej powstalej w wyniku obrotu regularnego zbioru A wokól Ox: V = π y dxdy Reguly Guldina: V = πη A, η = y dxdy, A Dla torusa V = πa πr Podobnie dla powierzchni powstalej w wyniku obrotu luku mamy S = πξ L, ξ = ydt - odleglosc srodka ciężkosci luku od osi obrotu L Dla torusa S = πa πr β α A A 8
9 Pole powierzchni z = f( x, y), ( x, y) A f f S = dxdy + + x y A Wzór wynika z konstrukcji przybliżającej powierzchnię równoleglobokami Przyklad: f( x, y) = x y A= {( x, y) : x, y 0, x+ y } S = dxdy 3 = A 3 9
10 Zamiana zmiennych - dyfeomorfizm n n f C R U V R :, homeomorfizm rzędu n - (bijekcja, pochodna Frecheta odwracalna, f i f ciągle) ϕ ( b) Pamiętamy, że dla jednej zmiennej dy f( y) = dx f [ ϕ( x)] ϕ'( x), y = ϕ( x) n n Tw. ϕ : X R Y R klasy C ϕ ( a) J( x) = 0 jakobian przeksztalcenia ϕ Wtedy... f( y) dy.. dy =... Y ϕ x ϕn x n ϕ x n ϕn x n X f[ ϕ( x)] J( x) dx.. dx, y = ϕ ( x,..., x ) b a n i i n 0
11 Podstawowe układy współrzędnych Współrzędne biegunowe (osiowe) Φ: R R Φ xr (, φ) Φ (, r φ) = =, x= rcos φ, y = rsinφ Φ yr (, φ) rxy (, ) y Φ ( xy, ) =, r= x + y, φ=arctg φ( xy, ) x x x r φ cosφ r sinφ Φ '( r, φ) = = y y sinφ rcosφ r φ cosφ r sinφ J = = r (, ) ( (, ), (, )) sinφ r cosφ dxdy f x y = rdrdφ f x x φ y r φ Homeomorfizm regularny dla r 0, rząd Φ ' =. Dla r = 0 jest osobliwosć, bo w tym punkcie nie można okreslić kąta
12 Przyklady: dxdy x y rdrdφ r π = = dr dφ = Rπ r x + y R r R I = e dxdy = e rdrdφ = π rdre = π e = π πe I R = lim I = π R R x y r r r R x + y R r R R R x y x x I = dxe dye = dxe dxe = 0 π Całka Gaussa r= 0
13 Współrzędne eliptyczne x= arcosφ y = brsinφ x a y + = = b r, J abr Współrzędne walcowe (cylindryczne) x= rcosφ y = rsinφ z = z J = r Liniowa zmiana skali x= ax' y = by' z = cz' J = abc 3
14 Współrzędna sferyczne (kuliste) Φ: R R 3 3 x= rsinθcosφ y = rsinθsinφ z = rcosθ θ [0, π] - kąt osiowy(szerokosć geogr.), φ [0, π) - kąt biegunowy (azymutalny, dlugosć geogr.) sinθcosφ rcosθcosφ rsinθsinφ Φ ' = sinθsinφ rcosθsinφ rsinθ cosφ cosθ r sinθ 0 J = r sinθ r = 0 rz Φ ' = w srodku kuli nie można okreslić kątów θ = 0 θ = π rz Φ ' = na biegunach nie można okrelić kąta φ 4
15 Przyklad: Objętosć kuli π π R π 3 R 4 3 V = dxdydz = dr dθ dφr sinθ = dr d cosθ dφr = π = πr 3 3 x + y + z < R ( dcosθ = sin θdθ) R Srodek ciężkosci pólkuli: η = x + y + z < R z> 0 x + y + z < R z> 0 zdxdydz dxdydz R π / π dr d d r r = θ φ sin θ cosθ = π R 3 R π 4 3 R 3 3 πr = dr d cos θ dφ r cosθ = π = R πr 4 8 5
16 Równanie prostej i płaszczyzny 6
17 Płaszczyzna styczna Płaszczyzna styczna do powierzchni gładkiej o równaniu f(x,y,z)=0 dana jest równaniem f( x0, y0, z0) f( x0, y0, z0) f( x0, y0, z0) ( x x0) + ( y y0) + ( z z0) = 0 x y z f( x0, y0, z0) f( x0, y0, z0) f( x0, y0, z0) Wektor,, jest prostopadly do x y z powierzchni w punkcie ( x, y, z ). Prosta prostopadla do powierzchni w tym punkcie ma więc równanie parametryczne f( x, y, z ) f( x, y, z ) f( x, y, z ) t+ x, t+ y, t+ z x y z Dla sfery f = x + y + z R, więc prosta prostopadla ma równanie ( xt 0 + x0, y 0t+ y0, z0t+ z 0 ) 7
18 Plaszczyzna styczna do powierzchni w punkcie x jest przestrzenią liniową. Niech Φ: V R R, e, e,..., e tworzą bazę w R, oraz y =Φ( x). Wtedy u i k n k k =Φ'( x) e tworzą bazę w przestrzeni stycznej. i Przyklad: 0 Dla powierzchni danej jako Φ ( xy, ) = ( xyf,, ( xy, )) mamy Φ'= 0, fx f y u =Φ ' e = 0 = 0, v 'e 0 0 =Φ = = fx f y f x fx f y f y 8
19 Orientacja k Rozważmy bazy w przestrzeni R : ( v,..., v ) oraz ( w,..., w ). Bazy te powiazane są n i ij j j= k przeksztalceniem liniowym w = a v, przy czym musi zachodzić warunek a 0 aby zachować liniową niezależnosć. Jeżeli a > 0, to mówimy, że bazy są zgodnie zorintowane, a gdy a < 0, to mówimy, że są zorientowane przeciwnie. k Dla k = mamy jedną bazę jednoelementową v = i drugą w =. 0 0 Dla k = przykladowe bazy v =, v = i baza w =, w = są powiązane przeksztaceniem o macierzy a =, zatem a = > 0 i bazy są zorientowane zgodnie, natomiast dla bazy u =, u =, a=, a = < 0, 0 0 więc ta baza jest zorientowana przeciwnie do poprzednich. Orientację bazy kanonicznej nazywamy prawoskretną (zorientowaną dodatnio). 9
20 Wektor normalny 3 Niech M będzie powierzchnią dwuwymiarową w R, T x plaszczyzną styczną do M w punkcie x, a wektory ( u, v) bazą na plaszczyźnie stycznej. Wektor normalny definiujemy u v jako n =. Wektor ten wskazuje zewnętrzną (wewnętrzna) stronę powierzchni u v orientowalnej jesli baza jest prawoskrętna (lewoskrętna). c. d. przykladu: 0 uv uv u = 0, v =, u v = u v uv f x f y uv u v fx fx = fy, n = f y f x + fy + x x y f = R x y = z f = f = n = y z z x + y + z z Dla górnej pólsfery, x, y, f = R x y = z Dla dolnej pólsfery wynik taki sam (jeż!) 0
21 Powierzchnie orientowalne (mają stronę wewnętrzną i zewnętrzną) i nieorientowalne (nie można wyznaczyć strony) Wstęga Möbiusa Butelka Kleina
22 t t t x= ( R+ scos )cos t, y = ( R+ scos )sin t, z = ssin t [0, π ), s [ w, w] (M.C Escher)
23 Całka krzywoliniowa zorientowana F = ( F, F,..., Fk ), C - krzywa gladka I = F dx + F dx F dx = F dx C k k C I = I + I, I = I C + C C C C C Tw. Calka IC nie zależy od parametryzacji krzywej b dy D: y( t) = x( ϕ( t)) F( y) dy = F( y( t)) dt = dt C a b β dx( ϕ) dϕ dx( ϕ) = F( x( ϕ( t))) dt = F( x( ϕ)) dϕ = F( x) dx dϕ dt dϕ a α C (w konkretnej parametryzacji staje się zwyklą calką Riemanna) Przyklad: C: x( φ) = cos φ, y( φ) = sin φ, φ [0, π] (pólokrąg o promieniu jednostkowym) C π xdx x ydy d d d + ( ) = [cos φ (cos φ) + cos φ φ sin φ (sin φ)] = φ = 0 3 π π cos sin φ π φ π = + = C 3
24 Całka krzywoliniowa niezorientowana b dx dxk JC = f ds = f( x( t)) dt dt dt C a J C C Tw. Związek z calką zorientowaną: Fdx = Fds, F= F F cos α, α kąt miedzy dxi F C = J C s s k Zastosowanie (fizyka): praca W = Fds = F dx+ F dy + F dz π C: x= acos φ, y = bsin φ, φ [0, ] ćwiartka elipsy kx F = sprężyna zamocowana w srodku ky C dx = a φdφ dy = b φdφ F dx + F dy = k a b φ φdφ sin, cos, x y ( )sin cos π / k W = k( a b ) cos φd(cos φ) = ( a b ) 0 s C x y z 4
25 Tw. Greena Krzywą zamkniętą nazywamy konturem. Nich kontur C będzie brzegiem zbioru D. Kontur jest zorientowany dodatnio jeśli okala zbiór D w taki sposób, że D znajduje się po lewej stronie. Zbiór normalny D względem osi Ox to zbiór dający się zapisać jako D= {( x, y): f ( x) y f ( x), x [ a, b]}, f, f :[ a, b] R Zbiór normalny D względem osi Oy to zbiór dający się zapisać jako D= {( x, y) : g ( y) x g Tw. Greena ( y), x [ cd, ]}, g, g :[ cd, ] R D- zbiór normalny ze względu na Ox i Oy, C = D jego brzeg zorientowany dodatnio Q P Wtedy Pdx + Qdy = dxdy. x y D D b f ( x) P P D: dxdy = dx dy = dx[ P( x, f ( )) (, ( ))] y y D a f ( x) a C C = Pdx Pdx = Pdx C C D d g ( y) d b x P x f x = Pdx Pdx= Q Q dxdy = dy dx = dt[ Q( g ( y), y) Q( g ( y), y)] = Qdy Qdy = Qdy x x D c g ( y) c K K D 5
26 Pole potencjalne (fiz.) V( x, y) potencjal F x V V V V F F x =, Fy =, = = x y x y y x y x Fy F x Fxdx + Fydy = dxdy = 0 Fxdx + Fydy = Fxdx + Fydy (rys.) x y C D K K (Praca w polu potencjalnym nie zależy od drogi - można wprowadzić energię potencjalną. W poprzednim przykladzie z pracą na ćwiartce elipsy wynik jest wtedy natychmiastowy: W = V - V ) ( V ) (w powyższym wzorze zauważamy rot grad = 0) z y 6
27 Całka powierzchniowa niezorientowana (wspólrzędne kartezjańskie) Plat regularny S= {( xyz,, ) : z= f( xy, ),( xy, ) D} Element powierzchni : ds = + f + f dxdy x y Pole powierzchni plata regularnego: S = + f + f dxdy Calka powierzchniowa niezorientowana: S S g( x, y, z) ds = g( x, y, f ( x, y) + f + f dxdy D D x y (wspólrzędne krzywoliniowe) x= xuv (, ), y= yuv (, ), z= zuv (, ), ( uv, ) D x y g( x, y, zds ) = g( xuv (, ), y( u, v), z( u, v)) J + J + J dudv D ( yz, ) ( xz, ) ( xy, ) J =, J =, J3 = ( uv, ) ( uv, ) ( uv, ) 3 7
28 Przyklad (wspólrzędne kuliste) x= rsinθcos φ, y = rsinθsin φ, z = rcosθ J J J 3 rcosθsinφ rsinθcosφ = = r r sinθ 0 sin rcosθcosφ rsinθsinφ = = r r sinθ 0 rcosθcosφ rsinθsinφ = = r rcosθsinφ rsinθcosφ J + J + J3 = r sinθ θ cosφ sin θ sinφ sinθ cosθ 8
29 Całka powierzchniowa zorientowana 3 : - pole wektorowe F S S plat regularny n zewnętrzny wektor normalny Calka powierzchniowa zorientowana pola F lub strumień pola F: I= Fxyz (,, ) nxyzds (,, ) strumień S R Niech F = ( F, F, F ). Wtedy oznaczamy I = S 3 x y D 3 Jeżeli S dana jest równaniem z = f( x, y), to n= ( fx, fy,) + f + f Ff x Ff y + F3 I = ds = ( Ff x Ff y + F3) dxdy + f + f S F dydz + F dxdz + F dxdy x y 9
30 V Tw. Gaussa (Ostrogradskiego-Gaussa) div Fdxdydz = F nds S Slownie: calka po objętosci V z dywergencji z pola F równa się strumieniowi wyplywającemu przez powierzchnie S ograniczającą V F F F3 + + dxdydz = Fdydz + Fdxd dx dy dz z + F3 dxdy V S D: Niech V będzie obszarem normalnym względem plaszczyzny Oxy, ograniczonym funkcjami gxy (, ) i dxy (, ). Wtedy g( x, y) F 3 F 3 I3 = dxdydz = dz dxdy F3( x, y, g( x, y)) F3( x, y, d( x dz = dz (, y)) ) dxdy V D d( x, y) D Oznaczmy S = S + S, gdzie S dana jest przez z = g( x, y) a S przez z = d( x, y). I ' = F dxdy = F dxdy ( ) F dxdy = F ( x, y, g( x, y)) dxdy F ( x, y, d( x, y)) dxdy S S S D D Znak (-) wynika z przeciwnej orientacji S. Zatem I = I '. Podobnie pokazujemy, że I = I ' oraz I = I 3 3 '. Jeżeli V nie jest normalny, to dzielimy go na podzbiory normalne. 30
31 Tw. Stokesa Tw. Niech K będzie regularnym konturem bedącym brzegiem plata regularnego S. Orientacje K i S są zgodne. Niech Fi mają ciągle pochodne. Wtedy F dl = rot F n ds K S Cyrkulacja pola F po krzywej zamkniętej K jest równa calce zorientowanej z rotacji pola F po placie S. Inna notacja: F F F F F F 3 3 Fdx + Fdy + Fdz 3 = dydz + dzdx + dxdy y z z x x y K S 3
32 Formy różniczkowe (fiz. *) Różniczka zewnętrzna stopnia p : ax (,..., x) dx dx... dx, p n, wszystkie i różne i... i n i i i k dx dx = dx dx dx dx = 0 i j j i i i Suma różniczek tego samego stopnia: forma różniczkowa zewnętrzna α = i... i p a p ( x,..., x ) dx dx... dx n i i i i... ip j... j p Przyklady: Pdx + Qdy, Pdy dz + Qdz dx + Rdx dy, A dx dy dz Dodawanie analogiczne do dodawania wielomianów. p+ q Mnożenie: α β= a b dx... dx dx... dx = ( ) β α q i... i j... j i i j p q p p p Różniczkowanie: α P Q Q P d( Pdx+ Qdy) = dy dx+ dx dy = dx dy y x x y d( Pdy dz + Qdz dx + Rdx dy) = ( P + Q + R ) dx dy dz p ai... i ai... i d = dx + + dx dx dx i... i x p x n x y z j q n i i p 3
33 ai... i a p i... ip = dda ( ) = 0 x x x x k l l k α jest formą zupelną, jeżeli γ : α = dγ, α jest formą zamknietą, jeżeli dα = 0 Zamiana zmiennych x t: ( xi,..., xi ) a= a x x dt dt V p (,..., )... p i... i n p i... i ( t,..., tp ) p Calkowanie po hiperpowierzchni V: a= Atdt ( )... dt = Atdt ( )... dt (zwykla calka Riemanna) D p D Ogólne Tw. Stokesa: V hiperpowierzchnia zorientowana, V jej brzeg Jeżeli wspólczynniki formy a= to V a = V da i... i p a p i... i ( x) dxi... dxi są klasy C na V + V, p p Przyklady: Tw. Greena, Gaussa, Stokesa, także f( x) dx= F( b) - F( a), bo df( x) df( x) = dx = f ( x) dx, V = { a, b} dx [ ab, ] 33
Analiza Matematyczna 3
[wersja z 5 X ] Analiza Matematyczna 3 Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego / Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra Butelka Kleina
Analiza Matematyczna 3 Całki wielowymiarowe
[wersja z 6 X 9] Analiza Matematczna 3 Całki wielowmiarowe Konspekt wkładu dla studentów II r. fizki Uniwerstet Jana Kochanowskiego 9/ Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra
Analiza Matematyczna część 4
[wersja z 6 III 7] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski Analiza funkcji wielu zmiennych Przestrzeń wektorowa (liniowa)
Uniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
22. CAŁKA KRZYWOLINIOWA SKIEROWANA
CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ
Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z
[wersja z 5 X 2010] Wojciech Broniowski
[wersja z 5 X 1] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki Akademia Świętokrzyska 1/11 Wojciech Broniowski 1 Analiza funkcji wielu zmiennych Przestrzeń wektorowa unormowana : X
Analiza Matematyczna część 4
[wersja z 1 IV 8] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 7/8 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe
Rachunek różniczkowy i całkowy w przestrzeniach R n
Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda
24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA
4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.
Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej
Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,
Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Całka podwójna po prostokącie
Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i
Całki krzywoliniowe skierowane
Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Rachunek całkowy funkcji wielu zmiennych
Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1
Analiza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Analiza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
opracował Maciej Grzesiak Całki krzywoliniowe
opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,
y(t) = y 0 + R sin t, t R. z(t) = h 2π t
SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 3. CAŁKA POTRÓJNA
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem 1 Całka potrójna po prostopadłościanie CAŁKA POTRÓJNA 2 Całka potrójna po obszarach normalnych Współrzędne walcowe 4 Współrzędne sferyczne
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Całki krzywoliniowe wiadomości wstępne
Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.
2 Całkowanie form różniczkowych i cykle termodynamiczne
2 Całkowanie form różniczkowych i cykle termodynamiczne 2.1 Definicja całki z formy różniczkowej ymbol ω oznacza całka z formy ω po obszarze Ω. To jak praktycznie obliczyć Ω taką całkę zależy jakiego stopnia
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie
Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.
1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki
WYKŁA Z ANALIZY MATEMATYCZNEJ I dr. Elżbieta Kotlicka Centrum Nauczania Matematyki i Fizyki http://im0.p.lodz.pl/~ekot Łódź 2005 Spis treści 1. Przestrzenie metryczne. 4 2. Granica i ciągłość funkcji
Całki powierzchniowe w R n
Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy
Geometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
Analiza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Matematyka 2. Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana
Matematyka 2 Elementy analizy wektorowej cz V Całka powierzchniowa zorientowana Literatura M.Gewert, Z.Skoczylas; Elementy analizy wektorowej; Oficyna Wydawnicza GiS, Wrocław, 2000 W.Żakowski, W.Kołodziej;
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony
Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie
x y = 2z. + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,). Zad.. Wykazać, że każda funkcja z(x, y) = x f ( ) y x, gdzie f jest funkcją różniczkowalną jednej zmiennej,
Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni
Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d
Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi
Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza
Całka krzywoliniowa niezorientowana Niech R 3 będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- γ taką, że
Całka krzywoliniowa niezorientowana Niech R będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- taką, że t α, β : r t = ( t, y t, z t ) ef. Mówimy, że krzywa jest kawałkami gładka funkcja r t ma
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
x y = 2z, + 2y f(x, y) = ln(x3y ) y x
. Funkcje wielu zmiennych i funkcje uwikłane Zad.. Obliczyć przybliżoną wartość wyrażenia (, 4) (,), Zad.. Obliczyć przybliżoną wartość wyrażenia, 8, 5, Zad. 3. Wykazać, że każda funkcja z(x, y) = x f
opracował Maciej Grzesiak Analiza wektorowa
opracował Maciej Grzesiak Analiza wektorowa 1. Funkcje wektorowe 1.1. Funkcje wektorowe na płaszczyźnie Wektor r = x i + y j nazywamy wektorem wodzącym punktu (x, y). Jeśli x oraz y są funkcjami czasu,
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy
Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.
Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich
Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
ZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy: michal.musielak@utp.edu.pl.
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011
Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów
x y = 2z. + 2y, z 2y df
. Funkcje wielu zmiennych i funkcje uwikłane Zadanie.. Obliczyć przybliżoną wartość wyrażenia (, ) (,). Korzystamy z przybliżenia f, y) f, y ) + x x, y ) + y y, y ), gdzie x = x x a y = y y. Przybliżenie
Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)
Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej
Rachunek całkowy - całka oznaczona
SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej
SIMR 2012/2013, Analiza 2, wykład 14,
IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest
ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011
Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej
Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Więzy i ich klasyfikacja Wykład 2
Więzy i ich klasyfikacja Wykład 2 Karol Kołodziej (przy współpracy Bartosza Dziewita) Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna
Liczby zespolone. Zadanie 1. Oblicz: a) ( 3+i)( 1 3i) b) (3+i)2 (4i+1) i
Zadanie. Oblicz: a) ( 3+i)( 3i) +i b) (3+i)2 (4i+) i (2+i) 3 Liczby zespolone Zadanie 2. Zaznacz na płaszczyźnie Gaussa zbiór: a) {z : z > 3} b) {z : z i } c) {z : 4 z + + i < 9} Zadanie 3. Wykaż, że suma
Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: Liczba godzin/tydzień: Liczba punktów: wykład, ćwiczenia W, C 5 ECTS PRZEWODNIK PO PRZEDMIOCIE
Zastosowania geometryczne całek
Matematyka Zastosowania geometryczne całek Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-3 Elblag Matematyka p. 1 Zastosowania geometryczne całek
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Analiza matematyczna II Rok akademicki: 2013/2014 Kod: MIS-1-202-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: - Poziom
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Przestrzenie liniowe Granice, pochodne funkcji i ich
Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Przestrzenie liniowe 0 4 Granice pochodne funkcji i ich zastosowania 5 Liczby zespolone 8 6 Wielomiany 7 Całki nieoznaczone 8 Zastosowania
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej
Jacek Cichoń Katedra Informatyki Wydział Podstawowych Problemów Techniki Politechniki Wrocławskiej MAP1156: Analiza Matematyczna II Wykład przeznaczony jest dla studentów I roku I stopnia Inżynierii Biomedycznej
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Geometria Różniczkowa I
Geometria Różniczkowa I wykład ósmy Orientacja przestrzeni wektorowej. Mówimy, że dwie bazy e i f w skończenie-wymiarowej przestrzeniwektorowejv mająjednakowąorientacjęjeślimacierzprzejścia[id] f e madodatni
Wykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych
Wykład z analizy Tydzień 1 i 11. Różniczkowanie funkcji wielu zmiennych 1.1 Niech f(x, y) będzie funkcją dwóch zmiennych, i niech druga współrzędna będzie ustalona y = y. Rozważana funkcja zależy tylko
Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne.
SPIS TREŚCI 1 Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. Spis treści 1 Repetytorium 2 2 Wiadomości wstępne 5 1 Repetytorium 2 1 Repetytorium 1. Rozwia zać
ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza
FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru
Elementy równań różniczkowych cząstkowych
Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze
Wstęp. W razie zauważenia jakichś błędów w tym tekście proszę o sygnał, na przykład mailowy:
Wstęp Niniejsze opracowanie zawiera notatki z ćwiczeń z matematyki prowadzonych na UTP kierunkach: Budownictwo, Mechanika i Budowa Maszyn, Inżynieria Odnawialnych Źródeł Energii, Transport, Teleinformatyka,
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45
Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Elementy analizy wektorowej. Listazadań
Elementy analizy wektorowej Opracowanie: dr Marian Gewert, dr Zbigniew Skoczylas Listazadań % Całki krzywoliniowe niezorientowane 1. Obliczyć całkę krzywoliniową niezorientowaną f dl, jeżeli: 1 a)fx,y)=
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,
IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy
Mechanika. Wykład 2. Paweł Staszel
Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu
MOMENT PĘDU, ROTATOR SZTYWNY. c.us.edu.pl/ mm
MOMENT PĘDU, ROTATOR SZTYWNY http://zcht.mf c.us.edu.pl/ mm dygresja(materiał dodatkowy) układy współrzędnych w dwóch wymiarach: biegunowy x=rcosϕ y=rsinϕ 0 r 0 ϕ 2π r= x 2 +y 2 x ϕ=arccos x2 +y2 w trzech
Algebra linowa w pigułce
Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra
Całki powierzchniowe
Całki powierzchniowe Całki powierzchniowe niezorientowane. Całki powierzchniowe zorientowane. Elementy analizy wektorowej. Twierdzenia Gaussa-Ostrogradskiego oraz tokesa. Małgorzata Wyrwas Katedra Matematyki
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
1 Układy równań liniowych
1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.
Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3
3. Znaleźć długość krzywej l = {y = x, 0 x 1}. 4. Obliczyć objętość bryły powstałej w wyniku obrotu dookoła osi OX krzywej
eria. Obliczyć całki (A) 2 x 2 dx (z definicji); 2 xe x dx; e 2xe x2 dx. 2. Obliczyć pole obszaru (A) {(x, y) : < x < 3, < y < x 2 +}; {(x, y) : 6x x 2 < y < x 2 6x+}. 3. Znaleźć długość krzywej l = {y
4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne
Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy, że P : D R i Q: D R są funkcjami ciągłymi określonymi
Analiza Matematyczna część 5
[wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe
Definicja punktu wewnętrznego zbioru Punkt p jest punktem wewnętrznym zbioru, gdy należy do niego wraz z pewnym swoim otoczeniem
Definicja kuli w R n ulą o promieniu r>0 r R i o środku w punkcie p R n nazywamy zbiór {x R n : ρ(xp)
5.6 Klasyczne wersje Twierdzenia Stokes a
Ostatecznie f = 1 r 2 f ) r 2 r r + ctg ϑ f r 2 ϑ + 1 2 f r 2 ϑ + 1 2 2 f r 2 sin 2 ϑ ϕ 2 56 Klasyczne wersje Twierdzenia Stokes a Odpowiedniość między polami wektorowymi i jednoformami lub n 1)-formami
AB = x a + yb y a + zb z a 1
1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Notatki do wykładu Geometria Różniczkowa I
Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 11 listopada 013 1 Alternatywne spojrzenie na wektory styczne Definicja 1 Algebrą nazywamy przestrzeń wektorową A wyposażoną w działanie
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,