Analiza Matematyczna 3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza Matematyczna 3"

Transkrypt

1 [wersja z 5 X ] Analiza Matematyczna 3 Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego / Wojciech Broniowski

2 Powierzchnie kawałkami gładkie RYS Sfera Aleandra Butelka Kleina

3 3

4 Całki wielowymiarowe (powtórka) Uogólnienie calki Riemanna: P = [ a, b ] [ a, b ]... [ a, b ] P = ( b a )... ( b a ) δ = ( b a ) ( b a ) n n Dokonujemy podzialu prostokąta n m = inf{ f ( ) : P}, M = sup{ f ( ) : P} i i i i s = m P m P, S = M P M P k k * * n n n Rozważamy normalny ( δ ) ciąg podzialów n n n s = lim s calka dolna, S = lim S calka górna funkcji f na prostokącie P n * * Jeżeli s = S to wielkosć tę nazywamy wielokrotną calka Riemanna n k k Notacja: P ddy f (, y), ddydz g(, y, z) P 4

5 Całka iterowana P = [ a, b ] [ a, b ] b b b b dy d f (, y), d dy f (, y) calki iterowane a a a a Tw. Fubiniego: Jeżeli f : P R jest ciągla, to obie calki iterowane są równe calce Riemanna ddy f (, y). P (analogicznie dla większej liczby wymiarów) Przyklad: P = [,] [, ] P y ddy ( y + ) = d dy ( y + ) = d ( + y) = d( + 4) = y= 3 y y dy d y + = dy ( + ) = ( ) 4 3 d + = = = ( ) 5

6 Całki po dowolnym obszarze A R n f ( ) dla A F( ) = dla P \ A ϕ, ψ :[ a, b] R A = {(, y) : a b, ϕ( ) y ψ ( )} zbiór normalny względem O Tw. Jeżeli f : A R jest ciągla, to jest calkowalna, oraz ψ ( ) ddy f (, y) = d dy f (, y) A a ϕ ( ) b Przyklad: A={(, y) :, y } trójkąt ddy d dy d y = y = ( ) = 4 A 6

7 Zastosowania całek wielokrotnych V = A ddydz A = {(, y, z) :, y,, + y + z }, y ustalone z y ustalone, szukamy największego możliwego y: y z, ponieważ najmniejsze z = y y ( ) V = d dy dz = d dy( y) = d ( ) = 6 Jest to tzw. objetosć sympleksu. W n wymiarach V = n! 7

8 Środek ciężkości = ddy y y ddy A = A A figura -wym. = ddydz, z z ddydz bryla V = V V A V Objętosć bryly obrotowej powstalej w wyniku obrotu regularnego zbioru A wokól O: V = π y ddy Reguly Guldina: V = πη A, η = y ddy, A Dla torusa V = π a π r Podobnie dla powierzchni powstalej w wyniku obrotu luku mamy S = πξ L, ξ = ydt - odleglosc srodka ciężkosci luku od osi obrotu L Dla torusa S = π a π r β α A A 8

9 Pole powierzchni r r Pole powierzchni równolegloboku rozpiętego na wektorach a i b r r wynosi S= a b. Z rysunku wynika, że r r a = ( d,, f d), b = (, dy, f dy), zatem iˆ ˆj kˆ S = d f d dy = if ˆ ddy ˆjf ddy + kddy ˆ = + f + f ddy y y f dy y y 9

10 z = f (, y), (, y) A f f S = ddy + + y A Wzór wynika z konstrukcji przybliżającej powierzchnię infinitezymalnymi równoleglobokami Przyklad: f (, y) = y A = {(, y) :, y, + y } S = ddy 3 = A 3

11 Zamiana zmiennych - dyfeomorfizm ϕ ( b) Pamiętamy, że dla jednej zmiennej dy f ( y) = d f ( ϕ( )) ϕ '( ), y = ϕ( ) ϕ ( a) n n Tw. bijekcja ϕ : X R Y R klasy C, ϕ i ϕ ciagle J ( ) = jakobian przeksztalcenia ϕ Wtedy Y ϕ ϕn n ϕ n ϕn... f ( y,.., y ) dy.. dy n n... f ( ϕ (,.., ),..., ϕ (,.., )) J (,.., ) d.. d, y = ϕ (,..., ) X = n n n n n i i n b a (Dowód: RR)

12 Podstawowe układy współrzędnych Współrzędne biegunowe (osiowe) Φ : R R Φ ( r, φ) Φ ( r, φ) = =, = r cos φ, y = r sinφ Φ y( r, φ) r(, y) y Φ (, y) =, r = + y, φ=arctg φ(, y) r φ cosφ r sinφ Φ '( r, φ) = = y y sinφ r cosφ r φ cosφ r sinφ J = = r (, ) ( (, ), (, )) sinφ r cosφ ddy f y = rdrdφ f φ y r φ Homeomorfizm regularny dla r, rząd Φ ' =. Dla r = jest osobliwosć, bo w tym punkcie nie można okreslić kąta

13 Przyklady: ddy y rdrdφ r π = = dr dφ = Rπ r + + y R r R I = e ddy = e rdrdφ = π rdre = π e = π πe I R = lim I = π R R y r r r R + y R r R R R y I = d e dy e = d e d e = π Całka Gaussa r= 3

14 Współrzędne eliptyczne = ar cosφ y = br sinφ a y + = = b r, J abr Współrzędne walcowe (cylindryczne) = r cosφ y = r sinφ z = z J = r Liniowa zmiana skali = a ' y = by ' z = cz ' J = abc 4

15 Współrzędna sferyczne (kuliste) Φ : R R 3 3 = r sinθ cosφ y = r sinθ sinφ z = r cosθ θ [, π ] - kąt osiowy(szerokosć geogr.), φ [, π ) - kąt biegunowy (azymutalny, dlugosć geogr.) sinθ cosφ r cosθ cosφ r sinθ sinφ Φ ' = sinθ sinφ r cosθ sinφ r sinθ cosφ cosθ r sinθ J = r sinθ r = rz Φ ' = w srodku kuli nie można okreslić kątów θ = θ = π rz Φ ' = na biegunach nie można okrelić kąta φ 5

16 Przyklad: Objętosć kuli π π R π 3 R 4 3 V = ddydz = dr dθ dφr sinθ = dr d cosθ dφr = π = π R y + z < R ( d cosθ = sin θdθ ) R Srodek ciężkosci pólkuli: η = + y + z < R z> + y + z < R z> z ddydz ddydz R π / π dr d d r r 3 = θ φ sin θ cosθ = π R 3 R π 4 3 R 3 3 π R = dr d cos θ dφ r cosθ = π = R π R 4 8 6

17 Równanie prostej i płaszczyzny 7

18 Płaszczyzna styczna Rozważmy powierzchnię gładką o równaniu f(,y,z)= w okolicy (, y, z ). f f f f ( +, y + y, z + z) = = = + = y + = z y z = = = y= y y= y y= y Dla punktów na plaszczyźnie (, y, z) = k( -, y y, z z ), więc f f f ( ) + ( y y ) + y y z= z z= z z= z y= y y= y y= y z= z z= z z= z ( z z ) = f f f Wektor =,, jest prostopadly (normalny) do = = y= y y z y= y y= y z= z z= z z= z powierzchni w punkcie (, y, z ). 8

19 Prosta prostopadla do powierzchni w tym punkcie ma więc równanie parametryczne f f f (, z, y) = t +, t + y, t + z y z = = = y= y y= y y= y z= z z= z z= z Dla sfery f = + y + z R ( ) (, z, y) = t +, y t + y, z t + z, więc prosta prostopadla ma równanie 9

20 Plaszczyzna styczna do powierzchni w punkcie jest przestrzenią liniową. Niech Φ : V R R, e, e,..., e tworzą bazę w R, oraz y = Φ( ). Wtedy u i k n k k = Φ '( ) e tworzą bazę w przestrzeni stycznej. i Przyklad: Dla powierzchni danej jako Φ (, y) = y mamy Φ'=, f (, y) f f y u = Φ ' e = =, v 'e = Φ = = f f y f f f y f y

21 Orientacja k Rozważmy bazy w przestrzeni R : ( v,..., v ) oraz ( w,..., w ). Bazy te powiazane są n i ij j j= k przeksztalceniem liniowym w = a v, przy czym musi zachodzić warunek a aby zachować liniową niezależnosć. Jeżeli a >, to mówimy, że bazy są zgodnie zorintowane, a gdy a <, to mówimy, że są zorientowane przeciwnie. k Dla k = mamy jedną bazę jednoelementową v = i drugą w =. Dla k = przykladowe bazy v =, v = i baza w =, w = są powiązane przeksztaceniem o macierzy a =, zatem a = > i bazy są zorientowane zgodnie, natomiast dla bazy u =, u =, a =, a = <, więc ta baza jest zorientowana przeciwnie do poprzednich. Orientację bazy kanonicznej nazywamy prawoskretną (zorientowaną dodatnio).

22 Wektor normalny 3 Niech M będzie powierzchnią dwuwymiarową w R, T plaszczyzną styczną do M w punkcie, a wektory ( u, v) bazą na plaszczyźnie stycznej. Wektor normalny definiujemy u v jako n =. Wektor ten wskazuje zewnętrzną (wewnętrzna) stronę powierzchni u v orientowalnej jesli baza jest prawoskrętna (lewoskrętna). c. d. przykladu: uv3 u3v f f u =, v =, u v = u3v uv3 = f y, n = f y f f f y uv uv + f y + y f = R y = z f = f = n = y z z + y + z z Dla górnej pólsfery,, y, Dla dolnej pólsfery f = R y = z wynik taki sam (jeż!)

23 Nieco inne wyprowadzenie: r r a b= if ˆ ddy ˆjf ddy + kddy ˆ = ( f, f,) ddy y y Po znormalizowaniu r r r a b n = r r = ( f, f y,) a b + f + f y 3

24 Powierzchnie orientowalne (mają stronę wewnętrzną i zewnętrzną) i nieorientowalne (nie można wyznaczyć strony) Wstęga Möbiusa Butelka Kleina 4

25 t t t = ( R + s cos ) cos t, y = ( R + s cos ) sin t, z = s sin t [, π ), s [ w, w] (M.C Escher) 5

26 Całka krzywoliniowa zorientowana F = ( F, F,..., Fk ), C - krzywa gladka I = F d + F d F d = F d C k k C I = I + I, I = I C + C C C C C Tw. Calka IC nie zależy od parametryzacji krzywej b dy D: y( t) = ( ϕ( t)) F( y) dy = F( y( t)) dt = dt C a b β d( ϕ) dϕ d( ϕ) = F( ( ϕ( t))) dt = F( ( ϕ)) dϕ = F( ) d dϕ dt dϕ a α C (w konkretnej parametryzacji staje się zwyklą calką Riemanna) Przyklad: C : ( φ) = cos φ, y( φ) = sin φ, φ [, π ] (pólokrąg o promieniu jednostkowym) C π d y dy d d d + ( ) = [cos φ (cos φ) + cos φ φ sin φ (sin φ)] = φ = 3 π π cos sin φ π φ π = + = C 6

27 Całka krzywoliniowa niezorientowana b d dk JC = f ds = f ( ( t)) dt dt dt C a J C C Tw. Związek z calką zorientowaną: F d = F ds, F = F F cos α, α kąt miedzy d i F C = J C s s k Zastosowanie (fizyka): praca W = F ds = F d + F dy + F dz π C : = a cos φ, y = bsin φ, φ [, ] ćwiartka elipsy k F = sprężyna zamocowana w srodku ky C d = a φdφ dy = b φdφ F d + F dy = k a b φ φ dφ sin, cos, y ( )sin cos π / k W = k( a b ) cos φ d(cos φ) = ( a b ) s C y z 7

28 Nabla, operator Laplace a i dywergencja Operator to funkcja, która funkcji przyporządkowuje funkcję. Nabla Operator Laplace'a (laplasjan) = = = = n i i i i... n i= f f (,..., ) = n n 3 f (, y) y, f 4 6 = + + = + n n Dywergencja: g : U R R (pole wektorowe) g gn div g = igi = g = (,, ) =, = + + yz g y z z y g z y f n 8

29 Elementy rachunku tensorowego dla i = j Delta Kroneckera: δij = dla i j tensor symetryczny : δ = δ, δ = n (wymiar przestrzeni) δ A = A, = δ i ij... j i... ij j Pseudotensor Levi-Civity (w 3 wymiarach): ε ε = ε = ε =, ε 3 = ε3 = ε3 =, pozostale = ij ji ii tensor calkowicie (we wszystkich wskaźnikach) antysymetryczny εijkεilm = δ jlδ km δ jmδ kl, εijkεijm = δ km, εijkεijk = 6 Iloczyn wektorowy (a b) = ε a b i ijk j k iˆ ˆj kˆ równoważny zapis: a b = a a a 3 b b b 3 ijk 9

30 ε a ε b c = ε ε a b c = ( δ δ δ δ ) a b c ijk j klm l m kij klm j l m il jm im jl j l m = δ δ a b c δ δ a b c = a c b a b c a ( b c) = a c b a b c il jm j l m im jl j l m j j i j j i ( ) ( ) ε a b ε c d = ( δ δ δ δ ) a b c d = a c b d b c a d a b c d = a c b d a d b c ijk j k ilm l m jl km jm kl j k l m j j k k j j k k ( ) ( ) ( )( ) ( )( ) 3

31 Rotacja 3 3 f : U R R rot f = f, rot f = ε f ( ) i ijk j k ε f = ε f = ε f = ( i j) = ε f = ε f i ijk j k ijk i j k jik i j k ijk j i ijk i j iεijk j fk = div (rot f ) = rot grad f = i ( u( ) fi ( )) = fi iu + u i fi div ( uf ) = f u + u f = f grad u + u div f 3

32 Tw. Greena Krzywą zamkniętą nazywamy konturem. Niech kontur C będzie brzegiem zbioru D. Kontur jest zorientowany dodatnio jeśli okala zbiór D w taki sposób, że D znajduje się po lewej stronie. Zbiór normalny D względem osi O to zbiór dający się zapisać jako D = {(, y) : f ( ) y f ( ), [ a, b]}, f, f :[ a, b] R Zbiór normalny D względem osi Oy to zbiór dający się zapisać jako D = {(, y) : g ( y) g Tw. Greena ( y), [ c, d]}, g, g :[ c, d] R D - zbiór normalny ze względu na O i Oy, C = D jego brzeg zorientowany dodatnio Q P Wtedy Pd + Qdy = ddy. y D D b f ( ) P P D: ddy = d dy = d[ P(, f ( )) (, ( ))] y y D a f ( ) a C C = Pd Pd = Pd C C D d g ( y) d b P f = Pd Pd = Q Q ddy = dy d = dt[ Q( g ( y), y) Q( g ( y), y)] = Qdy Qdy = Qdy D c g ( y) c K K D 3

33 33

34 Pole potencjalne V (, y) potencjal F V V V V F F =, Fy =, = = y y y y Fy F Fd + Fydy = ddy = Fd + Fydy = Fd + Fydy (rys.) y C D K K (Praca w polu potencjalnym nie zależy od drogi - można wprowadzić energię potencjalną. W poprzednim przykladzie z pracą na ćwiartce elipsy wynik jest wtedy natychmiastowy: W = V - V ) ( V ) (w powyższym wzorze zauważamy rot grad = ) z y 34

35 Całka powierzchniowa niezorientowana (wspólrzędne kartezjańskie) Plat regularny S = {(, y, z) : z = f (, y),(, y) D} Element powierzchni : ds = + f + f ddy y Pole powierzchni plata regularnego: S = + f + f ddy Calka powierzchniowa niezorientowana: S S g(, y, z) ds = g(, y, f (, y) + f + f ddy (wspólrzędne krzywoliniowe) D D y = ( u, v), y = y( u, v), z = z( u, v), ( u, v) D y g(, y, z) ds = g( ( u, v), y( u, v), z( u, v)) J + J + J dudv D ( y, z) (, z) (, y) J =, J =, J3 = ( u, v) ( u, v) ( u, v) 3 35

36 Przyklad (wspólrzędne kuliste) = r sinθ cos φ, y = r sinθ sin φ, z = r cosθ J J J 3 r cosθ sinφ r sinθ cosφ = = r r sinθ sin r cosθ cosφ r sinθ sinφ = = r r sinθ r cosθ cosφ r sinθ sinφ = = r r cosθ sinφ r sinθ cosφ J + J + J3 = r sinθ θ cosφ sin θ sinφ sinθ cosθ 36

37 Całka powierzchniowa zorientowana F S 3 : R - pole wektorowe S plat regularny n zewnętrzny wektor normalny Calka powierzchniowa zorientowana pola F lub strumień pola F: I = F(, y, z) n(, y, z) ds strumień S Niech F = ( F, F, F ). Wtedy oznaczamy I = S 3 y D 3 Jeżeli S dana jest równaniem z = f (, y), to n = ( f, f y,) + f + f F f F f y + F3 I = ds = ( F f F f y + F3 ) ddy + f + f S F dydz + F ddz + F ddy y 37

38 V Tw. Gaussa (Ostrogradskiego-Gaussa) div F ddydz = F n ds S Slownie: calka po objętosci V z dywergencji z pola F równa się strumieniowi wyplywającemu przez powierzchnie S ograniczającą V F F F3 + + ddydz = F dydz + F dd d dy dz z + F3 ddy V S D: Niech V będzie obszarem normalnym względem plaszczyzny Oy, ograniczonym funkcjami g(, y) i d(, y). Wtedy g (, y) F 3 F 3 I3 = ddydz = dz ddy F3 (, y, g(, y)) F3 (, y, d( dz = dz (, y)) ) ddy V D d (, y) D Oznaczmy S = S + S, gdzie S dana jest przez z = g(, y) a S przez z = d(, y). I ' = F ddy = F ddy ( ) F ddy = F (, y, g(, y)) ddy F (, y, d(, y)) ddy S S S D D Znak (-) wynika z przeciwnej orientacji S. Zatem I = I '. Podobnie pokazujemy, że I = I ' oraz I = I 3 3 '. Jeżeli V nie jest normalny, to dzielimy go na podzbiory normalne. 38

39 Tw. Stokesa Tw. Niech K będzie regularnym konturem bedącym brzegiem plata regularnego S. Orientacje K i S są zgodne. Niech Fi mają ciągle pochodne. Wtedy F dl = rot F n ds K S Cyrkulacja pola F po krzywej zamkniętej K jest równa calce zorientowanej z rotacji pola F po placie S. Inna notacja: F F F F F F 3 3 F d + F dy + F3 dz = dydz + dzd + ddy y z z y K S 39

40 Formy różniczkowe (*) Różniczka zewnętrzna stopnia p : a(,..., ) d d... d, p n, wszystkie i różne i... i n i i i k d d = d d d d = i j j i i i Suma różniczek tego samego stopnia: forma różniczkowa zewnętrzna α = i... i p a p (,..., ) d d... d n i i i i... ip j... j p Przyklady: Pd + Qdy, Pdy dz + Qdz d + Rd dy, A d dy dz Dodawanie analogiczne do dodawania wielomianów. p+ q Mnożenie: α β = a b d... d d... d = ( ) β α q i... i j... j i i j p q p p p Różniczkowanie: α P Q Q P d( Pd + Qdy) = dy d + d dy = d dy y y d( Pdy dz + Qdz d + Rd dy) = ( P + Q + R ) d dy dz p ai... i ai... i d = d + + d d d i... i p n y z j q n i i p 4

41 ai... i a p i... ip = d( da) = k l l k α jest formą zupelną, jeżeli γ : α = dγ, α jest formą zamknietą, jeżeli dα = Zamiana zmiennych t: ( i,..., i ) a = a dt dt V p (,..., )... p i... i n p i... i ( t,..., t p ) p Calkowanie po hiperpowierzchni V: a = A( t) dt... dt = A( t) dt... dt (zwykla calka Riemanna) D p D Ogólne Tw. Stokesa: V hiperpowierzchnia zorientowana, V jej brzeg Jeżeli wspólczynniki formy a = to a = da V V i... i p a p i... i ( ) di... di są klasy C na V + V, p p Przyklady: Tw. Greena, Gaussa, Stokesa, także f ( ) d = F( b) - F( a), bo df( ) df( ) = d = f ( ) d, V = { a, b} d [ a, b] 4

42 Równania różniczkowe 4

43 Definicje, klasyfikacja Równanie różniczkowe zwyczajne ma ogólną postać F(, y( ), y '( ),...) =, gdzie... oznaczają możliwosć wystąpienia wyższych pochodnych. Zmienna jest zmienną niezależną, a y( ) jest szukaną funkcją. Rząd równania to najwyższy rząd pochodnej. W szczególnosci, równanie różniczkowe rzędu pierwszego ma postać F(, y, y ') =. Równanie różniczkowe cząstkowe ma ogólną postać F(,,...,, y(,..., ), n n y(, n..., ) y(,..., n),...,,...) = (równaniami cząstkowymi nie bedziemy się zajmować) n Uklad równań różniczkowych zwyczajnych na n funkcji y ( ) ma postać F (, y ( ),..., y ( ), y '( ),..., y '( ),...) =, i =,..., n i n n i Model fizyczny/ekonomiczny/meteorologiczny... r. różniczkowe 43

44 Przykład: oscylator harmoniczny F( t, ( t), ( t), ( t)) = r. mechaniki f = ma prawo Newtona k k t = m t k m > = ω m t = ω ( ) ( ),,, oscylator harmoniczny ( ) ( t) r. różniczkowe do rozwiązania ( t) = Acos( ωt) + Bsin( ωt) ogólna postać rozwiązania t = Aω ωt + Bω ωt t = ω t Sprawdzenie: ( ) sin( ) cos( ), ( ) ( ) Warunki początkowe: ( t) =, ( t) = v A =, Bω = v v t = ωt + ωt ω ( ) cos( ) sin( ) rozwiązanie spelniające war. początkowe 44

45 Przykład: rozpad promieniotwórczy / wzrost populacji dn ( t) = λn( t), λ > dt (ubytek na jedn. czasu proporcjonalny do liczby atomów) Rozw.: N ( t) = N ep( λt) liczba nierozpadlych atomów po czasie t λ λ N( t) = N ep( λt) populacja w czasie t, prawo wzrostu Malthusa Bardziej realistyczne równanie: dn ( t) = λn t N t N dt = N N = λ * ( )[ ( ) / ], * / ( ) (nieliniowosć!) 45

46 Rozwiązanie równania populacji ( λ = ): d d = ( ) dt ln t C ep( t C) dt = = + = + ( ) = ep( C)ep( t) = C 'ep( t) ( t) = C 'ep( t) war. początkowy: ( t = ) = = C ' ( t) = + ep( t) + ep( t) ep( t) t ln, (,) (, ) (w t ln osobliwosć) = = ( t) = : lim ( t) = t 46

47 Ogólne uwagi i twierdzenia Rozwiązanie y( ) r.r. nazywamy calką r.r., a wykres (, y( )) krzywą calkową. Calka ogólna równania rzędu pierwszego jest postaci y( ) = f (, C), gdzie C jest stalą. Stalą tę wyznacza się z warunku poczatkowego y = f (, C). Rozwiązanie osobliwe to rozwiązanie, którego nie można uzyskać z postaci f (, C) dla żadnej wartosci C. y ' Przyklad: y ' = y = ( y )' = y = + C, + C y ( + C), C y( ) =, < C y( ) = rozw. osobliwe 47

48 Jednoznaczność rozwiązań Tw. (o jednoznacznosci rozwiązań) R. postaci y ' = f (, y), f (, y) i f (, y) ciagle w pewnym otoczeniu (, y ) y otoczenie ( a, + a), w którym jest okreslona dokladnie jedna funkcja φ( ) o wlasnociach: φ '( ) = f (, φ( )), φ( ) = y. 48

49 Równanie o zmiennych rozdzielonych dy p( y) y '( ) = q( ) p( y) = q( ) p( y) dy = q( ) d p( y) dy = q( ) d d P( y) = p( y) dy, Q( ) = q( ) d, P( y) = Q( ) + C, C pewna stala Rozwiązanie jest dane w postaci uwiklanej! 3 ' 3, ' d dy d d D: ( P( y( )) Q( ) C) = P( y) Q( ) = y ' p( y) q( ) = d d dy d Przyklad: 3 dy( t) y t 3 3 y = t y dy = tdt = + C y = t + 3C dt 3 3 C = C y = t + C 3 y t C ' Warunek początkowy: y( t) = y = + y = ( t t ) + y 3 3 Z nieskończonej liczby rozwiązań z parametrem C warunek początkowy wybiera jedno! 49

50 Rozwiązanie równania populacji ( λ = ): d d = ( ) dt ln t C ep( t C) dt = = + = + ( ) = ep( C)ep( t) = C 'ep( t) ( t) = C 'ep( t) war. początkowy: ( t = ) = = C ' ( t) = + ep( t) + ep( t) ep( t) t ln, (,) (, ) (w t ln osobliwosć) = = ( t) = : lim ( t) = t 5

51 Jednoparametrowe rodziny krzywych R. populacji = ( ) ( t) = + ep( t) Inne równanie y y = t y( t) 3t = 3 + y 3 5

52 Równania sprowadzalne do równania o zmiennych rozdzielonych y ' = f ( a + by + c) u = a + by + c u ' = a + by ' = a + bf ( u) u ' = a + bf ( u) R. jednorodne w i y : y y '( ) = f y u( ) =, y = u, y ' = u ' + u u ' + u = f ( u) u ' =, f ( u) u, f ( u) u 5

53 Ciąg dalszy w notatkach i skryptach... 53

Analiza Matematyczna 3 Całki wielowymiarowe

Analiza Matematyczna 3 Całki wielowymiarowe [wersja z X 008] Analiza Matematyczna 3 Całki wielowymiarowe Konspekt wykładu dla studentów II r. fizyki Uniwersytet Jana Kochanowskiego 008/009 Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera

Bardziej szczegółowo

Analiza Matematyczna 3 Całki wielowymiarowe

Analiza Matematyczna 3 Całki wielowymiarowe [wersja z 6 X 9] Analiza Matematczna 3 Całki wielowmiarowe Konspekt wkładu dla studentów II r. fizki Uniwerstet Jana Kochanowskiego 9/ Wojciech Broniowski Powierzchnie kawałkami gładkie RYS Sfera Aleandra

Bardziej szczegółowo

Analiza Matematyczna część 5

Analiza Matematyczna część 5 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

[wersja z 5 X 2010] Wojciech Broniowski

[wersja z 5 X 2010] Wojciech Broniowski [wersja z 5 X 1] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki Akademia Świętokrzyska 1/11 Wojciech Broniowski 1 Analiza funkcji wielu zmiennych Przestrzeń wektorowa unormowana : X

Bardziej szczegółowo

Analiza Matematyczna część 4

Analiza Matematyczna część 4 [wersja z 6 III 7] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski Analiza funkcji wielu zmiennych Przestrzeń wektorowa (liniowa)

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony

z pokryciem (O i ) i I rozkładu jedności (α i ) i I. Zauważmy najpierw, że ( i I α i )ω dω = d(1 ω) = d d(α i ω). Z drugiej jednak strony Dowód: Niech M będzie jak w założeniach twierdzenia. Weźmy skończony atlas O i, ϕ i ) na M zgodny z orientacją. Zbiór indeksów I może być skończony, gdyż rozmaitość M jest zwarta. Õi, ϕ i ) oznaczać będzie

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Uniwersytet Warmińsko-Mazurski w Olsztynie

Uniwersytet Warmińsko-Mazurski w Olsztynie Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi

Zestaw zadań z Analizy Matematycznej II 18/19. Konwencja: pierwsze litery alfabetu są parametrami, do tego zazwyczaj dodatnimi Literatura pomocnicza Zestaw zadań z Analizy Matematycznej II 8/9 G.M. Fichtenholz - Rachunek różniczkowy i całkowy. B. Demidowicz - Zbiór zadań z analizy matematycznej. T 2,3 Krysicki, Włodarski - Analiza

Bardziej szczegółowo

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4. Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Granice pochodne funkcji i ich zastosowania 0 4 Liczby zespolone 6 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Analiza Matematyczna część 4

Analiza Matematyczna część 4 [wersja z 1 IV 8] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 7/8 Wojciech Broniowski 1 Równania różniczkowe Definicje, klasyfikacja Równanie różniczkowe

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych

Rozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Całki krzywoliniowe skierowane

Całki krzywoliniowe skierowane Całki krzywoliniowe skierowane Zamiana całki krzywoliniowej skierowanej na całkę pojedyńcza. Twierdzenie Greena. Zastosowania całki krzywoliniowej skierowanej. Małgorzata Wyrwas Katedra Matematyki Wydział

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

SIMR 2012/2013, Analiza 2, wykład 14,

SIMR 2012/2013, Analiza 2, wykład 14, IMR 2012/2013, Analiza 2, wykład 14, 2012-06-03 Całka powierzchniowa efinicja gładkiego płata powierzchni Gładkim płatem powierzchni nazywamy zbiór : = {(x, y, z) : z = g(x, y), (x, y) }, gdzie R 2 jest

Bardziej szczegółowo

Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia

Analiza na rozmaitościach Calculus on Manifolds. Matematyka Poziom kwalifikacji: II stopnia Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Przedmiot obowiązkowy dla wszystkich specjalności Rodzaj zajęć: Liczba godzin/tydzień: Liczba punktów: wykład, ćwiczenia W, C 5 ECTS PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

2 Całkowanie form różniczkowych i cykle termodynamiczne

2 Całkowanie form różniczkowych i cykle termodynamiczne 2 Całkowanie form różniczkowych i cykle termodynamiczne 2.1 Definicja całki z formy różniczkowej ymbol ω oznacza całka z formy ω po obszarze Ω. To jak praktycznie obliczyć Ω taką całkę zależy jakiego stopnia

Bardziej szczegółowo

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Przestrzenie liniowe Granice, pochodne funkcji i ich

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Przestrzenie liniowe Granice, pochodne funkcji i ich Spis treści Macierze wyznaczniki równania liniowe Geometria analityczna 7 Przestrzenie liniowe 0 4 Granice pochodne funkcji i ich zastosowania 5 Liczby zespolone 8 6 Wielomiany 7 Całki nieoznaczone 8 Zastosowania

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej

Bardziej szczegółowo

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA

24. CAŁKA POWIERZCHNIOWA ZORIENTOWANA 4. CAŁA POWIERZCHNIOWA ZORIENTOWANA Płat powierzchniowy gładki o równaniach parametrycznych: x = x( u, v ), y = y( u, v ), z = z( u, v ),, (u,v) w którym rozróżniamy dwie jego stron dodatnią i ujemną.

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

opracował Maciej Grzesiak Analiza wektorowa

opracował Maciej Grzesiak Analiza wektorowa opracował Maciej Grzesiak Analiza wektorowa 1. Funkcje wektorowe 1.1. Funkcje wektorowe na płaszczyźnie Wektor r = x i + y j nazywamy wektorem wodzącym punktu (x, y). Jeśli x oraz y są funkcjami czasu,

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE WÓCH ZMIENNYCH RZECZYWISTYCH efinicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą d

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Całki krzywoliniowe wiadomości wstępne

Całki krzywoliniowe wiadomości wstępne Całki krzywoliniowe wiadomości wstępne Łuk na płaszczyźnie to zbiór punktów (x, y o współrzędnych x = x(t, y = y(t, gdzie (x(t, y(t są funkcjami ciągłymi określonymi na przedziale bez punktów wielokrotnych.

Bardziej szczegółowo

Spis wszystkich symboli

Spis wszystkich symboli 1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon

Bardziej szczegółowo

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA

Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA Księgarnia PWN: Grigorij M. Fichtenholz Rachunek różniczkowy i całkowy. T. 3 Rozdział XV CAŁKI KRZYWOLINIOWE. CAŁKA STIELTJESA 1. Całki krzywoliniowe pierwszego rodzaju 543. Definicja całki krzywoliniowej

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 9. Matematyka 3, semestr zimowy 2011/2012 4 listopada 2011 W trakcie poprzedniego wykładu zdefiniowaliśmy pojęcie k-kowektora na przestrzeni wektorowej. Wprowadziliśmy także iloczyn zewnętrzny wielokowektorów

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

Całka krzywoliniowa niezorientowana Niech R 3 będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- γ taką, że

Całka krzywoliniowa niezorientowana Niech R 3 będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- γ taką, że Całka krzywoliniowa niezorientowana Niech R będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- taką, że t α, β : r t = ( t, y t, z t ) ef. Mówimy, że krzywa jest kawałkami gładka funkcja r t ma

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 30 grudnia 2013 1 Całkowanie form różniczkowych 11 Klasyczne wersje Twierdzenia Stokes a W tej części zajmiemy się interpretacją poniższych

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą

Bardziej szczegółowo

Lista 3 CAŁKI KRZYWOLINIOWE I POWIERZCHNIOWE. K cykloida c x y ds K x y x r t t t y r t t t t ) ( 2 ) + ( 2 ) = {(, ) : 1 1 = }

Lista 3 CAŁKI KRZYWOLINIOWE I POWIERZCHNIOWE. K cykloida c x y ds K x y x r t t t y r t t t t ) ( 2 ) + ( 2 ) = {(, ) : 1 1 = } Lista CAŁI RZYWOLINIOWE I POWIERZCHNIOWE Zad 1. Obliczć całki krzwoliniowe nieskierowane po wskazanch krzwch: ds a) = {(, ) : 0 1 = } + + ds = {(, ) : = r( t sin t), = r(1 cos t), 0 t } r > 0 ustalone

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

5.6 Klasyczne wersje Twierdzenia Stokes a

5.6 Klasyczne wersje Twierdzenia Stokes a Ostatecznie f = 1 r 2 f ) r 2 r r + ctg ϑ f r 2 ϑ + 1 2 f r 2 ϑ + 1 2 2 f r 2 sin 2 ϑ ϕ 2 56 Klasyczne wersje Twierdzenia Stokes a Odpowiedniość między polami wektorowymi i jednoformami lub n 1)-formami

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna II Rok akademicki: 2013/2014 Kod: MIS-1-202-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: - Poziom

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja

Bardziej szczegółowo

Analiza II.2*, lato komentarze do ćwiczeń

Analiza II.2*, lato komentarze do ćwiczeń Analiza.2*, lato 2018 - komentarze do ćwiczeń Marcin Kotowski 5 czerwca 2019 1 11 2019, zadanie 2 z serii domowej 1 Pokażemy, że jeśli f nie jest stała, to całka: f(x f(y B B x y dx dy jest nieskończona.

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni

Bardziej szczegółowo

Geometria Analityczna w Przestrzeni

Geometria Analityczna w Przestrzeni Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012. Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy, że P : D R i Q: D R są funkcjami ciągłymi określonymi

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011

Wykład 11 i 12. Matematyka 3, semestr zimowy 2011/ i 18 listopada 2011 Wykład 11 i 12 Matematyka 3, semestr zimowy 2011/2012 15 i 18 listopada 2011 Zanim przejdziemy do formułowaniu lematu Poincaré musimy zdefiniować pojęcie transportu formy. Dyskutowaliśmy już wcześniej

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo