WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ PRZY CZYSTYM ZGINANIU

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ PRZY CZYSTYM ZGINANIU"

Transkrypt

1 MODELOWANIE INŻYNIERSKIE ISSN X 41, s , Gliwie 011 WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ PRZY CZYSTYM ZGINANIU PAWEŁ JASION, KRZYSZTOF MAGNUCKI Insyu Mehaniki Sosowanej, Poliehnika Poznańska pu.poznan.pl Sreszzenie. Przedmioem pray są belki rójwarswowe poddane zysemu zginaniu. Opisano i rozwiązano problem wybozenia-zmarszzenia okładziny śiskanej. Równanie równowagi wyznazono z zasady sajonarnośi ałkowiej energii poenjalnej, kórego ałką są unkje hiperbolizne. Badania numeryzne przeprowadzono dla rodziny belek o różnyh właśiwośiah mehaniznyh rdzenia. Ponado przeprowadzono badania numeryzne MES. Obiążenia kryyzne orzymane z obu meod zesawiono w abelah i na wykresah. 1. WPROWADZENIE Konsrukje rójwarswowe znane są od połowy dwudziesego wieku. Pierwsze modele eoreyzne yh konsrukji przedsawili C. Libove i S.B. Budor [4] oraz E. Reissner [6] w 1948 roku. Problemy wybozenia ogólnego oraz miejsowego konsrukji rójwarswowyh opisali w monograiah Planema [5], Volmir [8] oraz Allen [1]. Współześnie, z uwagi na rozwój ehnologii wywarzania maeriałów porowayh, pozosają przedmioem badań. Wybozenie miejsowe zginanej belki rójwarswowej objawia się zmarszzeniem okładziny śiskanej. Modelowanie ego zjawiska sprowadzono do problemu wybozenia ienkiego pasma płyy prosokąnej na podłożu sprężysym, kórego podsawy maemayzne przedsawili Vlasov i Leoniev [7]. Rozwiązania analiyzne i numeryzne MES marszzenia okładzin belek rójwarswowyh przedsawili Hadi [] oraz Koissin i inni [3]. Rdzeń belki pełni unkję podłoża sprężysego o skońzonyh wymiarah. W pray uogólniono znany od wielu la model Winklera dla podłoża sprężysego i sosowany również w opisah marszzenia okładzin belek rójwarswowyh. Belka rójwarswowa o długośi L i szerokośi b składa się z dwóh mealowyh okładzin o grubośi oraz rdzenia o grubośi wykonanego z pianki mealowej (rys. 1). Rys. 1. Belka rójwarswowa z rdzeniem z pianki mealowej

2 15 P. JASION, K. MAGNUCKI. MODEL MATEMATYCZNY WYBOCZENIA OKŁADZINY BELKI Belka na obu końah obiążona jes momenami parami sił. Założono, że w sanie kryyznym górna okładzina śiskana zmarszzy się wybozy, naomias dolna roziągana pozosanie płaska (rys. ). Rys.. Shema belki z wybozoną okładziną śiskaną Pole przemieszzeń (rys. 3) dla dowolnego punku przekroju poprzeznego belki rójwarswowej z górną okładziną wybozoną zapisano mπx u ( x, z) 0, w( x, z) w1 w( z) sin, (1) L gdzie: u ( x, z) - przemieszzenie wzdłużne, w ( x, z) - przemieszzenie poprzezne ugięie. Rys. 3. Shema przemieszzenia poprzeznego w rdzeniu i ugięia okładziny Zmarszzenie-ugięie okładziny śiskanej ( z ) jes wię w posai mπx w ( x) w x, w1 sin. () L w z są nasępująe: Warunki brzegowe dla nieznanej unkji w ( z) 1 oraz ( z) 0 z w. (3) z Odkszałenia rdzenia: u w u w w ε x 0, ε z, γ xz +. (4) x z z x x Energia odkszałenia sprężysego rdzenia L ( ) Eb 1 ν Uε x x z z xz dxdz ( ) ε + ν ε ε + ε + γ, (5) 1 ν 0 a po wprowadzeniu unkji (1) i wykonaniu ałkowania po długośi belki zapisano

3 WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ E bl / dw U w m w ( z) dz ( ) dz L 1 ν π ε 1 +, (6) 4 1 ν / gdzie: E - moduł Younga pianki rdzenia, ν - lizba Poissona pianki rdzenia. Energia odkszałenia sprężysego okładziny śiskanej () z L 4 1 d w 1 3 E J π y dx E bl m w 1 48 L 0 dx U ε, (7) gdzie E - moduł Younga maeriału okładziny, ( ) 1 J 3 y b - momen bezwładnośi 1 przekroju poprzeznego okładziny. Praa obiążenia L 1 dw 1 mπ W N dx N L w1. (8) dx 4 L 0 Z zasady sajonarnośi ałkowiej energii poenjalnej ( ) ( Uε + Uε W ) 0 δ (9) orzymano równanie różnizkowe równowagi ( z) d w 1 ν mπ k w( z) 0, gdzie k dz L, (10) kórego ałka, po uwzględnieniu warunków brzegowyh (3), jes w posai w () z 1 sinh ( C ) 1 sinh C z, gdzie 1 ν C k mπ. (11) L Ponado z zasady sajonarnośi (9) wyznazono naprężenie kryyzne N, α1 σ min + α C, (1) b C C anh( C ) gdzie: E α 1 1+ ν x, E x1 α - współzynniki, x 1, - paramer. 6 1 ν ( ) 1 Warośi naprężeń kryyznyh σ oraz współzynnika C wyznaza się numeryznie w minimalizaji wyrażenia (1). W szzególnym przypadku, gdy C << 1, anh ( C ) C, wówzas rdzeń jes klasyznym podłożem sprężysym zgodnym z modelem Winklera, zaem ( ) min α E E x 1 ( ) σ 1, Winkler + α C E J y C, (13) C 3( 1 ν ) E b gdzie - sała podłoża. 1 ν Szzegółowy opis wybozenia belek na podłożu sprężysym model Winklera przedsawił np. Żyzkowki [9]. Wskazał na podsawowe założenie doyząe proporjonalnośi obiążenia-naisku do ugięia-przemieszzenia podłoża oraz warunki brzegowe.

4 154 P. JASION, K. MAGNUCKI 3. OBLICZENIA NUMERYCZNE MODEL ANALITYCZNY Rozwiązanie analiyzne modelu belki rójwarswowej zawiera przemieszzenia poprzezne w rdzeniu (11) oraz naprężenia kryyzne wybozenia-zmarszzenia okładziny śiskanej (1). Oblizenia numeryzne wykonano dla rodziny belek o grubośi okładzin 1 mm i module Younga E MPa (sop aluminium) oraz różnyh grubośiah rdzenia 18, 8, 38, 48, 58 mm, sałej lizbie Poissona ν 0,3 i różnyh warośiah modułu Younga E 10, 50, 100 MPa. Wyniki yh oblizeń zesawiono w abelah 1, i 3. Tabela 1. Naprężenia kryyzne dla okładziny moduł rdzenia E 10 MPa [ mm] C 1,10 1,56,00,46,9 σ MPa 136,9 13,8 119,1 117, 116,6 [ ] ( ) [ MPa] σ 115,5 9,6 79,5 70,8 64,4,Winkler Tabela. Naprężenia kryyzne dla okładziny moduł rdzenia E 50 MPa [ mm] C 1,67,44 3,5 4,09 4,94 σ MPa 356,9 34,7 339,8 339, 339,1 [ ] ( ) [ MPa] σ 58,4 07,1 177,8 158, 143,9,Winkler Tabela 3. Naprężenia kryyzne dla okładziny moduł rdzenia E 100 MPa [ mm] C,04 3,03 4,08 5,15 6,1 σ MPa 551,6 540,0 538,4 538,3 538,3 [ ] ( ) [ MPa] σ 365,4 9,9 51,5 3,7 19,,Winkler Różnie między warośiami naprężeń kryyznyh wyznazone z przedsawionego modelu i klasyznego modelu Winklera są znazne. Różnie e rosną ze wzrosem grubośi rdzenia. Opraowany model rdzenia belki rójwarswowej uwzględnia roziąganie-śiskanie i śinanie, naomias w modelu Winklera uwzględnione jes jedynie roziąganie-śiskanie. 4. OBLICZENIA NUMERYCZNE MODEL MES Model MES belki rójwarswowej opraowano w sysemie ABAQUS. Okładziny dyskreyzowano prosokąnymi elemenami powłokowymi, rdzeń naomias sześiośianowymi elemenami bryłowymi (rys. 4). Górną i dolną okładzinę odsunięo od rdzenia o połowę ih grubośi. Pomiędzy okładzinami i rdzeniem zadano warunki powiązania. Model belki podparo na obu końah ak, że zablokowano przemieszzenia węzłów okładzin i rdzenia w płaszzyźnie prosopadłej do osi belki. Siły przyłożono do krawędzi okładzin: śiskająą do krawędzi górnej i roziągająą do krawędzi dolnej. Z uwagi na symerię układu zamodelowano jedynie ćwiarkę belki, zadają w dwóh płaszzyznah symerii odpowiednie warunki brzegowe.

5 WYBOCZENIE-ZMARSZCZENIE OKŁADZINY BELKI TRÓJWARSTWOWEJ Rys.4. Model MES belki rójwarswowej Badania MES przeprowadzono na rodzinie belek, dla kóryh moduł Younga E 50 MPa. Pozosałe paramery jak w oblizeniah dla modelu analiyznego. Badanie polegało na wyznazeniu warośi naprężeń kryyznyh oraz posai wybozenia. Niezależnie od grubośi belki, posać wybozenia była aka sama. Dwie przykładowe belki z poałdowaną równomiernie okładziną przedsawiono na rys. 5. Rys. 5. Pierwsze posaie wybozenia belek rójwarswowyh (E 50 MPa) Warośi naprężeń kryyznyh uzyskanyh w analizie MES porównano z ymi, kóre orzymano z zaproponowanego modelu i z modelu Winklera. Porównanie, przedsawione na rys. 6, wskazuje na dużą zgodność rozwiązania analiyznego z rozwiązaniem MES. Rys. 6. Porównanie warośi naprężeń kryyznyh orzymanyh różnymi meodami (E 50 MPa)

6 156 P. JASION, K. MAGNUCKI 5. ZAKOŃCZENIE W pray przedsawiono model analiyzny opisująy wybozenie-zmarszzenie śiskanej okładziny belki rójwarswowej poddanej zysemu zginaniu. Zaproponowany model pozwolił wyznazyć warośi naprężeń kryyznyh. Orzymane w en sposób wyniki są zgodne z wynikami uzyskanymi meodą elemenów skońzonyh. Dla porównania, przedsawione zagadnienie rozwiązano, sosują klasyzny model Winklera uwzględniająy jedynie roziąganie-śiskanie. Wyniki uzyskane w en sposób znaznie odbiegają od yh, orzymanyh z zaproponowanego modelu i modelu MES, gdzie opróz roziągania-śiskania uwzględniono również eek śinania. Praa inansowana przez Miniserswo Nauki i Szkolniwa Wyższego Gran nr 0807/B/T0/010/38. LITERATURA 1. Allen HG.: Analysis and design o sruural sandwih panels. London: Pergamon Press, Hadi B.K.: Wrinkling o sandwih olumn: omparison beween inie elemen analysis and analyial soluions. Composie Sruures 001, Vol.53, p Koissin V., Shipsha A., Skvorsov V.: Ee o physial nonlineariy on loal bukling in sandwih beams. Journal o Sandwih sruures and maerials 010, Vol.1, p Libove C., Budor S.B.: A general small-deleion heory or la sandwih plaes. NACA TN 156, Planema F.J.: Sandwih onsruion: The bending and bukling o sandwih beams, plaes and shells. New York: John Wiley and Sons, Reissner E.: Finie deleions o sandwih plaes. Journal o he Aeronauial Siene 1948, 15(7), p Власов В.З., Леонтев Н.Н. Балки, пластины и оболочки на упругом основании. Физ- Мат-Лит. Москва Вольмир А.С. Устойчивость деформируемых систем. Изд. НАУКА. Москва Żyzkowski M.: Wyrzymałość elemenów konsrukyjnyh.w: Mehanika ehnizna T.IX. Warszawa: PWN, BUCKLING-WRINKLING OF FACES OF SANDWICH BEAM UNDER PURE BENDING Summary. The subje o he paper are sandwih beams under pure bending. The problem o bukling-wrinkling o a ompression ae is desribed and solved. The equaion o equilibrium is obained based on he priniple o saionary oal poenial energy. The analyial soluion o his equaion is omposed o hyperboli unions. Numerial alulaions are realized or a amily o sandwih beams wih dieren mehanial properies o he ore. Moreover, FEM invesigaions are realized. Resuls o boh mehods are ompared and presened in ables and igures.

MODELOWANIE WYBOCZENIA LOKALNEGO OKŁADZINY KOŁOWEJ PŁYTY SANDWICZOWEJ

MODELOWANIE WYBOCZENIA LOKALNEGO OKŁADZINY KOŁOWEJ PŁYTY SANDWICZOWEJ MOELOWANIE INŻYNIERSKIE nr 45,. 4, rok 0 ISSN 896-77X MOELOWANIE WYBOCZENIA LOKALNEGO OKŁAZINY KOŁOWE PŁYTY SANWICZOWE Paweł asion a, Kryso Magnuki b Insyu Mehaniki Sosowanej, Poliehnika Ponańska e-mail:

Bardziej szczegółowo

BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH

BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 41, s. 463-468, Gliwice 2011 BADANIA NUMERYCZNE I DOŚWIADCZALNE NOŚNOŚCI GRANICZNEJ BELEK TRÓJWARSTWOWYCH JERZY ZIELNICA, PIOTR PACZOS Instytut Mechaniki Stosowanej,

Bardziej szczegółowo

Nośność przekroju pala żelbetowego 400x400mm wg PN-EN 1992 (EC2) Beton C40/50, stal zbrojeniowa f yk =500MPa, 12#12mm

Nośność przekroju pala żelbetowego 400x400mm wg PN-EN 1992 (EC2) Beton C40/50, stal zbrojeniowa f yk =500MPa, 12#12mm Nośność przekroju pala żelbetowego 400400mm wg PN-EN 199 (EC) Beton C40/50, stal zbrojeniowa =500MPa, 1#1mm 5000 Czyste śiskanie bez wybozenia (4476kN, 0kNm) Śiskanie mimośrodowe =d 1 (3007kN, 08kNm) Siła

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

STOCHASTYCZNE DRGANIA BELKI SANDWICZOWEJ WYWOŁANE OBCIĄŻENIEM RUCHOMYM. ANALIZA KORELACYJNA.

STOCHASTYCZNE DRGANIA BELKI SANDWICZOWEJ WYWOŁANE OBCIĄŻENIEM RUCHOMYM. ANALIZA KORELACYJNA. CZASOISMO INŻYNIERII ĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNA OF CIVI ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA,. XXXI, z. 61 (/1), kwieień-zerwie 1, s. 119-13 Kaarzyna MISIUREK 1 aweł ŚNIADY STOCHASTYCZNE

Bardziej szczegółowo

Rys. 1. Przekrój konstrukcji wzmacnianej. Pole przekroju zbrojenia głównego: A s = A s1 = 2476 mm 2 Odległość zbrojenia głównego: od włókien dolnych

Rys. 1. Przekrój konstrukcji wzmacnianej. Pole przekroju zbrojenia głównego: A s = A s1 = 2476 mm 2 Odległość zbrojenia głównego: od włókien dolnych Spis treśi 1. DANE OGÓNE 3 1.1. OPIS KONSTUKCJI WZACNIANEJ 3 1.. DANE WYJŚCIOWE 3 1.3. CECHY ATEIAŁOWE 3. NOŚNOŚĆ KONSTUKCJI PZED WZOCNIENIE 4 3. ZAKES WZOCNIENIA 5 4. WZOCNIENIE KONSTUKCJI 5 4.1. PZYJĘCIE

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Dotyczy PN-EN :2006 Eurokod 3: Projektowanie konstrukcji stalowych Część 1-1: Reguły ogólne i reguły dla budynków

Dotyczy PN-EN :2006 Eurokod 3: Projektowanie konstrukcji stalowych Część 1-1: Reguły ogólne i reguły dla budynków POPRAWKA do POLSKIEJ NORMY P o l s k i K o m i t e t N o r m a l i z a y j n y ICS 91.010.30; 91.080.10 PN-EN 1993-1-1:2006/AC zerwie 2009 Wprowadza EN 1993-1-1:2005/AC:2009, IDT Dotyzy PN-EN 1993-1-1:2006

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

1. Wprowadzenie. Jan Walaszczyk*, Stanisław Hachaj*, Andrzej Barnat* Górnictwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005

1. Wprowadzenie. Jan Walaszczyk*, Stanisław Hachaj*, Andrzej Barnat* Górnictwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005 Górnitwo i Geoinżynieria Rok 29 Zeszyt 3/1 2005 Jan Walaszzyk*, Stanisław Hahaj*, Andrzej Barnat* KOMPUTEROWA SYMULACJA ZMIAN ENERGII WŁAŚCIWEJ W POLU FILAROWO-KOMOROWYM SPOWODOWANEJ POSTĘPUJĄCĄ EKSPLOATACJĄ

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

BADANIA DOŚWIADCZALNE BELEK CIENKOŚCIENNYCH KSZTAŁTOWANYCH NA ZIMNO

BADANIA DOŚWIADCZALNE BELEK CIENKOŚCIENNYCH KSZTAŁTOWANYCH NA ZIMNO MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 33, s. 113-118, Gliwice 2007 BADANIA DOŚWIADCZALNE BELEK CIENKOŚCIENNYCH KSZTAŁTOWANYCH NA ZIMNO PIOTR PACZOS, PIOTR WASILEWICZ Zakład Wytrzymałości Materiałów i

Bardziej szczegółowo

Stan odkształcenia i jego parametry (1)

Stan odkształcenia i jego parametry (1) Wprowadzenie nr * do ćwiczeń z przedmiotu Wytrzymałość materiałów przeznaczone dla studentów II roku studiów dziennych I stopnia w kierunku nergetyka na wydz. nergetyki i Paliw, w semestrze zimowym /.

Bardziej szczegółowo

Temat III Założenia analizy i obliczeń zginanych konstrukcji żelbetowych.

Temat III Założenia analizy i obliczeń zginanych konstrukcji żelbetowych. Temat III Założenia analizy i oblizeń zginanyh konstrukji żelbetowyh. 1. Eektywna rozpiętość belek i płyt. omenty podporowe l e l n a 1 a Jeżeli belka lub płyta jest monolityznie połązona z podporami,

Bardziej szczegółowo

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2) Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

BADANIA DOŚWIADCZALNE UTRATY STATECZNOŚCI BELEK CIENKOŚCIENNYCH O PRZEKROJACH CEOWYCH

BADANIA DOŚWIADCZALNE UTRATY STATECZNOŚCI BELEK CIENKOŚCIENNYCH O PRZEKROJACH CEOWYCH MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 38, s. 147-152, Gliwice 2009 BADANIA DOŚWIADCZALNE UTRATY STATECZNOŚCI BELEK CIENKOŚCIENNYCH O PRZEKROJACH CEOWYCH PIOTR PACZOS Instytut Mechaniki Stosowanej, Politechnika

Bardziej szczegółowo

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7

NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Geotehnizne zagadnienia realizaji budowli drogowyh projekt, dr inż. Ireneusz Dyka Kierunek studiów: Budownitwo, studia I stopnia Rok IV, sem.vii 19 NOŚNOŚĆ FUNDAMENTU BEZPOŚREDNIEGO WEDŁUG EUROKODU 7 Według

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Przykład: Nośność podstawy słupa ściskanego osiowo. Dane. Sprawdzenie wytrzymałości betonu na ściskanie. α cc = 1,0.

Przykład: Nośność podstawy słupa ściskanego osiowo. Dane. Sprawdzenie wytrzymałości betonu na ściskanie. α cc = 1,0. Dokument Ref: Str. 1 z 4 Example: Column base onnetion under axial ompression śiskanego osiowo Dot. Euroodu EN 1993-1-8 Wykonał Ivor RYAN Data Jan 006 Sprawdził Alain BUREAU Data Jan 006 Przykład: Nośność

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

Wykład 4 Metoda Klasyczna część III

Wykład 4 Metoda Klasyczna część III Teoria Obwodów Wykład 4 Meoda Klasyczna część III Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska D-, 5/8 el: (7) 3 6 fax: (7)

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

Metoda Elementów Skończonych - Laboratorium

Metoda Elementów Skończonych - Laboratorium Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

ver b drgania harmoniczne

ver b drgania harmoniczne ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0

Bardziej szczegółowo

Analiza płyt i powłok MES

Analiza płyt i powłok MES Analiza płyt i powłok MES Jerzy Pamin e-mails: JPamin@L5.pk.edu.pl Podziękowania: M. Radwańska, A. Wosatko ANSYS, Inc. http://www.ansys.com Tematyka zajęć Klasyfikacja modeli i elementów skończonych Elementy

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A

Bardziej szczegółowo

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT Marcin GAJEWSKI 1 Sanisław JEMIOŁO 2 Konsrukcje murowe, sany graniczne, elemeny kohezyjne, meoda elemenów skończonych

Bardziej szczegółowo

Opracowanie: Emilia Inczewska 1

Opracowanie: Emilia Inczewska 1 Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

MODELOWANIE KOMPUTEROWE PRÓB PĘKANIA PRZY OBCIĄŻENIU DYNAMICZNYM

MODELOWANIE KOMPUTEROWE PRÓB PĘKANIA PRZY OBCIĄŻENIU DYNAMICZNYM MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 35, s. 3-30, Gliwice 008 MODELOWANIE KOMPUTEROWE PRÓB PĘKANIA PRZY OBCIĄŻENIU DYNAMICZNYM PIOTR FEDELIŃSKI Kaedra Wyrzymałości Maeriałów i Meod Kompuerowych Mechaniki,

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Autoreferat. dr inż. Paweł Jasion

Autoreferat. dr inż. Paweł Jasion Autoreferat dr inż. Paweł Jasion Poznań, wrzesień 2015 Spis treści I. Streszczenie rozprawy habilitacyjnej...3 II. III. Wykaz opublikowanych prac naukowych lub twórczych prac zawodowych oraz informacja

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu. 7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Pręt nr 0 - Element drewniany wg PN-EN 1995:2010

Pręt nr 0 - Element drewniany wg PN-EN 1995:2010 Pręt nr 0 - Element drewniany wg PN-EN 1995:010 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x0.000m, y-0.000m); 1 (x4.000m, y-0.000m) Profil: Pr 150x50 (C 0)

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Komputerowe wspomaganie nauczania przedmiotu Konstrukcje metalowe

Komputerowe wspomaganie nauczania przedmiotu Konstrukcje metalowe PAWLUŚ Doroa 1 PIĘCIORAK Edya 2 Kompuerowe wspomaganie nauzania przedmiou Konsrukje mealowe WSTĘP W dobie szybkiego rozwoju ehniki, auomayzaji żyia oraz zdobyzy ehnologii informayznej i Inerneu kompuer

Bardziej szczegółowo

2. Wprowadzenie. Obiekt

2. Wprowadzenie. Obiekt POLITECHNIKA WARSZAWSKA Insyu Elekroenergeyki, Zakład Elekrowni i Gospodarki Elekroenergeycznej Bezpieczeńswo elekroenergeyczne i niezawodność zasilania laoraorium opracował: prof. dr ha. inż. Józef Paska,

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

MODELOWANIE SPRĘŻYSTYCH PROSTOKĄTNYCH PŁYT TRÓJWARSTWOWYCH Z RDZENIEM FALISTYM ZGINANIE I WYBOCZENIE

MODELOWANIE SPRĘŻYSTYCH PROSTOKĄTNYCH PŁYT TRÓJWARSTWOWYCH Z RDZENIEM FALISTYM ZGINANIE I WYBOCZENIE MOELOWAIE IŻYIERSKIE ISS 896-77X, s 5-5, Gliwie MOELOWAIE SPRĘŻYSTYCH PROSTOKĄTYCH PŁYT TRÓJWARSTWOWYCH Z RZEIEM FALISTYM ZGIAIE I WYBOCZEIE KRZYSZTOF MAGUCKI,), MARCI KRUŚ ), PAWEŁ KULIGOWSKI ), LESZEK

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje

Dla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje Pole elektryzne Dla powstania pola magnetyznego koniezny jest ruh ładunków elektryznyh, a wię przepływ prądu elektryznego, natomiast pole elektryzne powstaje zawsze w przestrzeni otazająej ładunki elektryzne,

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

STATECZNOŚĆ SPRĘŻYSTA TRÓJKĄTA HAMULCOWEGO

STATECZNOŚĆ SPRĘŻYSTA TRÓJKĄTA HAMULCOWEGO MODELOWNIE INŻYNIERSKIE ISSN 896-77X 44, s. 99-08, Gliwice 0 STTECZNOŚĆ SPRĘŻYST TRÓJKĄT HMULCOWEGO KRZYSZTOF MGNUCKI,), SZYMON MILECKI ), ) Instytut Mechaniki Stosowanej, Politechnika Poznańska, ) Instytut

Bardziej szczegółowo

ANALIZA NUMERYCZNA KONSTRUKCJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ

ANALIZA NUMERYCZNA KONSTRUKCJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ udownictwo 9 Piotr Lacki, Anna Derlatka ANALIZA NUMERYZNA KONSTRUKJI DREWNIANEJ JAKO STRUKTURY ORTOTROPOWEJ Wprowadzenie Jednym z najstarszych materiałów używanych w konstrukcjach inżynierskich jest drewno.

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Przykład projektowania geotechnicznego pala prefabrykowanego wg PN-EN na podstawie wyników sondowania CPT metodą LCPC (francuską)

Przykład projektowania geotechnicznego pala prefabrykowanego wg PN-EN na podstawie wyników sondowania CPT metodą LCPC (francuską) Przykład projektowania geotehniznego pala prefabrykowanego wg PN-EN 1997-1 na podstawie wyników sondowania CPT metodą LCPC (franuską) Data: 2013-04-19 Opraował: Dariusz Sobala, dr inż. Lizba stron: 8 Zadanie

Bardziej szczegółowo

BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa

BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa BIOMECHANIKA KRĘGOSŁUPA Stateczność kręgosłupa Wstęp Pojęcie stateczności Małe zakłócenie kątowe Q Q k 1 2 2 spadek energii potencjalnej przyrost energii w sprężynie V Q k 1 2 2 Q Stabilna równowaga występuje

Bardziej szczegółowo

POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS

POZ. 1 ZESTAWIENIE OBCIĄŻEŃ Stropy pod lokalami mieszkalnymi przy zastosowaniu płyt WPS OBLICZENIA STATYCZNE DO AKTUALIZACJI PROJEKTÓW BUDOWLANYCH REMONTU ELEWACJI WRAZ Z BALKONAMI I NAPRAWĄ RYS ORAZ REMONTU PIWNIC W BUDYNKU MIESZKALNYM PRZY UL. ŻELAZNEJ 64 r/ KROCHMALNEJ TOM I POZ. 1 ZESTAWIENIE

Bardziej szczegółowo

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN Budownictwo i Architektura 12(4) (2013) 219-224 Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN 1992-1-1 Politechnika Lubelska, Wydział Budownictwa i Architektury,

Bardziej szczegółowo

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. Wytrzymałość Konstrukcji I - MEiL część II egzaminu 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów. 2. Omówić pojęcia sił wewnętrznych i zewnętrznych konstrukcji.

Bardziej szczegółowo

Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym

Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Tomasz Żebro Wersja 1.0, 2012-05-19 1. Definicja zadania Celem zadania jest rozwiązanie zadania dla bloku fundamentowego na

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko

Bardziej szczegółowo

Węzeł nr 28 - Połączenie zakładkowe dwóch belek

Węzeł nr 28 - Połączenie zakładkowe dwóch belek Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria

Bardziej szczegółowo

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem

Bardziej szczegółowo

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM

ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Budownicwo Mariusz Poński ANALIZA ODPOWIEDZI UKŁADÓW KONSTRUKCYJNYCH NA WYMUSZENIE W POSTACI SIŁY O DOWOLNYM PRZEBIEGU CZASOWYM Wprowadzenie Coraz większe ograniczenia czasowe podczas wykonywania projeków

Bardziej szczegółowo

Fig. 1. Interferometr A. A. Michelsona.

Fig. 1. Interferometr A. A. Michelsona. Efek Sagnaa dr Janusz. Kępka Wsęp. Jednym z najbardziej reklamowanyh eksperymenów był i jes eksperymen lbera brahama Mihelsona zapoząkowany w 88, i nasępnie powarzany po roku 880 we współpray z Ewardem

Bardziej szczegółowo

Informacje uzupełniające: Długości wyboczeniowe słupów: podejście ścisłe. Spis treści

Informacje uzupełniające: Długości wyboczeniowe słupów: podejście ścisłe. Spis treści nformaje uzupełniająe: Długośi wybozeniowe słupów: podejśie śisłe Podano informaje dotyząe oblizania długośi wybozeniowej słupów, uŝywanej do sprawdzenia słupa na wybozenie (z zastosowaniem smukłośi).

Bardziej szczegółowo

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Informacje ogólne Podpora ograniczająca obrót pasa ściskanego słupa (albo ramy) może znacząco podnieść wielkość mnożnika obciążenia,

Bardziej szczegółowo

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING MARIUSZ DOMAGAŁA, STANISŁAW OKOŃSKI ** SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING S t r e s z c z e n i e A b s t r a c t W artykule podjęto próbę modelowania procesu

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

MODEL POWŁOKOWO-BELKOWY MES ANALIZY STATECZNOŚCI RAM PRZESTRZENNYCH O PRĘTACH CIENKOŚCIENNYCH OTWARTYCH

MODEL POWŁOKOWO-BELKOWY MES ANALIZY STATECZNOŚCI RAM PRZESTRZENNYCH O PRĘTACH CIENKOŚCIENNYCH OTWARTYCH MODEOWANIE INŻYNIERSKIE ISSN 1896-771X 44 s. 131-138 Gliwice 212 MODE POWŁOKOWO-BEKOWY MES ANAIZY SAECZNOŚCI RAM PRZESRZENNYCH O PRĘACH CIENKOŚCIENNYCH OWARYCH SŁAWOMIR KOCZUBIEJ CZESŁAW CICHOŃ Kaedra

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 2. Dynamiczny model DAD/DAS. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 2. Dynamiczny model DAD/DAS. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 2. Dynamiczny model DAD/DAS Dagmara Mycielska Joanna Siwińska - Gorzelak Plan wykładu Uwzględnienie dynamiki w modelu AD/AS. Modelowanie wpływu zakłóceń lub zmian polityki gospodarczej

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

ROTOPOL Spring Meeting

ROTOPOL Spring Meeting ROTOPOL Spring Meeting Obliczenia wytrzymałościowe dużych zbiorników. Optymalizacja konstrukcji zbiorników. Studium przypadku. Strength analysis of big tanks. Optimization of design of tanks. Case study.

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz

1 Charakterystyka ustrojów powierzchniowych. Anna Stankiewicz 1 Charakterystyka ustrojów powierzchniowych Anna Stankiewicz e-mail: astankiewicz@l5.pk.edu.pl Tematyka zajęć Przykłady konstrukcji inżynierskich Klasyfikacja ustrojów powierzchniowych Podstawowe pojęcia

Bardziej szczegółowo

Pręt nr 1 - Element żelbetowy wg. EN :2004

Pręt nr 1 - Element żelbetowy wg. EN :2004 Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800

Bardziej szczegółowo

Politechnika Poznańska 2006 Ćwiczenie nr2

Politechnika Poznańska 2006 Ćwiczenie nr2 Obliczanie przeieszczeń układów sayczne wyznaczalnych z zasosowanie równań pracy wirualnej. Poliechnika Poznańska 006 Ćwiczenie nr. Dla układu przedsawionego na rysunku naleŝy przyjąć przekroje pręów ak,

Bardziej szczegółowo

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA Laboratorium MES projekt Wykonali: Tomasz Donarski Prowadzący: dr hab. Tomasz Stręk Maciej Dutka Kierunek: Mechanika i budowa maszyn Specjalność:

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Zwój nad przewodzącą płytą

Zwój nad przewodzącą płytą Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której

Bardziej szczegółowo

Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym. Marek Klimczak

Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym. Marek Klimczak Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym Marek Klimczak Maj, 2015 I. Analiza podatnej konstrukcji nawierzchni jezdni Celem ćwiczenia jest wykonanie numerycznej analizy typowej

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Maria Kubacka Paweł Jakim Patryk Mójta 1 Spis treści: 1. Symulacja

Bardziej szczegółowo