DYNAMICZNE MODELE EKONOMETRYCZNE

Wielkość: px
Rozpocząć pokaz od strony:

Download "DYNAMICZNE MODELE EKONOMETRYCZNE"

Transkrypt

1 DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólopolskie Semiaium Naukowe, 4 6 wześia 2007 w Touiu Kateda Ekoometii i Statystyki, Uiwesytet Mikołaja Kopeika w Touiu Akademia Ekoomicza w Kakowie O kwatylowym fukcjoale asymetii ozkładu wektoa losowego w badaiach szeegów fiasowych 1 Wpowadzeie Odstępstwo wielowymiaowego ozkładu pawdopodobieństwo od ustaloego pojęcia symetii okeśla się miaem skośości ozkładu Pzez symetię a ogół ozumie się własość obiektu polegającą a tym, że istieje pewe óże od tożsamościowego pzekształceie, któe odwzoowuje day obiekt a iego samego Zazaczmy, że w pzypadku wielowymiaowego ozkładu pawdopodobieństwa wykozystuje się wiele 1 óżiących się wzajemie pojęć wielowymiaowej symetii, któe spowadzają się do zwykłego pojęcia symetii w pzypadku jedowymiaowym tz symetii zwieciadlaej Skośość wielowymiaowego ozkładu staowi o częstości wychylaia się watości wielowymiaowej zmieej losowej epezetującej układ ekoomiczy o okeśloy wekto od jej cetum Zdaiem autoa w wielu pzypadkach jej miaę moża itepetować w kategoiach zewętzej siły działającej a układ popzez aalogię z kształtem admoskiej wydmy oaz siłą wiejącego wiatu Skośość populacji wpływa m i a jakość aalizy czyikowej, aalizy dyskymiacyjej, użyteczość mia zależości ozkładów bzegowych, szybkość zbieżości estymatoów położeia i ozzutu oaz ich itepetacje Niiejszy atykuł ma a celu pzedstawieie możliwości pomiau odstępstwa wielowymiaowego ozkładu od symetii cetalej 2 za pomocą iepaametyczego fukcjoału asymetii idukowaego pzez stosowie wybae 1 Wato zapozać się z pacą Seflig (2006) 2 Mówimy, że wekto losowy X ma ozkład cetalie symetyczy wokół m jeżeli X-θ= θ -X, gdzie symbol = ozacza ówość ozkładów

2 130 pojęcie wielowymiaowego kwatyla Popoujemy zmodyfikoway fukcjoał asymetii wykozystujący fukcję głębi pojekcyjej W pacy pokazujemy wybae statystycze własości fukcjoału a pzykładzie symulacji oaz a pzykładzie empiyczym Pzywołujemy wyiki własych badań wskazujące, że w pewych sytuacjach jego statystycze własości są lepsze od oygialej popozycji Chaudhui ego i Koltchiski ego, któzy wykozystywali pojęcie kwatyla pzestzeego W pacy B d 1 ( 0) ozacza kulę jedostkową, S d 1 ( 0) ozacza sfeę o pomieiu o śodku w pukcie 0, Δ( S) jest miaą Lebesque a zbiou miezalego S, { 1,, d X = X X } ozacza - elemetową póbę z X, BP( T, X ) to pukt załamaia Hubea estymatoa T z - elemetowej póby, x ozacza ajwiększą liczbę całkowitą ie większą od x 2 Wybae kocepcje wielowymiaowego kwatyla Kwatyle pzestzee (geometycze) wpowadzili iezależie Koltchiski (1997) oaz Chaudhui (1996) uogóliając zaą defiicję jedowymiaowego kwatyla wykozystującą L 1 omę Otóż, dla jedowymiaowej zmieej losowej X, dla któej EX< i dla 0 < p < 1, jedowymiaowy p ty kwatyl moża okeślić jako każdą watość θ miimalizującą: E X θ + (2p 1)( X θ ) (1) Chaudhui uogólia powyższą defiicję tę a pzypadek Rozszeza zbió ideksów kwatyla do otwatej kuli jedostkowej B d 1 (0), aby astępie zdefiiować d wymiaowe kwatyle jako miima fomy: E[ Φ( ux-, θ ) Φ( u,x] ), (2) gdzie X i θ pzyjmują watości w omą euklidesową i, zwykłym iloczyem skalaym d oaz Φ ( u,t) = t + u,t z zwykłą W pzypadku wektoa losowego X w d o ozkładzie oaz wektoa jedostkowego u B d 1 ( 0), u ty kwatyl Q ( u ) ma zaówo kieuek jak i wielkość Łatwo pokazać że, dla każdego u B d 1 ( 0), kwatyl Q ( u) moża pzedstawić jako ozwiązaie względem x ówaia: E ( X-x) X-x = u (3) Wekto u moża itepetować jako zomalizoway pzecięty kieuek, któy tzeba pokoać, aby pzesuąć się od obsewacji X geeowaej pzez d

3 O kwatylowym fukcjoale asymetii ozkładu wektoa losowego 131 ozkład do puktu x u wszystkich obsewacjach będącego miimum (3), gdy pzeciętą biezemy po = Q x X Pukt x ( u ) okeślamy jako cetaly bądź odstający w zależości od tego czy u x jest bliska odpowiedio 0 bądź 1 Defiiowaa w obębie podejścia tzw mediaa pzestzea okeśloa jest waukiem M = Q ( 0 ) Wato zauważyć, że w pzypadku, gdy ozkład wektoa X jest cetalie symetyczy wokół M, tz X M oaz M X mają taki sam ozkład, wtedy dla fukcji zachodzi: Q Q ( u) M = ( Q ( u) M ), u B d 1 ( 0) (3) Kwatyle pzestzee są ekwiwaiate względem pzesuięć, otogoalych i homogeiczych pzekształceń skali tz mamy a uwadze pzekształceia postaci xa Ax+ b, gdzie A jest maciezą otogoalą, b jest dowolym wektoem Miaa odstawaia puktu x jest iezmieicza względem pzekształceń liiowych tz 1 1 = QX QAX+b ( x ) ( x ) Wielowymiaowe kwatyle wpowadza się także w obębie kokuecyjego i ogóliejszego do powyższego podejścia okeślaego miaem kocepcji głębi daych (patz p Dyckehoff, 2004) bądź Liu i i, 1999) W amach kocepcji ozważa się specjalą fukcje azywae statystyczymi fukcjami głębi (głębiami) służące poządkowaiu obsewacji geeowaych pzez wielowymiaowe ozkłady a zasadzie odstawaia od cetów tychże ozkładów Pukt, dla któego fukcja głębi pzyjmuje watość maksymalą okeśla się mediaą idukowaą pzez stosowie wybaą fukcję głębi W iiejszej pacy wykozystujemy tzw fukcję głębi pojekcyjej 3, któej własości badali m i Zuo (2003) oaz Zuo i i (2004) d Otóż głębia pojekcyja puktu x defiiowaa jest jako: T T T PD( x, X ) = 1+ sup u x m( u X ) σ ( u X ), (4) u = 1 gdzie m i σ to miay położeia i ozzutu w, u T X = { u T X1,, u T X } Głębia pojekcyja oaz idukowae pzez ią estymatoy położeia cetum oaz ozzutu wektoa losowego odzaczają się badzo dobymi własościami w kategoiach odpoości oaz efektywości dla szeokiej klasy populacji Głębia ta jest afiiczie iezmieicza 1 3 Zuo (2003) wykazał, że gdy pukty X są w ogólej pozycji, tz ie więcej iż d puktów z X ie leży w d 1 wymiaowej hipepłaszczyźie, to wtedy BP( PM, X ) = ( d+ 1) 2, gdzie PM ozacza mediaę pojekcyją

4 132 Najczęściej wykozystuje się odpoe m i σ takie jak mediaa (Med) bądź zmodyfikowaa mediaa odchyleia absolutego od mediay MAD : d d i { x } MAD ( x ) = Med Med( x ), (5) gdzie Medd x(( d)2 x + (( + d+ 1)2 = ( + ) 2 oaz x(1) x(2) ( ) L x ozacza upoządkoway zbió obsewacji Wykozystując kwatylową fukcję Q bądź głębię pojekcyją PD( x, ) defiiuje się tzw obszay cetale zędu (w obębie kocepcji głębi daych ich bzegi okeśla się miaem d-wymiaowych kwatyli): { } { } C () = Q (): u u, (6) PC () = x: PD(; x ) (7) W pzypadku gdy jest cetalie symetyczy, obszay cetale odzaczają się taką samą własością Wykozystując obszay cetale możemy zdefiiować tzw kzywą skali będącą zeczywistym fukcjoałem objętości obszaów cetalych a służącą do iepaametyczego opisu ozzutu wektoa losowego wokół wielowymiaowej mediay Kzywa skali defiiowaa jest jako: v() =Δ( C()), 0 < 1, (8) v% () =Δ( PC ()), 0 < 1 (9) 3 Kwatylowy fukcjoał asymetii Zdaiem autoa popozycją iepaametyczej miay wielowymiaowej skośości, a któą wato zwócić uwagę w kotekście badań oddziaływań układów ekoomiczych oaz specyfikacji modeli ekoometyczych jest tzw kwatylowy fukcjoał asymetii ukcjoał został po az piewszy wpowadzoy w obębie studiów ad pojęciem kwatyla pzestzeego a jak zobaczymy w dalszej części moża go także zdefiiować w amach kocepcji głębi daych Pzez skośość będziemy ozumieć odstępstwo od symetii cetalej Wykozystując wpowadzoą wcześiej fukcję kwatylową Q ( u)może- my zdefiiować L fukcjoał o watościach wektoowych będący ważoą śedią Q ( u): Q ( u ) m ( du ), (10) B d 1 ( 0) gdzie całkujemy względem ozkładu mdu ( ) a zbioze ideksów B d 1 ( 0) W kotekście dalszych ozważań szczególie iteesującą jest klasa mia położeia uzyskiwaa w opaciu o powyższy fukcjoał a zdefiiowaa pzez: d

5 O kwatylowym fukcjoale asymetii ozkładu wektoa losowego 133 l() = Q() u m( du), 0 < 1, (11) S d 1 ( 0) gdzie S d 1 ( 0) jest sfeą o pomieiu z śodkiem w pukcie 0 oaz mdu ( ) jest ozkładem jedostajym a tej sfeze (Zauważmy, że l( 0 ) = M ) Wato zazaczyć, że w pzypadku cetalie symetyczych ma miejsce iteesująca własość fukcjoału: l( ) M, któą wykozystuje się w kostuowaiu miay skośości Łatwo pokazać, że l ( ) jest ekwiwaiate względem pzesuięć otogoalych i homogeiczych pzekształceń skali Wektoowy fukcjoał wielowymiaowej skośości defiioway jest jako: l() M s () = 2, 0 < < 1, (12) 1/ d v () gdzie M ozacza wielowymiaową mediaę, v ( ) ozacza kzywą skali, d ozacza wymia wektoa losowego, l ( ) ozacza wpowadzoy wcześiej L fukcjoał W pzypadku cetalie symetyczych dla każdego watością fukcjoału jest wekto zeowy Ideę pomiau skośości za pomocą (13) możemy wyazić w astępujący sposób: dla każdego (0,1) badamy óżicę pomiędzy mediaą a pzeciętą puktów ależących do tego obszau cetalego, óżice takie stadayzujemy objętościami tych obszaów cetalych W opaciu o wpowadzoy fukcjoał moża uzyskać skalaą miaę skośości ozkładu w jakimkolwiek kieuku h baym od mediay M, ozważając iloczyy skalae: s (), h dla 0 < < 1 (13) Wykozystując fukcjoał (13) moża także zapopoować zeczywisty fukcjoał asymetii: S d 1 ( 0) Q( u) m( du) M s () = 2, 0 < < 1, (14) 1/ d v () oaz zeczywisty ideks asymetii: A 0< < 1 = sup s ( ) (15) Popozycja: Zauważmy, że zaówo zeczywisty fukcjoał asymetii (15) oaz ideks asymetii (16) oaz moża zdefiiować z wykozystaiem stosowie wybaej fukcji głębi p głębi pojekcyjej Za M pzyjmiemy w takim

6 134 pzypadku mediaę idukowaa pzez głębię pojekcyją PM, dla każdego (0,1) badamy óżicę pomiędzy pzeciętą puktów wewątz obszau cetalego zędu a mediaą PM Rozważmy miaowicie: s% W( x) mp( dx) PM PC ( p) ( p) = 2 1/ d v% ( p), 0 < p < 1, (16) gdzie, PC ( p ) to pojekcyjy obsza cetaly zędu, m ( dx) ozacza miaę p jedostają a PC ( p ), PM ozacza idukowaą pzez głębię pojekcyją mediaę, W ( ) właściwą dla zagadieia fukcję wagową p W ( x) = x Popooway fukcjoał asymetii dzięki własościom głębi pojekcyjej i własościom idukowaych pzez ią obszaów cetalych jest afiiczie iezmieiczy tz ie zależy od pzyjętego w badaiu układu współzędych Umożliwia iepaametyczy pomia asymetii populacji ie posiadającej mometów Moża pokazać, że fukcjoał (17) z póby jest moco zgodym w sesie odległości Kołmogoowa estymatoem odpowiedika w populacji p 4 Własości popoowaego fukcjoału asymetii W celu spawdzeia wybaych własości (17) pzepowadzoo badaia symulacyje Geeowao miaowicie po 100 pób 100 elemetowych z dwuwymiaowych ozkładów (a wykesach 1-4 pokazao pzypadki a i b): a) skośego omalego i skośego T o dwóch stopiach swobody o paametach: położeia m = (0,0), ozzutu W= diag(2) 5, kształtu a = (2, 5) b) skośego omalego i skośego T o dwóch stopiach swobody o paametach: położeia m = (0,0), ozzutu W= diag(2) 5, kształtu a = ( 2, 15) c) Mashalla-Olkia o paametach l 1 = (1,1,1) i l 2 = (001,001,1) Wyiki symulacji tz oszacowae kzywe asymetii sumayczie zapezetowao a wykesie 5 Z wykesu wyika m i, że popooway fukcjoał dobze ozóżia zaówo wyszczególioe typy ozkładów (skośy omaly, skośy T, Mashalla-Olkia) jak i ozkłady ależące do tego samego typu a óżiące się paametem asymetii Dodajmy, że z powadzoych wcześiej badań wyika, że asza popozycja lepiej ozóżia pomiędzy skośymi ozkładami omalym i T aiżeli oygiala popozycja Chaudhui (1996) oaz popozycje Liu i i (1999)

7 O kwatylowym fukcjoale asymetii ozkładu wektoa losowego 135 Wykes 1 Kotuy stałej gęstości skośego Wykes 2 Kotuy stałej gęstości skośego ozkładu omalego z W = diag ( 2) 5, ozkładu T z W = diag ( 2) 5, m = ( 0,0), m = ( 0,0), a = ( 2, 5) a = ( 2, 5) Źódło: opacowaie włase Źódło: opacowaie włase Wykes 3 Kotuy stałej gęstości skośego Wykes 4 Kotuy stałej gęstości skośego ozkładu omalego z W = diag ( 2) 5, ozkładu T z W = diag ( 2) 5, m = ( 0,0), m = ( 0,0), a = ( 2, 15) a = ( 2, 15) Źódło: opacowaie włase Źódło: opacowaie włase 5 Podsumowaie Niepaametyczy i odpoy pomia stopia asymetii ozkładu opisującego wielowymiaowy układ ekoomiczy jest waży zaówo z teoetyczych jak i paktyczych względów Zdaiem autoa aszkicowaa w pacy pespektywa badań odstępstw od symetii cetalej może pzyczyić się do lepszego zozumieia stuktuy współzależości układów ekoomiczych Pzedstawioe własości popoowaego fukcjoału asymetii wykozystującego głębię pojekcyją wydają się być wystaczającym uzasadieiem dalszych studiów zagadieia

8 136 Liteatua Azzalii, A, Capitaio, A (2003), Distibutios Geeated by Petubatio of Symmety with Emphasis o a Multivaiate Skew t Distibutio, Joual Royal Statistical Society B, 65, Chaudhui, P (1996), O a Geometic Notio of Quatiles fo Multivaiate Data, Joual of the Ameica Statistical Associatio, 91, Dyckehoff, R (2004), Data Depths Satisfyig the Pojectio Popety, Allgemeies Statistisches Achiv, 88, Koltchiskii, V (1997), M-estimatio, Covexity ad Quatiles, The Aals of Statistics, 25, Kosioowski, D (2006), About Stai oce i a Capital ad Robust Aalysis of Plaa Shape, 10th Jubilee Cofeece of Iteatioal edeatio of Classificatio Societies, Uivesity of Ljubljaa, Sloveia, July Liu, R Y, Paelius, J M, Sigh, K (1999), Multivaiate Aalysis by Data Depth: Desciptive Statistics, Gaphics ad Ifeece (with discussio), The Aals of Statistics, 27, Seflig, R J (2004), Nopaametic Multivaiate Desciptive Measues Based o Spatial Quatiles, Joual of Statistical Plaig ad Ifeece, 123, Seflig, R J (2006), Multivaiate Symmety ad Asymmety, I Ecyclopedia of Statistical Scieces, Secod Editio (S Kotz, N Balakisha, C B Read ad B Vidakovic, eds), , Wiley Zuo, Y (2003), Pojectio Based Depth uctios ad Associated Medias, The Aals of Statistics, 31(5), Zuo, Y, Cui, H, Youg, D (2004), Ifluece uctio ad Maximum Bias of Pojectio Depth Based Estimatos, The Aals of Statistics, 32 (1), ,9 0,8 0,7 0,6 SK_NOR_(2,-5) SK_T_(2,-5) SK_T_(-2,-15) SK_NOR_(-2,-15) MARSH_OL_(1,1,1) MARSH_OL_(001,001,1) 0,9 0,8 0,7 0,6 AS_PRO(p) 0,5 0,4 0,3 0,5 0,4 0,3 0,2 0,2 0,1 0,1 0,0 0, p (%) Rys 5: Wyiki badań symulacyjych popoowaego fukcjoału asymetii Źódło: opacowaie włase

UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI. Tadeusz Gerstenkorn. 1. Wstęp. 2. Rozkład G. Pólyi

UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI. Tadeusz Gerstenkorn. 1. Wstęp. 2. Rozkład G. Pólyi UWAGI O WZORZE NA MOMENTY ROZKŁADU PRAWDOPODOBIEŃSTWA PÓLYI Tadeusz Gesteko Emeytoway pofeso Uiwesytetu Łódzkiego ISSN 1644-6739 e-issn 2449-9765 DOI: 10.15611/sps.2015.13.09 Steszczeie: Rozkład pawdopodobieństwa

Bardziej szczegółowo

WIELOWYMIAROWA ANALIZA SYTUACJI SPOŁECZNO-DEMOGRAFICZNEJ POLSKI

WIELOWYMIAROWA ANALIZA SYTUACJI SPOŁECZNO-DEMOGRAFICZNEJ POLSKI Studia i Mateiały. Miscellaea Oecoomicae Rok 8, N /04 Wydział Zaządzaia i Admiistacji Uiwesytetu Jaa Kochaowskiego w Kielcach 50 lat kształceia ekoomistów w Kielcach Katazya Budy, Mata Szklaska, Ja Tata

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( )

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład 0 Wprowadzenie ( ) ( ) dy x dx ( ) Rówaia óżiczkowe zwyczaje Rówaie postaci: Wykład Wpowadzeie dy x dx ( x y ( x) ) = f () Gdzie f ( x y ) jest fukcją dwóch zmieych okeśloą i ciągłą w pewym obszaze płaskim D azywamy ówaiem óżiczkowym zwyczajym

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

Metody probabilistyczne egzamin

Metody probabilistyczne egzamin Imię i azwisko:....................................................... N ideksu:.............. Metody pobabilistycze egzami Data: 30.0.209 Godzia: 3:00 Zadaie [8pkt] Podaj aksjomaty Kołmogoowa dla miay

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE

WARTOŚĆ PIENIĄDZA W CZASIE WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u

Analiza możliwości wykorzystania wybranych modeli wygładzania wykładniczego do prognozowania wartości WIG-u Zbigiew Taapaa Aaliza możliwości wykozysaia wybaych modeli wygładzaia wykładiczego do pogozowaia waości WIG-u Wydział Cybeeyki Wojskowej Akademii Techiczej w Waszawie Seszczeie W aykule pzedsawioo aalizę

Bardziej szczegółowo

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczeia - Rówaia óżicowe Rozwiązać ówaia óżicowe piewszego zędu: (a) y + y =, y = (b) y + y =!, y = Wsk Podzielić ówaie pzez! i podstawić z = y /( )! Rozwiązać ówaia óżicowe dugiego zędu: (a) + 6,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady

Bardziej szczegółowo

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja

Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VI: Metoda Mote Carlo 17 listopada 2014 Zastosowaie: przybliżoe całkowaie Prosta metoda Mote Carlo Przybliżoe obliczaie całki ozaczoej Rozważmy całkowalą fukcję f : [0, 1] R. Chcemy zaleźć przybliżoą

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

ZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ

ZWIĄZEK FUNKCJI OMEGA Z DOMINACJĄ STOCHASTYCZNĄ Studia konomiczne. Zeszyty Naukowe Uniwesytetu konomicznego w Katowicach ISSN 283-86 N 237 25 Infomatyka i konometia 2 wa Michalska Uniwesytet konomiczny w Katowicach Wydział Infomatyki i Komunikacji Kateda

Bardziej szczegółowo

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna.

Wykład 1. Elementy rachunku prawdopodobieństwa. Przestrzeń probabilistyczna. Podstawowe pojęcia. Wykład Elementy achunku pawdopodobieństwa. Pzestzeń pobabilistyczna. Doświadczenie losowe-doświadczenie (zjawisko, któego wyniku nie możemy pzewidzieć. Pojęcie piewotne achunku pawdopodobieństwa

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

Przejmowanie ciepła przy kondensacji pary

Przejmowanie ciepła przy kondensacji pary d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej

Bardziej szczegółowo

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407

Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407 Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

1. Wprowadzenie. Zygmunt Lech Warsza. Serhii Zabolotnii. Pomiary Automatyka Robotyka, ISSN , R. 22, Nr 1/2018, DOI: 10.

1. Wprowadzenie. Zygmunt Lech Warsza. Serhii Zabolotnii. Pomiary Automatyka Robotyka, ISSN , R. 22, Nr 1/2018, DOI: 10. Pomiay Automatyka Robotyka, ISSN 47-96, R., N /08, 49 56 DOI: 0.433/PAR_7/49 Zygmut Lech Wasza Sehii Zabolotii Steszczeie: Pzedstawioo sposób wyzaczaia estymatoów watości i iepewości mezuadu iekowecjoalą

Bardziej szczegółowo

MODELOWANIE ROZMYTE W ANALIZIE JAKOŚCIOWEJ Z WYKORZYSTANIEM ŚRODOWISKA OLAP

MODELOWANIE ROZMYTE W ANALIZIE JAKOŚCIOWEJ Z WYKORZYSTANIEM ŚRODOWISKA OLAP ZESZYTY AUKOWE 79-85 Adzej CHOJACKI MODELOWAIE ROZMYTE W AALIZIE JAKOŚCIOWEJ Z WYKORZYSTAIEM ŚRODOWISKA OLAP Steszczeie W efeacie pzedstawioo matematyczy detemiistyczy model stuktuy daych w śodowisku OLAP

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Statystyka matematyczna. Wykład II. Estymacja punktowa

Statystyka matematyczna. Wykład II. Estymacja punktowa Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Trójparametrowe formowanie charakterystyk promieniowania anten inteligentnych w systemach komórkowych trzeciej i czwartej generacji

Trójparametrowe formowanie charakterystyk promieniowania anten inteligentnych w systemach komórkowych trzeciej i czwartej generacji Zakład Zastosowań Techik Łączości lektoiczej (Z ) Tójpaametowe fomowaie chaakteystyk pomieiowaia ate iteligetych w systemach komókowych tzeciej i czwatej geeacji Paca : 35 Waszawa, gudzień 5 Tójpaametowe

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Egzami z Aaliz Matematczej Każde zadaie ależ ozwiązać a oddzielej, podpisaej katce! Zbadać, w jakich puktach jest óżiczkowala fukcja f (, ( + = +, (, (,), (, = (,) Zaleźć ajmiejszą i ajwiększą watość fukcji

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871

COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH. Kierunek: Finanse i rachunkowość. Robert Bąkowski Nr albumu: 9871 COLLEGIUM MAZOVIA INNOWACYJNA SZKOŁA WYŻSZA WYDZIAŁ NAUK STOSOWANYCH Kieruek: Fiase i rachukowość Robert Bąkowski Nr albumu: 9871 Projekt: Badaie statystycze cey baryłki ropy aftowej i wartości dolara

Bardziej szczegółowo

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym. 1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego

Bardziej szczegółowo

Metody badania zbieżności/rozbieżności ciągów liczbowych

Metody badania zbieżności/rozbieżności ciągów liczbowych Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne

Niezależność zmiennych, funkcje i charakterystyki wektora losowego, centralne twierdzenia graniczne Wykład 4 Niezależość zmieych, fukcje i charakterystyki wektora losowego, cetrale twierdzeia graicze Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w

Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ

POMIAR PĘTLI HISTEREZY MAGNETYCZNEJ POMAR PĘTL STEREZ MAGNETZNEJ 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DDAKTKA FZKA ĆZENA LABORATORJNE.. Opis układu pomiaowego Mateiały feomagnetyczne (feyt,

Bardziej szczegółowo

1 Twierdzenia o granicznym przejściu pod znakiem całki

1 Twierdzenia o granicznym przejściu pod znakiem całki 1 Twierdzeia o graiczym przejściu pod zakiem całki Ozaczeia: R + = [0, ) R + = [0, ] (X, M, µ), gdzie M jest σ-ciałem podzbiorów X oraz µ: M R + - zbiór mierzaly, to zaczy M Twierdzeie 1.1. Jeżeli dae

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary rozproszenia. Miary położenia. Wariancja. Średnia. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Statystyka Wzory I. Analiza struktury

Statystyka Wzory I. Analiza struktury Uiwersytet Ekooiczy w Katowicach Wzory I. Aaliza struktury 1. Miary tedecji cetralej (średie, przecięte Średia arytetycza Dla sz. ważoego Dla sz. ważoego dla z. ciągłej Dla szeregu wyliczającego: dla zieej

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

Modelowanie silnika BLDC na potrzeby diagnoistyki Część I: Model polowy

Modelowanie silnika BLDC na potrzeby diagnoistyki Część I: Model polowy Pzemysław ZULIM 1, taisław RAKOWKI 1 Politechika Waszawska, Istytut Pojazdów (1) doi:1.15199/48.17..3 Modelowaie silika BL a potzeby diagoistyki zęść I: Model polowy teszczeie. W pacy pzedstawioo poces

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE 4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi

Bardziej szczegółowo

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego ROZKŁAD ORMALY 1. Opis teoetyczny do ćwiczenia zamieszczony jest na stonie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE (Wstęp do teoii pomiaów). 2. Opis układu pomiaowego Ćwiczenie

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

Wykład 8. Prawo Hooke a

Wykład 8. Prawo Hooke a Wykład 8 Pawo Hooke a Pod działaiem apężeń ciało tałe zmieia wó kztałt. Z doświadczeń wyika, że eżeli wielkość apężeia et mieza od pewe watości, zwae gaicą pężytości, to odkztałceie et odwacale i po uuięciu

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

KATEDRA ENERGETYKI. Laboratorium Elektrotechniki UKŁAD REGULACJI PRĘDKOŚCI. Temat ćwiczenia: SILNIKA PRĄDU STAŁEGO (LEONARD TYRYSTOROWY)

KATEDRA ENERGETYKI. Laboratorium Elektrotechniki UKŁAD REGULACJI PRĘDKOŚCI. Temat ćwiczenia: SILNIKA PRĄDU STAŁEGO (LEONARD TYRYSTOROWY) KATEDRA ENERGETYKI Laboatoium Elektotechiki Temat ćwiczeia: UKŁAD REGULACJI RĘDKOŚCI SILNIKA RĄDU STAŁEGO (LEONARD TYRYSTOROWY) I. WSTĘ TEORETYCZNY 1. Chaakteystyki mechaicze silika obcowzbudego Układy

Bardziej szczegółowo

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie Rozdzał moogaf: 'Bazy Daych: Nowe Techologe', Kozelsk S., Małysak B., Kaspowsk P., Mozek D. (ed.), WKŁ 007 Rozdzał 3 Zastosowae języka SQL w statystyce opsowej Steszczee. Relacyje bazy daych staową odpowede

Bardziej szczegółowo

DOŚWIADCZENIA Z EKSPLOATACJI MEW O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ

DOŚWIADCZENIA Z EKSPLOATACJI MEW O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ Zeszyty Poblemowe Maszyy Elektycze N 3/212 (96) 97 Tomasz Węgiel, Daiusz Bokowski Politechika Kakowska, Kaków DOŚWIAZENIA Z EKSPLOATACJI MEW O ZMIENNEJ PRĘDKOŚCI OBROTOWEJ EXPLOITATION EXPERIENCES OF VARIABLE

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 2 Pawo Coulomba Jeżeli dwie naładowane cząstki o ładunkach q1 i q2 znajdują się w odległości, to siła elektostatyczna pzyciągania między nimi ma watość: F k k stała elektostatyczna k 1

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

STATYSTYKA OPISOWA PODSTAWOWE WZORY

STATYSTYKA OPISOWA PODSTAWOWE WZORY MIARY POŁOŻENIA Średia Dla daych idywidualych: STATYSTYKA OPISOWA PODSTAWOWE WZORY Q i = x lmi + i mi 1 4 j h m i mi x = 1 x i x = 1 i ẋ i gdzie ẋ i środek i-tego przedziału i liczość i- tego przedziału

Bardziej szczegółowo

Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości

Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości Daniel WACHOWIAK Zbigniew KRZEMIŃSKI Politechnika Gdańska Wydział Elektotechniki i Automatyki Kateda Automatyki Napędu Elektycznego doi:1015199/48017091 Wpływ błędów paametów modelu maszyny indukcyjnej

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 6..003 r. Zadaie. W kolejych okresach czasu t =,, 3, 4, 5 ubezpieczoy, charakteryzujący się parametrem ryzyka Λ, geeruje szkód. Dla daego Λ = λ zmiee N, N,..., N 5 są

Bardziej szczegółowo

Liczebnośd (w tys.) n

Liczebnośd (w tys.) n STATYSTYKA Statystyka bada prawidłowości w zjawiskach masowych (tz. takich, które mogą występowad ieograiczoą ilośd razy). Przedmiotem badao statyki są zbiory (populacje), których elemetami są wszelkiego

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE Edyta Macinkiewicz Kateda Zaządzania, Wydział Oganizacji i Zaządzania Politechniki Łódzkiej e-mail: emac@p.lodz.pl BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wektory Funkcje rzeczywiste wielu. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wektory Fukcje rzeczywiste wielu zmieych rzeczywistych Matematyka Studium doktorackie KAE SGH Semestr leti 2008/2009 R. Łochowski Wektory pukty w przestrzei R Przestrzeń R to zbiór uporządkowaych -ek liczb

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Statystyka opisowa - dodatek

Statystyka opisowa - dodatek Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej

Bardziej szczegółowo

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA

Ćwiczenie 2 ESTYMACJA STATYSTYCZNA Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektyczność i magnetyzm W1 1. Elektostatyka 1.1. Ładunek elektyczny. Cała otaczająca nas mateia składa się z elektonów, potonów i neutonów. Dwie z wymienionych cząstek - potony i elektony - obdazone

Bardziej szczegółowo

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2

Wykład 5 Przedziały ufności. Przedział ufności, gdy znane jest σ. Opis słowny / 2 Wykład 5 Przedziały ufości Zwykle ie zamy parametrów populacji, p. Chcemy określić a ile dokładie y estymuje Kostruujemy przedział o środku y, i taki, że mamy 95% pewości, że zawiera o Nazywamy go 95%

Bardziej szczegółowo

PROJEKT: GNIAZDO POTOKOWE

PROJEKT: GNIAZDO POTOKOWE POLITEHNIK POZNŃSK WYZIŁ UOWY MSZYN I ZZĄZNI ZZĄZNIE POUKJĄ GUP ZIM-Z3 POJEKT: GNIZO POTOKOWE WYKONWY: 1. TOMSZ PZYMUSIK 2. TOMSZ UTOWSKI POWZĄY: Mg iż. Maiola Ozechowska SPIS TEŚI OZZIŁ 1. Wpowadzeie.

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

TESTY LOSOWOŚCI. Badanie losowości próby - test serii.

TESTY LOSOWOŚCI. Badanie losowości próby - test serii. TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo