Formułowanie zadań decyzyjnych przebiega w następujących etapach: Przykładowe zagadnienia programowania liniowego
|
|
- Natalia Czech
- 6 lat temu
- Przeglądów:
Transkrypt
1 Decyzje podejmujemy w wielu óżych sytucjch. Sytucje te zywmy sytucjmi decyzyjymi, osoę podejmującą decyzje decydetem. Wuki, w jkich dził decydet ie pozwlją podjęcie decyzji dowolej. Decyzję zgodą z wukmi ogiczjącymi zywmy decyzją dopuszczlą. Wśód ziou decyzji dopuszczlych moż wyóżić decyzję optymlą. Jej wyó wymg pzyjęci okeśloego kyteium, wg któego ozóżimy decyzje lepsze i gosze. Kyteium to zywmy kyteium wyou (ocey). Zdie, w któym zówo fukcj celu, jk i wuki ogiczjące są liiowe zywmy liiowym zdiem decyzyjym (pogmem liiowym). Fomułowie zdń decyzyjych pzeieg w stępujących etpch: Okeśleie, jkie wielkości mją yć wyzczoe ozczeie zmieych decyzyjych Ustleie pmetów zdi Sfomułowie wuków ogiczjących dą decyzję w postci ówń/ieówości Wyzczeie celu, jki chce osiągąć decydet sfomułowie fukcji celu Uiweslą metodą ozwiązywi zdń pogmowi liiowego jest lgoytm simple. Gdy w modelu występują dwie zmiee decyzyje, możemy go ozwiązć ówież metodą geometyczą. W pzypdku, gdy w modelu występują więcej iż dwie zmiee decyzyje, le tylko dw ogiczei, moż zdie ozwiązć wykozystując zleżość między pogmem piewotym dulym (w pogmie dulym ędą wówczs dwie zmiee decyzyje i moż ędzie go ozwiązć metodą geometyczą). Pzykłdowe zgdiei pogmowi liiowego I. Optymly wyó sotymetu podukcji. Zkłd może wypodukowć wyoów. Do ich podukcji są wykozystywe óże śodki podukcji. Część z ich () dostęp jest w ilościch ogiczoych. Pmety modelu mtemtyczego: ij zużycie i-tego śodk podukcji wytwozeie jedostki j-tego wyou (i=,,...,, j=,,...,); i posidy zsó i-tego śodk podukcji; c j ce lu zysk jedostkowy ze spzedży j-tego wyou; Nleży okeślić, jkie wyoy i w jkich ilościch podukowć, y ie pzekczjąc posidych zsoów śodków podukcji (i ewetulie spełijąc dodtkowe ogiczei dot. stuktuy podukcji) zmksymlizowć pzychód (lu zysk) z ich spzedży. Zmiee decyzyje: wielkości podukcji wyoów: j wielkość podukcji j tego wyou;,, 0 c c c m Piewsze wuków dotyczy ogiczoych zsoów śodków podukcji (ogiczei stuktule modelu) Wuki ieujemości zmieych decyzyjych,,..., 0 są zywe ogiczeimi zegowymi Ply podukcji spełijące ogiczei stuktule i zegowe są ozwiąziem dopuszczlym. Rozwiązie optymle jest tym (tymi) spośód ozwiązń dopuszczlych, dl któego (dl któych) fukcj celu pzyjmuje wtość jwiększą. Opcowie teoetycze podstwie: Kol Kukuł (ed.), w pzykłdch i zdich. Wydwictwo Nukowe PWN, Wszw 996
2 II. Model mieszki (diety) Pzedmiotem zgdiei optymlego mieszki jest ustleie, jkie ilości podstwowych suowców leży zkupić (zmieszć), y otzymć podukt o pożądym skłdzie pzy możliwie jiższych kosztch zkupu suowców. Szczególym witem polemu mieszek jest zgdieie diety. Złóżmy, że mmy do dyspozycji poduktów żywościowych, w któych powio yć zwte skłdików odżywczych. Pmety modelu mtemtyczego: ij zwtość i-tego skłdik odżywczego w jedostce j-tego poduktu (i =,,..., ; j =,,..., ); i tzw. om żywiei, czyli miiml (mksyml) ilość i-tego skłdik, jkiego leży dostczyć; c j ce j-tego poduktu żywościowego; Nleży okeślić tkie wielkości zkupu poszczególych poduktów żywościowych, któe zpewią ogizmowi iezęde skłdiki odżywcze i spełią ewetulie pewe dodtkowe ogiczei, ówocześie koszt ich zkupu ędzie możliwie jiższy. Zmiee decyzyje: ilości poduktów jkie leży zkupić: j wielkość zkupu j tego poduktu,, 0 c c c mi UWAGA: W ou powyższych modelch wszystkie ogiczei stuktule mją te sm zk. Zgdieie moż oczywiście komplikowć. W pktyce często spotyk się zgdiei pogmowi liiowego, typu mieszego, tz. część wuków ogiczjących jest typu, lu =. III. Wyó pocesów techologiczych (zgdieie ozkoju) Zkłd może wypodukowć wyoów w ilościch,,...,. Do wytwzi tych wyoów moż stosowć pocesów techologiczych. Stosując j-ty poces z jedostkową itesywością (w skli jedostkowej jede z) uzyskuje się poszczególe podukty w ilościch ij i poosi koszty c j. Nleży tk doć pocesy techologicze, y wytwozyć potzee ilości wyoów pzy jmiejszych kosztch. Zmiee decyzyje: j - itesywość, z jką powiie yć stosowy j-ty poces techologiczy,, 0 c c c Rozwiązie optymle jest tym (tymi) spośód ozwiązń dopuszczlych, dl któego (dl któych) fukcj celu pzyjmuje wtość jmiejszą. mi
3 Zdie Pzedsięiostwo podukuje dw wyoy: W i W. Do ich podukcji zużyw się m. i. dw limitowe suowce S i S. N jedą jedostkę wyou W zużyw się jed. suowc S oz 8 jed. suowc S, tomist jedostkę wyou W zużyw się 4 jed. suowc S oz 8 jed. suowc S. Pzedsięiostwo posid 480 jed. suowc S oz 640 jed. suowc S. Zysk jedostkowy ze spzedży gotowych wyoów wyosi 50 zł dl wyou W oz 0 zł dl wyou W. Widomo ówież, że wyou W powio się podukowć ie więcej iż wyou W.. Ile leży podukowć wyou W, ile W, y ie pzekczjąc limitów zużyci suowców zmksymlizowć zysk ze spzedży wyoów? Zudowć model mtemtyczy zgdiei i ozwiązć go metodą geometyczą.. Uwukowi ykowe spwiły, że pzedsięiostwo mogło podieść ceę wyou W, co spowodowło wzost jedostkowej zyskowości tym wyoie do 0 zł jedostce. Czy zmusi to pzedsięiostwo do koekty optymlego plu podukcji? Zdie Pzedsięiostwo podukuje dw wyoy: W i W. W pocesie podukcji tych wyoów zużyw się wiele śodków, spośód któych dw są limitowe. Limity te wyoszą: śodek I jedostek, śodek II jedostek. Nkłdy limitowych śodków jedostkę wyoów W i W podo w tlicy: Śodki podukcji Jedostkowe kłdy W W I 6 4 II 6 0 Widomo tkże, że zdolości podukcyje jedego z wydziłów stowiącego wąskie gdło pocesu podukcyjego ie pozwlją podukowć więcej iż 3'000 szt. wyoów W oz 4'000 szt. wyoów W. Dodtkowo, dziłjąc w mch pzedsięiostw komók lizy yku ustlił optymle popocje podukcji, któe ksztłtują się odpowiedio jk 3:. Ce spzedży jedostki wyou W wyosi 30 zł, wyou W 40 zł. Ustlić optymle ozmiy podukcji wyoów gwtujące mksymlizcję pzychodu ze spzedży pzy istiejących ogiczeich. Zudowć model mtemtyczy zgdiei i ozwiązć go metodą geometyczą. Zdie 3 W gospodstwie hodowlym spoządz jest mieszk pszow dl tzody chlewej z dwóch poduktów: P i P. Mieszk pszow m dostczyć tzodzie chlewej pewych skłdików odżywczych S, S, S 3 w ilościch ie miejszych iż okeśloe miim. Zwtość skłdików odżywczych w jedostce poszczególych poduktów, cey poduktów tkże miimle ilości skłdików podo w teli: Skłdiki Zwtość skłdik w kg poduktu Miiml ilość P P skłdik S S S Ce (w zł) 6 9 W jkich ilościch leży zkupić podukty P i P, y dostczyć tzodzie chlewej skłdików odżywczych S, S, S 3 w ilościch ie miejszych iż miim okeśloe w teli i y koszt zkupu/spoządzei mieszki ył miimly? 3
4 Zdie 4 Gospodstwo ole powdzi hodowlę ydł ogtego. Zwiezętom leży w pożywieiu dostczyć m.i. skłdik odżywczego A w ilości co jmiej 60 jed., zwtego w poduktch P i P służących jko psz. Podukty P i P zwieją tkże pewe ilości skłdików B i C. Ze względu szkodliwe dziłie tych skłdików, zwiezęt powiy otzymywć je w ilościch ogiczoych: skłdik B co jwyżej 40 jedostek, skłdik C co jwyżej 36 jedostek. Skłdiki Zwtość skłdik w jedostce poduktu P P A 3 3 B 0 4 C 6 9 Ce (w zł) 6 9 Wiedząc podto, że w diecie powio się zleźć co jmiej 0 jedostek poduktu P okeślić wielkość zkupu poduktów P i P, y zelizowć wymgi co do skłdu pszy i y koszt zkupu ył miimly. Zdie 5 Ttk otzymł zmówieie wykoie co jmiej 300 kompletów elek. Kżdy komplet skłd się z 7 elek o długości 0,7 m oz 4 elek o długości,5 m. W jki sposó powio yć zelizowe zmówieie, y odpd powstły w pocesie cięci dłużyc o długości 5, m ył miimly? Ile wyiesie wielkość odpdu pzy optymlym cięciu? Zdie 6 Kliet dostczył do ttku tcicę o długości 560 cm, zlecjąc pocięcie jej tk, y otzymć 300 desek o długości 40 cm i 390 desek o długości 60 cm. W jki sposó leży pociąć posidy suowiec, y zelizowć zmówieie miimlizując odpd? Podć wielkość miimlego odpdu. Ile tcic o długości 560 cm ędzie potzeych do zelizowi zmówiei? Jk zmiei się odpd, jeżeli zmówieie zostie zwiększoe o desek o długości 60 cm? 4
5 Zdie 7 Rfiei opy ftowej typu pliwowo-olejowego zkupuje do pzeou dw gtuki opy: R i R, w cech odpowiedio 7 i 4 zł z jedostkę pzeoową. Wycikowy poces techologiczy odywjący się w wieży ektyfikcyjej dje tzy podukty. Z jedostki pzeoowej opy R otzymuje się 6 hl ezyy, 0 hl oleju pędowego i 4 hl pozostłości. Z jedostki pzeoowej R otzymuje się 48 hl ezyy, 0 hl oleju pędowego i 4 hl pozostłości. Ile leży zkupić opy R i R, y wypodukowć co jmiej hl ezyy oz hl oleju pędowego pzy miimlym koszcie yci suowc? Nleży tkże wziąć pod uwgę, że zdolość pzeoow wieży ektyfikcyjej miezoą łącz ojętością wszystkich poduktów wyosi hl.. Zudowć model mtemtyczy zgdiei.. Rozwiązć go metodą geometyczą. 3. Okeślić pocetowo stopień wykozysti zdolości podukcyjej wieży ektyfikcyjej pzy optymlych ozmich zkupu poszczególych odzjów opy. Zdie 8 W gospodstwie doświdczlym ustloo, że km dl zwieząt jest odpowiedi tylko wówczs, gdy kżde z ich otzym w cji dzieej ie miej iż: 60 j. iłk, 0 j. cuków oz 40 j. tłuszczów. Zwtość poszczególych skłdików w dwóch poduktch pzedstwi telk. Skłdiki P P Biłko 0 0 Cuky 0 40 Tłuszcze 0 40 Ce jedego kg kmy wyosi: P -5 zł, P -6 zł. Nleży ustlić jką ilość kmy kżdego odzju leży podwć dzieie, y zchowć jej optymly skłd oz zmiimlizowć koszt zkupu. Zdie 9 Spółdzieli mleczsk wytwz joguty owocowe i seki homogeizowe. Do wytwozei 00 opkowń jogutu zużyw się 00 l mlek, do 00 opkowń seków 50 l mlek. Mleczi może pzezczyć te wyoy ie więcej iż l mlek. Joguty i seki są kofekcjoowe tej smej tśmie, dltego też mleczi może pełić co jwyżej 9000 opkowń jogutu i 7000 opkowń sek. Sklepy zmwiją jogutu,5 z tyle co sek. Zkłdjąc, że zyski jedostkowe ou wyoch są jedkowe, ustlić pogm podukcji dl spółdzieli mleczskiej.. Ile leży podukowć seków, ile jogutów y zpewić spółdzieli mksymly zysk?. Ile wyosi optymly zysk spółdzieli? 3. Czy pzy optymlej stuktuze podukcji mleczi zużyje cły posidy zsó mlek? 5
Mamy nadzieję, że zestaw, który przygotowaliśmy maturzystom, spełni swoje zadanie i przyczyni się do egzaminacyjnych sukcesów.
Zestw wzoów mtemtyzy zostł pzygotowy dl potze egzmiu mtulego z mtemtyki oowiązująej od oku 00. Zwie wzoy pzydte do ozwiązi zdń z wszystki dziłów mtemtyki, dltego może służyć zdjąym ie tylko podzs egzmiu,
Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego.
Wybre zgdiei bdń opercyjych Wykłd Metod simpleks rozwiązywi zdń progrmowi liiowego Prowdzący: dr iiż.. Zbiigiiew TARAPATA De kotktowe: e-mil: WWW: Zbigiew.Trpt@wt.edu.pl http://trpt.stref.pl tel. : 83-94-3,
Symbol Newtona liczba wyborów zbioru k-elementowego ze zbioru n elementów. Symbol Newtona
B Głut Symol Newto Symol Newto licz wyoów ziou -elemetowego ze ziou elemetów ) ( A B B B t t żd dog: odciów do góy Ile ozwiązń m ówie: 4 6 gdzie i są ieujemymi liczmi cłowitymi? 9 84 4 4 5 Licz ozwiązń
RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNKÓW RUCHU SAMOCHODU
Zbigiew LOZIA, Pio WOLIŃSI RELACJE WARTOŚCI DŁUGOŚCI DROGI HAMOWANIA I DROGI ZATRZYMANIA DLA RÓŻNYCH WARUNÓW RUCHU SAMOCHODU Seszczeie Pc pzedswi oceę długości dogi mowi i dogi zzymi smocodu (zwej kże
Zasada indukcji matematycznej. Dowody indukcyjne.
Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP
Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
Collegium Novum Akademia Maturalna
Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu
CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.
CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.
ELEMENTÓW PRĘTOWYCH. Rys.D3.1
DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu
9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
Operacje elementarne na macierzach. Rozwiązywanie układów równań metodą eliminacji Gaussa. Badanie rozwiązalności układów równań
WYKŁAD 3 Opecje elemete mciezch Rozwiązywie ukłdów ówń metodą elimicji Guss Bdie ozwiązlości ukłdów ówń Wcmy tez do ukłdów ówń liiowych lgeiczych A53 (Defiicj) Ukłdem m ówń liiowych z iewidomymi zywmy
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.
KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,
Macierze w MS Excel 2007
Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Uniwersytet Technologiczno- Humanistyczny w Radomiu Radom 2013
Uiwesytet Techologiczo- Huistyczy w Rdoiu Rdo 3 Podstwy tetyki fisowej D Zbigiew Śleszyński ted Bizesu i Fisów Międzyodowych Wydził kooiczy tudi podyploowe OWOCZ UŁUGI BIZOW Teść wykłdu: Powtók z tetyki
PROJEKT: GNIAZDO POTOKOWE
POLITEHNIK POZNŃSK WYZIŁ UOWY MSZYN I ZZĄZNI ZZĄZNIE POUKJĄ GUP ZIM-Z3 POJEKT: GNIZO POTOKOWE WYKONWY: 1. TOMSZ PZYMUSIK 2. TOMSZ UTOWSKI POWZĄY: Mg iż. Maiola Ozechowska SPIS TEŚI OZZIŁ 1. Wpowadzeie.
Scenariusz lekcji matematyki w klasie II LO
Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Katedra Fizyki SGGW 158. Ćwiczenie 158. Rząd maksimum, n = 1 Rząd maksimum, n = 2
Kted Fizyki SGGW Nzwisko... Dt... N liście... Imię... Wydził... Dzień tyg.... Godzi... Ćwiczeie die zjwisk dyfkcji pojedyczej i podwójej szczeliie Długość fli świtł lse, [m] Odległość szczeli od eku, l
Nina Bątorek-Giesa*, Barbara Jagustyn*
Ochon Śodowisk i Zsobów Ntulnych n 40, 2009. Nin Bątoek-Gies*, Bb Jgustyn* Zwtość chlou w biomsie stłej stosownej do celów enegetycznych Chloine content in solid biomss used fo powe industy Słow kluczowe:
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
PODEJMOWANIE OPTYMALNYCH DECYZJI PRODUKCYJNYCH W WARUNKACH NIEPEWNOŚCI. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków
5/ Archives o Foudry Yer 6 Volume 6 Archiwum Odlewictw Rok 6 Roczik 6 Nr PAN Ktowice PL ISSN 6-58 PODEJMOWANIE OPTYMALNYCH DECYZJI PRODUKCYJNYCH W WARUNKACH NIEPEWNOŚCI E. ZIÓŁKOWSKI Wydził Odlewictw AGH
I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH
pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA
WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (
500 1,1. b) jeŝeli w kolejnych latach stopy procentowe wynoszą odpowiednio 10%, 9% i 8%, wówczas wartość obecna jest równa: - 1 -
Zdyskotowae pzepływy pieięŝe - Pzepływy pieięŝe płatości ozłoŝoe w czasie - Pzepływy występujące w kilku óŝych okesach ie są poówywale z uwagi a zmiaę watość pieiądza w czasie - śeby poówywać pzepływy
Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać
met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe
Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.
Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,
mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,
Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł
POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA
Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zakres GIMNAZJUM
TABLICE WZORÓW I TWIERDZEŃ MATEMATYCZNYCH zkres GIMNAZJUM LICZBY Lizy turle: 0,1,,,4, Koleje lizy turle zwsze różią się o 1, zpis, +1, +, gdzie to dowol liz turl ozz trzy koleje lizy turle, Lizy pierwsze:
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM
Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej
5. Mechanika bryły sztywnej
W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik
symbol dodatkowy element graficzny kolorystyka typografia
Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /
MATEMATYKA W EKONOMII I ZARZĄDZANIU
MATEMATYA W EONOMII I ZARZĄDZANIU Wykłd - Alger iiow) eszek S Zre Wektore zywy iąg liz ) p 567) 5) itp W ekooii koszyk dór zpisuje się jko wektory Np 567) jko koszyk dór wyspie Hul Gul oŝe ozzć 5 jłek
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału
Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował:
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory
MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
Ciągi liczbowe podstawowe definicje i własności
Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym
POLITYKA OPUSTÓW CENOWYCH NA PRZYKŁADZIE PRZEDSIĘBIORSTWA GÓRNICZEGO
POLITYKA OPUSTÓW CENOWYCH NA PRZYKŁADZIE PRZEDSIĘBIORSTWA GÓRNICZEGO Driusz FUKSA Streszczeie: W rtykule zprezetowo zgdiei związe z modelowiem rcjolego poziomu opustów ceowych oferowych odbiorcom. Dl relej
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań
MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (
CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom
Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Układy równań liniowych Macierze rzadkie
5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -
Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.
Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod
3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...
RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd
B C. Wpisz litery alfabetu w odpowiednie pola. Evo s q. Przepisz dialog, używając form skróconych.
vo s q Wpisz litey lfetu w odpowiedie pol Spółgłoski: B C Smogłoski: stio ue Hi! Nice to meet you Czy potfisz zleźć tej stoie tzy óże fomy skócoe? A Pzepisz dilog, używjąc fom skócoych u y o i e c o t
ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.
AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy
ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE
ZADANIA AUTOMATY I JĘZYKI FORMALNE AUTOMATY SKOŃCZONE DAS Deterministyczny Automt Skończony Zdnie Niech M ędzie DAS tkim że funkcj przejści: Q F ) podj digrm stnów dl M ) które ze słów nleżą do język kceptownego
do Regulaminu przyznawania środków finansowych na rozwój przedsiębiorczości w projekcie Dojrzała przedsiębiorczość
Projekt współfinnsowny przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Złącznik nr do Regulminu przyznwni środków finnsowych n rozwój przedsięiorczości w projekcie Dojrzł przedsięiorczość
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
PROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybrane schematy i tablice z PN-83/B :
ĆWICZENIE PROJEKTOWE NR 4 POSADOWIENIE NA PALACH Wybae schematy i tablice z PN-83/B-048 : http://www.uwm.edu.pl/edu/piotsokosz/mg.htm UWAGA! Rysuki ie są w skali!!! N = 900 kn M = 500 knm G, I L =0.3 0.0m
Rozwiązywanie układów równań liniowych (1)
etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych etody dokłde pozwlą uzyskie rozwiązi w skończoe liczbie kroków obliczeiowych.
Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.
Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce
SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE
Publikcj współfisow ze środków Uii Europejskiej w rmch Europejskiego Fuduszu Społeczego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE dr iż Ryszrd Krupiński
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ
I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów
R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, 21083. Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10
Zdnie. Zkłd ubezpieczeń n życie plnuje zbudownie portfel ubezpieczeniowego przy nstępujących złożenich: ozwiąznie. Przez P k będę oznczł wrtość portfel n koniec k-tego roku. Szukm P 0 tkie by spełnił:
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0
GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa
/ WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE
PODSTAWOWE ZAGADNIENIA METODOLOGICZNE. Wprowadzeie W ekoomii i aukach o zarządzaiu obserwuje się tedecję do ilościowego opisu zależości miedzy zjawiskami ekoomiczymi. Umożliwia to - zobiektywizowaie i
L.Kowalski zadania ze statystyki matematycznej-zestaw 1 ZADANIA - ZESTAW 1
Zdie Zmie losow X m rozkłd N(; Obliczyć: P(, < X
Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej
Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci
Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa
Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut
ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ę Ź ź ń ć ź ń ć ź ń ź ć ń ć ć ć ć Ł Ł ń Ę ć ć ć ń ć ć ć ć Ź ć Ł ć ć Ę ć Ą Ą ć Ę Ą ć ń ź ź ń ć Ę ć ć ć Ś ć ć Ż ć ć Ą ć ć ć ć Ś ć ź Ę ć ć ń ć ć ć ć ć ć Ś ć ć ć ć ń ć ń ź
MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic
MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
Ciągi i szeregi liczbowe
Ciągi i szeregi liczbowe Defiicj. Jeżeli kżdej liczbie turlej przyporządkow zostł jkś liczb rzeczywist, to mówimy, że zostł określoy ciąg liczbowy (ieskończoy). Formlie ozcz to, że ciąg liczbowy jest fukcją
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji
KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,
Zadania. I. Podzielność liczb całkowitych
Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań
KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni
Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce
Młgorzt Żk Zpisne w gench czyli o zstosowniu mtemtyki w genetyce by opisć: - występownie zjwisk msowych - sznse n niebieski kolor oczu potomk - odległość między genmi - położenie genu n chromosomie Rchunek
ELEMENTY MATEMATYKI FINANSOWEJ. Wprowadzenie
ELEMENTY MATEMATYI FINANSOWEJ Wpowadzeie Pieiądz ma okeśloą watość, któa ulega zmiaie w zależości od czasu, w jakim zostaje o postawioy do aszej dyspozycji. Watość tej samej omialie kwoty będzie ia dziś
WARTOŚĆ PIENIĄDZA W CZASIE
WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość
a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n
CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły
INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?
INSTRUKCJA - Jk rozwiązywć zdni wysoko punktowne? Mturzysto! Zdni wysoko punktowne to tkie, z które możesz zdobyć 4 lub więcej punktów. Zdni z dużą ilość punktów nie zwsze są trudniejsze, często ich punktcj