WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ PRZY CZYSTYM ZGINANIU
|
|
- Daniel Muszyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 MODELOWANIE INŻYNIERSKIE ISSN X 41, s , Gliwie 011 WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ PRZY CZYSTYM ZGINANIU PAWEŁ JASION, KRZYSZTOF MAGNUCKI Insyu Mehaniki Sosowanej, Poliehnika Poznańska pu.poznan.pl Sreszzenie. Przedmioem pray są belki rójwarswowe poddane zysemu zginaniu. Opisano i rozwiązano problem wybozenia-zmarszzenia okładziny śiskanej. Równanie równowagi wyznazono z zasady sajonarnośi ałkowiej energii poenjalnej, kórego ałką są unkje hiperbolizne. Badania numeryzne przeprowadzono dla rodziny belek o różnyh właśiwośiah mehaniznyh rdzenia. Ponado przeprowadzono badania numeryzne MES. Obiążenia kryyzne orzymane z obu meod zesawiono w abelah i na wykresah. 1. WPROWADZENIE Konsrukje rójwarswowe znane są od połowy dwudziesego wieku. Pierwsze modele eoreyzne yh konsrukji przedsawili C. Libove i S.B. Budor [4] oraz E. Reissner [6] w 1948 roku. Problemy wybozenia ogólnego oraz miejsowego konsrukji rójwarswowyh opisali w monograiah Planema [5], Volmir [8] oraz Allen [1]. Współześnie, z uwagi na rozwój ehnologii wywarzania maeriałów porowayh, pozosają przedmioem badań. Wybozenie miejsowe zginanej belki rójwarswowej objawia się zmarszzeniem okładziny śiskanej. Modelowanie ego zjawiska sprowadzono do problemu wybozenia ienkiego pasma płyy prosokąnej na podłożu sprężysym, kórego podsawy maemayzne przedsawili Vlasov i Leoniev [7]. Rozwiązania analiyzne i numeryzne MES marszzenia okładzin belek rójwarswowyh przedsawili Hadi [] oraz Koissin i inni [3]. Rdzeń belki pełni unkję podłoża sprężysego o skońzonyh wymiarah. W pray uogólniono znany od wielu la model Winklera dla podłoża sprężysego i sosowany również w opisah marszzenia okładzin belek rójwarswowyh. Belka rójwarswowa o długośi L i szerokośi b składa się z dwóh mealowyh okładzin o grubośi oraz rdzenia o grubośi wykonanego z pianki mealowej (rys. 1). Rys. 1. Belka rójwarswowa z rdzeniem z pianki mealowej
2 15 P. JASION, K. MAGNUCKI. MODEL MATEMATYCZNY WYBOCZENIA OKŁADZINY BELKI Belka na obu końah obiążona jes momenami parami sił. Założono, że w sanie kryyznym górna okładzina śiskana zmarszzy się wybozy, naomias dolna roziągana pozosanie płaska (rys. ). Rys.. Shema belki z wybozoną okładziną śiskaną Pole przemieszzeń (rys. 3) dla dowolnego punku przekroju poprzeznego belki rójwarswowej z górną okładziną wybozoną zapisano mπx u ( x, z) 0, w( x, z) w1 w( z) sin, (1) L gdzie: u ( x, z) - przemieszzenie wzdłużne, w ( x, z) - przemieszzenie poprzezne ugięie. Rys. 3. Shema przemieszzenia poprzeznego w rdzeniu i ugięia okładziny Zmarszzenie-ugięie okładziny śiskanej ( z ) jes wię w posai mπx w ( x) w x, w1 sin. () L w z są nasępująe: Warunki brzegowe dla nieznanej unkji w ( z) 1 oraz ( z) 0 z w. (3) z Odkszałenia rdzenia: u w u w w ε x 0, ε z, γ xz +. (4) x z z x x Energia odkszałenia sprężysego rdzenia L ( ) Eb 1 ν Uε x x z z xz dxdz ( ) ε + ν ε ε + ε + γ, (5) 1 ν 0 a po wprowadzeniu unkji (1) i wykonaniu ałkowania po długośi belki zapisano
3 WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ E bl / dw U w m w ( z) dz ( ) dz L 1 ν π ε 1 +, (6) 4 1 ν / gdzie: E - moduł Younga pianki rdzenia, ν - lizba Poissona pianki rdzenia. Energia odkszałenia sprężysego okładziny śiskanej () z L 4 1 d w 1 3 E J π y dx E bl m w 1 48 L 0 dx U ε, (7) gdzie E - moduł Younga maeriału okładziny, ( ) 1 J 3 y b - momen bezwładnośi 1 przekroju poprzeznego okładziny. Praa obiążenia L 1 dw 1 mπ W N dx N L w1. (8) dx 4 L 0 Z zasady sajonarnośi ałkowiej energii poenjalnej ( ) ( Uε + Uε W ) 0 δ (9) orzymano równanie różnizkowe równowagi ( z) d w 1 ν mπ k w( z) 0, gdzie k dz L, (10) kórego ałka, po uwzględnieniu warunków brzegowyh (3), jes w posai w () z 1 sinh ( C ) 1 sinh C z, gdzie 1 ν C k mπ. (11) L Ponado z zasady sajonarnośi (9) wyznazono naprężenie kryyzne N, α1 σ min + α C, (1) b C C anh( C ) gdzie: E α 1 1+ ν x, E x1 α - współzynniki, x 1, - paramer. 6 1 ν ( ) 1 Warośi naprężeń kryyznyh σ oraz współzynnika C wyznaza się numeryznie w minimalizaji wyrażenia (1). W szzególnym przypadku, gdy C << 1, anh ( C ) C, wówzas rdzeń jes klasyznym podłożem sprężysym zgodnym z modelem Winklera, zaem ( ) min α E E x 1 ( ) σ 1, Winkler + α C E J y C, (13) C 3( 1 ν ) E b gdzie - sała podłoża. 1 ν Szzegółowy opis wybozenia belek na podłożu sprężysym model Winklera przedsawił np. Żyzkowki [9]. Wskazał na podsawowe założenie doyząe proporjonalnośi obiążenia-naisku do ugięia-przemieszzenia podłoża oraz warunki brzegowe.
4 154 P. JASION, K. MAGNUCKI 3. OBLICZENIA NUMERYCZNE MODEL ANALITYCZNY Rozwiązanie analiyzne modelu belki rójwarswowej zawiera przemieszzenia poprzezne w rdzeniu (11) oraz naprężenia kryyzne wybozenia-zmarszzenia okładziny śiskanej (1). Oblizenia numeryzne wykonano dla rodziny belek o grubośi okładzin 1 mm i module Younga E MPa (sop aluminium) oraz różnyh grubośiah rdzenia 18, 8, 38, 48, 58 mm, sałej lizbie Poissona ν 0,3 i różnyh warośiah modułu Younga E 10, 50, 100 MPa. Wyniki yh oblizeń zesawiono w abelah 1, i 3. Tabela 1. Naprężenia kryyzne dla okładziny moduł rdzenia E 10 MPa [ mm] C 1,10 1,56,00,46,9 σ MPa 136,9 13,8 119,1 117, 116,6 [ ] ( ) [ MPa] σ 115,5 9,6 79,5 70,8 64,4,Winkler Tabela. Naprężenia kryyzne dla okładziny moduł rdzenia E 50 MPa [ mm] C 1,67,44 3,5 4,09 4,94 σ MPa 356,9 34,7 339,8 339, 339,1 [ ] ( ) [ MPa] σ 58,4 07,1 177,8 158, 143,9,Winkler Tabela 3. Naprężenia kryyzne dla okładziny moduł rdzenia E 100 MPa [ mm] C,04 3,03 4,08 5,15 6,1 σ MPa 551,6 540,0 538,4 538,3 538,3 [ ] ( ) [ MPa] σ 365,4 9,9 51,5 3,7 19,,Winkler Różnie między warośiami naprężeń kryyznyh wyznazone z przedsawionego modelu i klasyznego modelu Winklera są znazne. Różnie e rosną ze wzrosem grubośi rdzenia. Opraowany model rdzenia belki rójwarswowej uwzględnia roziąganie-śiskanie i śinanie, naomias w modelu Winklera uwzględnione jes jedynie roziąganie-śiskanie. 4. OBLICZENIA NUMERYCZNE MODEL MES Model MES belki rójwarswowej opraowano w sysemie ABAQUS. Okładziny dyskreyzowano prosokąnymi elemenami powłokowymi, rdzeń naomias sześiośianowymi elemenami bryłowymi (rys. 4). Górną i dolną okładzinę odsunięo od rdzenia o połowę ih grubośi. Pomiędzy okładzinami i rdzeniem zadano warunki powiązania. Model belki podparo na obu końah ak, że zablokowano przemieszzenia węzłów okładzin i rdzenia w płaszzyźnie prosopadłej do osi belki. Siły przyłożono do krawędzi okładzin: śiskająą do krawędzi górnej i roziągająą do krawędzi dolnej. Z uwagi na symerię układu zamodelowano jedynie ćwiarkę belki, zadają w dwóh płaszzyznah symerii odpowiednie warunki brzegowe.
5 WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ Rys.4. Model MES belki rójwarswowej Badania MES przeprowadzono na rodzinie belek, dla kóryh moduł Younga E 50 MPa. Pozosałe paramery jak w oblizeniah dla modelu analiyznego. Badanie polegało na wyznazeniu warośi naprężeń kryyznyh oraz posai wybozenia. Niezależnie od grubośi belki, posać wybozenia była aka sama. Dwie przykładowe belki z poałdowaną równomiernie okładziną przedsawiono na rys. 5. Rys. 5. Pierwsze posaie wybozenia belek rójwarswowyh (E 50 MPa) Warośi naprężeń kryyznyh uzyskanyh w analizie MES porównano z ymi, kóre orzymano z zaproponowanego modelu i z modelu Winklera. Porównanie, przedsawione na rys. 6, wskazuje na dużą zgodność rozwiązania analiyznego z rozwiązaniem MES. Rys. 6. Porównanie warośi naprężeń kryyznyh orzymanyh różnymi meodami (E 50 MPa)
6 156 P. JASION, K. MAGNUCKI 5. ZAKOŃCZENIE W pray przedsawiono model analiyzny opisująy wybozenie-zmarszzenie śiskanej okładziny belki rójwarswowej poddanej zysemu zginaniu. Zaproponowany model pozwolił wyznazyć warośi naprężeń kryyznyh. Orzymane w en sposób wyniki są zgodne z wynikami uzyskanymi meodą elemenów skońzonyh. Dla porównania, przedsawione zagadnienie rozwiązano, sosują klasyzny model Winklera uwzględniająy jedynie roziąganie-śiskanie. Wyniki uzyskane w en sposób znaznie odbiegają od yh, orzymanyh z zaproponowanego modelu i modelu MES, gdzie opróz roziągania-śiskania uwzględniono również eek śinania. Praa inansowana przez Miniserswo Nauki i Szkolniwa Wyższego Gran nr 0807/B/T0/010/38. LITERATURA 1. Allen HG.: Analysis and design o sruural sandwih panels. London: Pergamon Press, Hadi B.K.: Wrinkling o sandwih olumn: omparison beween inie elemen analysis and analyial soluions. Composie Sruures 001, Vol.53, p Koissin V., Shipsha A., Skvorsov V.: Ee o physial nonlineariy on loal bukling in sandwih beams. Journal o Sandwih sruures and maerials 010, Vol.1, p Libove C., Budor S.B.: A general small-deleion heory or la sandwih plaes. NACA TN 156, Planema F.J.: Sandwih onsruion: The bending and bukling o sandwih beams, plaes and shells. New York: John Wiley and Sons, Reissner E.: Finie deleions o sandwih plaes. Journal o he Aeronauial Siene 1948, 15(7), p Власов В.З., Леонтев Н.Н. Балки, пластины и оболочки на упругом основании. Физ- Мат-Лит. Москва Вольмир А.С. Устойчивость деформируемых систем. Изд. НАУКА. Москва Żyzkowski M.: Wyrzymałość elemenów konsrukyjnyh.w: Mehanika ehnizna T.IX. Warszawa: PWN, BUCKLING-WRINKLING OF FACES OF SANDWICH BEAM UNDER PURE BENDING Summary. The subje o he paper are sandwih beams under pure bending. The problem o bukling-wrinkling o a ompression ae is desribed and solved. The equaion o equilibrium is obained based on he priniple o saionary oal poenial energy. The analyial soluion o his equaion is omposed o hyperboli unions. Numerial alulaions are realized or a amily o sandwih beams wih dieren mehanial properies o he ore. Moreover, FEM invesigaions are realized. Resuls o boh mehods are ompared and presened in ables and igures.
MODELOWANIE WYBOCZENIA LOKALNEGO OKŁADZINY KOŁOWEJ PŁYTY SANDWICZOWEJ
MOELOWANIE INŻYNIERSKIE nr 45,. 4, rok 0 ISSN 896-77X MOELOWANIE WYBOCZENIA LOKALNEGO OKŁAZINY KOŁOWE PŁYTY SANWICZOWE Paweł asion a, Kryso Magnuki b Insyu Mehaniki Sosowanej, Poliehnika Ponańska e-mail:
BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 463-468, Gliwice 2011 BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH JERZY ZIELNICA, PIOTR PACZOS Instytut Mechaniki Stosowanej,
Nośność przekroju pala żelbetowego 400x400mm wg PN-EN 1992 (EC2) Beton C40/50, stal zbrojeniowa f yk =500MPa, 12#12mm
Nośność przekroju pala żelbetowego 400400mm wg PN-EN 199 (EC) Beton C40/50, stal zbrojeniowa =500MPa, 1#1mm 5000 Czyste śiskanie bez wybozenia (4476kN, 0kNm) Śiskanie mimośrodowe =d 1 (3007kN, 08kNm) Siła
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim
Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając
STOCHASTYCZNE DRGANIA BELKI SANDWICZOWEJ WYWOŁANE OBCIĄŻENIEM RUCHOMYM. ANALIZA KORELACYJNA.
CZASOISMO INŻYNIERII ĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNA OF CIVI ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA,. XXXI, z. 61 (/1), kwieień-zerwie 1, s. 119-13 Kaarzyna MISIUREK 1 aweł ŚNIADY STOCHASTYCZNE
Rys. 1. Przekrój konstrukcji wzmacnianej. Pole przekroju zbrojenia głównego: A s = A s1 = 2476 mm 2 Odległość zbrojenia głównego: od włókien dolnych
Spis treśi 1. DANE OGÓNE 3 1.1. OPIS KONSTUKCJI WZACNIANEJ 3 1.. DANE WYJŚCIOWE 3 1.3. CECHY ATEIAŁOWE 3. NOŚNOŚĆ KONSTUKCJI PZED WZOCNIENIE 4 3. ZAKES WZOCNIENIA 5 4. WZOCNIENIE KONSTUKCJI 5 4.1. PZYJĘCIE
Dobór przekroju żyły powrotnej w kablach elektroenergetycznych
Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego
Dotyczy PN-EN :2006 Eurokod 3: Projektowanie konstrukcji stalowych Część 1-1: Reguły ogólne i reguły dla budynków
POPRAWKA do POLSKIEJ NORMY P o l s k i K o m i t e t N o r m a l i z a y j n y ICS 91.010.30; 91.080.10 PN-EN 1993-1-1:2006/AC zerwie 2009 Wprowadza EN 1993-1-1:2005/AC:2009, IDT Dotyzy PN-EN 1993-1-1:2006
DYNAMIKA KONSTRUKCJI
10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej
1. Wprowadzenie. Jan Walaszczyk*, Stanisław Hachaj*, Andrzej Barnat* Górnictwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005
Górnitwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005 Jan Walaszzyk*, Stanisław Hahaj*, Andrzej Barnat* KOMPUTEROWA SYMULACJA ZMIAN ENERGII WŁAŚCIWEJ W POLU FILAROWO-KOMOROWYM SPOWODOWANEJ POSTĘPUJĄCĄ EKSPLOATACJĄ
ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach
ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika
PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk
PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania
TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
BADANIA DOŚWIADCZALNE BELEK CIENKOŚCIENNYCH KSZTAŁTOWANYCH NA ZIMNO
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 33, s. 113-118, Gliwice 2007 BADANIA DOŚWIADCZALNE BELEK CIENKOŚCIENNYCH KSZTAŁTOWANYCH NA ZIMNO PIOTR PACZOS, PIOTR WASILEWICZ Zakład Wytrzymałości Materiałów i
Stan odkształcenia i jego parametry (1)
Wprowadzenie nr * do ćwiczeń z przedmiotu Wytrzymałość materiałów przeznaczone dla studentów II roku studiów dziennych I stopnia w kierunku nergetyka na wydz. nergetyki i Paliw, w semestrze zimowym /.
Temat III Założenia analizy i obliczeń zginanych konstrukcji żelbetowych.
Temat III Założenia analizy i oblizeń zginanyh konstrukji żelbetowyh. 1. Eektywna rozpiętość belek i płyt. omenty podporowe l e l n a 1 a Jeżeli belka lub płyta jest monolityznie połązona z podporami,
Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania
Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać
BADANIA DOŚWIADCZALNE UTRATY STATECZNOŚCI BELEK CIENKOŚCIENNYCH O PRZEKROJACH CEOWYCH
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 38, s. 147-152, Gliwice 2009 BADANIA DOŚWIADCZALNE UTRATY STATECZNOŚCI BELEK CIENKOŚCIENNYCH O PRZEKROJACH CEOWYCH PIOTR PACZOS Instytut Mechaniki Stosowanej, Politechnika
NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7
Geotehnizne zagadnienia realizaji budowli drogowyh projekt, dr inż. Ireneusz Dyka Kierunek studiów: Budownitwo, studia I stopnia Rok IV, sem.vii 19 NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Według
ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady
ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut
Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.
Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać
Przykład: Nośność podstawy słupa ściskanego osiowo. Dane. Sprawdzenie wytrzymałości betonu na ściskanie. α cc = 1,0.
Dokument Ref: Str. 1 z 4 Example: Column base onnetion under axial ompression śiskanego osiowo Dot. Euroodu EN 1993-1-8 Wykonał Ivor RYAN Data Jan 006 Sprawdził Alain BUREAU Data Jan 006 Przykład: Nośność
EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE
Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut
Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego
4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W
Wykład 4 Metoda Klasyczna część III
Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Metoda Elementów Skończonych - Laboratorium
Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie
DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH
Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego
ver b drgania harmoniczne
ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0
Analiza płyt i powłok MES
Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy
drgania h armoniczne harmoniczne
ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p
Pobieranie próby. Rozkład χ 2
Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie
Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT
TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT Marcin GAJEWSKI 1 Sanisław JEMIOŁO 2 Konsrukcje murowe, sany graniczne, elemeny kohezyjne, meoda elemenów skończonych
Opracowanie: Emilia Inczewska 1
Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1
Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.
Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych
Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
MODELOWANIE KOMPUTEROWE PRÓB PĘKANIA PRZY OBCIĄŻENIU DYNAMICZNYM
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 35, s. 3-30, Gliwice 008 MODELOWANIE KOMPUTEROWE PRÓB PĘKANIA PRZY OBCIĄŻENIU DYNAMICZNYM PIOTR FEDELIŃSKI Kaedra Wyrzymałości Maeriałów i Meod Kompuerowych Mechaniki,
ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków
Autoreferat. dr inż. Paweł Jasion
Autoreferat dr inż. Paweł Jasion Poznań, wrzesień 2015 Spis treści I. Streszczenie rozprawy habilitacyjnej...3 II. III. Wykaz opublikowanych prac naukowych lub twórczych prac zawodowych oraz informacja
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.
7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa
MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ
Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych
MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Pręt nr 0 - Element drewniany wg PN-EN 1995:2010
Pręt nr 0 - Element drewniany wg PN-EN 1995:010 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y-0.000m); 1 (x4.000m, y-0.000m) Profil: Pr 150x50 (C 0)
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Komputerowe wspomaganie nauczania przedmiotu Konstrukcje metalowe
PAWLUŚ Doroa 1 PIĘCIORAK Edya 2 Kompuerowe wspomaganie nauzania przedmiou Konsrukje mealowe WSTĘP W dobie szybkiego rozwoju ehniki, auomayzaji żyia oraz zdobyzy ehnologii informayznej i Inerneu kompuer
2. Wprowadzenie. Obiekt
POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody
MODELOWANIE SPRĘŻYSTYCH PROSTOKĄTNYCH PŁYT TRÓJWARSTWOWYCH Z RDZENIEM FALISTYM ZGINANIE I WYBOCZENIE
MOELOWAIE IŻYIERSKIE ISS 896-77X, s 5-5, Gliwie MOELOWAIE SPRĘŻYSTYCH PROSTOKĄTYCH PŁYT TRÓJWARSTWOWYCH Z RZEIEM FALISTYM ZGIAIE I WYBOCZEIE KRZYSZTOF MAGUCKI,), MARCI KRUŚ ), PAWEŁ KULIGOWSKI ), LESZEK
Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III
KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli
Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje
Pole elektryzne Dla powstania pola magnetyznego koniezny jest ruh ładunków elektryznyh, a wię przepływ prądu elektryznego, natomiast pole elektryzne powstaje zawsze w przestrzeni otazająej ładunki elektryzne,
Silniki cieplne i rekurencje
6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
STATECZNOŚĆ SPRĘŻYSTA TRÓJKĄTA HAMULCOWEGO
MODELOWNIE INŻYNIERSKIE ISSN 896-77X 44, s. 99-08, Gliwice 0 STTECZNOŚĆ SPRĘŻYST TRÓJKĄT HMULCOWEGO KRZYSZTOF MGNUCKI,), SZYMON MILECKI ), ) Instytut Mechaniki Stosowanej, Politechnika Poznańska, ) Instytut
ANALIZA NUMERYCZNA KONSTRUKCJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ
udownictwo 9 Piotr Lacki, Anna Derlatka ANALIZA NUMERYZNA KONSTRUKJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ Wprowadzenie Jednym z najstarszych materiałów używanych w konstrukcjach inżynierskich jest drewno.
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Przykład projektowania geotechnicznego pala prefabrykowanego wg PN-EN na podstawie wyników sondowania CPT metodą LCPC (francuską)
Przykład projektowania geotehniznego pala prefabrykowanego wg PN-EN 1997-1 na podstawie wyników sondowania CPT metodą LCPC (franuską) Data: 2013-04-19 Opraował: Dariusz Sobala, dr inż. Lizba stron: 8 Zadanie
BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa
BIOMECHANIKA KRĘGOSŁUPA Stateczność kręgosłupa Wstęp Pojęcie stateczności Małe zakłócenie kątowe Q Q k 1 2 2 spadek energii potencjalnej przyrost energii w sprężynie V Q k 1 2 2 Q Stabilna równowaga występuje
POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS
OBLICZENIA STATYCZNE DO AKTUALIZACJI PROJEKTÓW BUDOWLANYCH REMONTU ELEWACJI WRAZ Z BALKONAMI I NAPRAWĄ RYS ORAZ REMONTU PIWNIC W BUDYNKU MIESZKALNYM PRZY UL. ŻELAZNEJ 64 r/ KROCHMALNEJ TOM I POZ. 1 ZESTAWIENIE
Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN
Budownictwo i Architektura 12(4) (2013) 219-224 Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN 1992-1-1 Politechnika Lubelska, Wydział Budownictwa i Architektury,
Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.
Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.
Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym
Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Tomasz Żebro Wersja 1.0, 2012-05-19 1. Definicja zadania Celem zadania jest rozwiązanie zadania dla bloku fundamentowego na
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko
Węzeł nr 28 - Połączenie zakładkowe dwóch belek
Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria
DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.
Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem
ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM
Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków
Fig. 1. Interferometr A. A. Michelsona.
Efek Sagnaa dr Janusz. Kępka Wsęp. Jednym z najbardziej reklamowanyh eksperymenów był i jes eksperymen lbera brahama Mihelsona zapoząkowany w 88, i nasępnie powarzany po roku 880 we współpray z Ewardem
Informacje uzupełniające: Długości wyboczeniowe słupów: podejście ścisłe. Spis treści
nformaje uzupełniająe: Długośi wybozeniowe słupów: podejśie śisłe Podano informaje dotyząe oblizania długośi wybozeniowej słupów, uŝywanej do sprawdzenia słupa na wybozenie (z zastosowaniem smukłośi).
Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki
Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Informacje ogólne Podpora ograniczająca obrót pasa ściskanego słupa (albo ramy) może znacząco podnieść wielkość mnożnika obciążenia,
SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING
MARIUSZ DOMAGAŁA, STANISŁAW OKOŃSKI ** SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING S t r e s z c z e n i e A b s t r a c t W artykule podjęto próbę modelowania procesu
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
MODEL POWŁOKOWO-BELKOWY MES ANALIZY STATECZNOŚCI RAM PRZESTRZENNYCH O PRĘTACH CIENKOŚCIENNYCH OTWARTYCH
MODEOWANIE INŻYNIERSKIE ISSN 1896-771X 44 s. 131-138 Gliwice 212 MODE POWŁOKOWO-BEKOWY MES ANAIZY SAECZNOŚCI RAM PRZESRZENNYCH O PRĘACH CIENKOŚCIENNYCH OWARYCH SŁAWOMIR KOCZUBIEJ CZESŁAW CICHOŃ Kaedra
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,
MAKROEKONOMIA 2. Wykład 2. Dynamiczny model DAD/DAS. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 2. Dynamiczny model DAD/DAS Dagmara Mycielska Joanna Siwińska - Gorzelak Plan wykładu Uwzględnienie dynamiki w modelu AD/AS. Modelowanie wpływu zakłóceń lub zmian polityki gospodarczej
PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW
Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),
ROTOPOL Spring Meeting
ROTOPOL Spring Meeting Obliczenia wytrzymałościowe dużych zbiorników. Optymalizacja konstrukcji zbiorników. Studium przypadku. Strength analysis of big tanks. Optimization of design of tanks. Case study.
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz
1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Politechnika Poznańska 2006 Ćwiczenie nr2
Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,
WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt
WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA Laboratorium MES projekt Wykonali: Tomasz Donarski Prowadzący: dr hab. Tomasz Stręk Maciej Dutka Kierunek: Mechanika i budowa maszyn Specjalność:
MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak
MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa
Zwój nad przewodzącą płytą
Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której
Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym. Marek Klimczak
Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym Marek Klimczak Maj, 2015 I. Analiza podatnej konstrukcji nawierzchni jezdni Celem ćwiczenia jest wykonanie numerycznej analizy typowej
Politechnika Poznańska
Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Maria Kubacka Paweł Jakim Patryk Mójta 1 Spis treści: 1. Symulacja