Fig. 1. Interferometr A. A. Michelsona.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fig. 1. Interferometr A. A. Michelsona."

Transkrypt

1 Efek Sagnaa dr Janusz. Kępka Wsęp. Jednym z najbardziej reklamowanyh eksperymenów był i jes eksperymen lbera brahama Mihelsona zapoząkowany w 88, i nasępnie powarzany po roku 880 we współpray z Ewardem Williamsem Morleyem. Celem ego eksperymenu było wykryie ruhu absolunego Ziemi. Obenie, eksperymen en znany jes pod ogólną nazwą eksperymenu Mihelsona-Morleya. Eksperymen en przeprowadzany był za pomoą inerferomeru.. Mihelsona (Fig..). Fig.. Inerferomer.. Mihelsona. Inerferomer.. Mihelsona (Fig. ) składa się z monohromayznego źródła świała S, półprzepuszzalnej płyki P, oraz dwóh zwieriadeł i, usawionyh w równyh odległośiah P P l od miejsa padania wiązki świała na płykę P. Na usawioną pod kąem 5 o płykę P pada wiązka świała ze źródła S, kóra ulega rozszzepieniu na dwie wiązki biegnąe wzajemnie prosopadle do zwieriadeł i. Po odbiiu się od i, wiązki e wraają do płyki P, gdzie ponownie ulegają rozszzepieniu, i zęść wraa do źródła S, a pozosała zęść biegnie razem do eleskopu T. Na drodze PT obydwie wiązki inerferują ze sobą, a obraz inerferenyjny oglądany jes w głównej płaszzyźnie ogniskowej eleskopu T. Gdyby inerferomer był absolunie nieruhomy w hipoeyznym eerze, zyli w układzie absolunie absolunym -spae, o drogi przebye przez świało w obydwu ramionah inerferomeru byłyby sobie dokładnie równe. W akim przypadku, dowolny obró inerferomeru nie zmienia długośi dróg przebyyh przez świało w obydwu ramionah inerferomeru. Tym samym nie zmienia się obraz inerferenyjny w eleskopie T. Załóżmy eraz, że inerferomer porusza się ruhem ranslayjnym w hipoeyznym eerze. Ławo zauważyć, że w ogólnośi w zasie ruhu ranslayjnego inerferomeru w -spae, drogi przebywane przez świało w obydwu ramionah inerferomeru nie są sobie równe... Mihelson przyjął, że jeżeli inerferomer będzie obraany względem środka płyki P, o nasąpi zmiana długośi dróg w obydwu ramionah inerferomeru, o z kolei spowoduje zmianę położenia prążków inerferenyjnyh. W en sposób, będzie można wykryć ruh orbialny Ziemi. Jednak, powarzane przez kilka dziesiąek la ego rodzaju eksperymeny, w różnyh porah roku i w różnyh miejsah na kuli ziemskiej, zawsze dawały wynik negaywny: brak zmiany położenia prążków inerferenyjnyh. Powyższe może oznazać ylko dwie różne syuaje:

2 . Ziemia jes absolunie nieruhoma w Kosmosie, zn. nie isnieje ruh wirowy wokół własnej osi, ani eż ruh po orbiie okołosłoneznej (byłby o dowód na prawdziwość eorii geoenryznej).. Eksperymen jes wadliwie przeprowadzany. Przyjęo warian rzei: eksperymen jes wzorowo poprawnie przeprowadzony. Naomias nie jes możliwe wykryie ruhu absolunego, ponieważ nie isnieje eer, zyli nie isnieje przesrzeń kosmizna (si!), w kórej najławiej rozhodzi się świało. Jeżeli jednak przyjmiemy, że eer isnieje, o jes on ałkowiie unoszony przez Ziemię, zyli przesrzeń kosmizna jes ałkowiie unoszona przez Ziemię i dlaego ni nie widać (w inerferomerze, ozywiśie). Obenie, Janusz. Kępka w swej książe uh absoluny i względny (Warszawa, 999) wykazał, że w zasie eksperymenu rzezywiśie nasępuje zmiana długośi dróg świała w obydwu ramionah inerferomeru Mihelsona, ale zmiany są ego rodzaju, że zmiany dróg o and fro w każdym z ramion wzajemnie kompensują się. Z ego właśnie względu nie jes możliwe uzyskanie zmiany położenia prążków inerferenyjnyh. Oznaza o, że inerferomer Mihelsona nie jes właśiwym przyrządem do przeprowadzania ego rodzaju eksperymenów. Eksperymen Sagnaa W roku 93 uzony franuski Georges Sagna (869-98) wykazał doświadzalnie za pomoą zmodyfikowanego inerferomeru Mihelsona (Fig..), że możliwe jes wykryie ruhu Ziemi w hipoeyznym eerze (Georges Sagna, Compes endus 57, 93). Fig.. Inerferomer Sagnaa. W inerferomerze Mihelsona dwie wiązki oraz świała przebywają dwie drogi w różnyh, wzajemnie prosopadłyh ramionah inerferomeru. Naomias w inerferomerze Sagnaa dwie wiązki świała oraz biegną po ej samej krzywej zamknięej, ale we wzajemnie przeiwnyh kierunkah. Można o wpros odwzorować jako ruh po okręgu w dwu przeiwnyh kierunkah. ozparzmy bieg wiązek świała w inerferomerze Sagnaa. Paradoks Zenona z Elei Oznazmy ałkowią długość drogi PP PP w inerferomerze jako. Odległość świało przebywa z prędkośią w zasie :. Załóżmy, że inerferomer obraany jes w lewo ze sałą prędkośią kąową ons. Względem impulsu świała biegnąego od płyki P w kierunku zgodnym z kierunkiem obrou inerferomeru, płyka P uieka przed ym impulsem. Znalezienie odległośi jaką impuls świała przebędzie, aby wróić do płyki P, jes równoważne znalezieniu rozwiązania słynnego

3 3 paradoksu Zenona z Elei: zy hilles dogoni żółwia (poząkowa odległość między nimi wynosi, hilles biegnie z prędkośią, a żółw z prędkośią ): gdzie: W powyższym: prędkość liniowa dowolnego punku na okręgu o promieniu (Fig. ); prędkość świała. Ponieważ:, o z powyższego znajdujemy: Podobnie znajdujemy zas po jakim impuls dobiegnie do płyki P: W podobny sposób znajdujemy dla impulsu świała biegnąego w kierunku przeiwnym do kierunku obrou inerferomeru (w ym przypadku, hilles i żółw biegną naprzeiwko siebie): oraz Z powyższego, znajdujemy: () oraz ) ( () ϕ (3) a akże: ϕ () Z powyższyh rozważań wpros wynika, że w zasie obrou inerferomeru ) ( 0 powsaje różnia dróg (Eq. ) przebywanyh przez świało w kierunkah przeiwnyh. Z elemenarnej opyki wiadomo, że fale o jednakowyh okresah wzmaniają się najsilniej, gdy różnia dróg jes równa ałkowiej wielokronośi długośi fali λ : λ k, gdzie: k 0,,,..., n. Fale maksymalnie osłabiają się, jeśli różnia dróg wynosi nieparzysą lizbę połówek długośi fali: ) (k λ Powyższe zwane jes ogólnie inerferenją ruhu falowego. Jeżeli inerferomer nie jes obraany ) ( 0, o z zależnośi od () do (), mamy: 0, 0 oraz 0 i możemy obserwować sabilny obraz inerferenyjny. Wiązki świała oraz inerferują w równyh fazah na drodze PT (Fig. ).

4 W zasie obrou przyrządu, pojawia się różnia dróg ( ) 0, a przebyyh przez świało w dwu przeiwnyh kierunkah w inerferomerze. Z ego względu nasąpi zmiana obrazu inerferenyjnego (zmiana położenia oraz naężenia prążków inerferenyjnyh). Zmiana a spowodowana jes ym, że wiązki świała oraz spoykają się w różnyh fazah na drodze PT. Powyższe wykorzysywane jes obenie do budowy preyzyjnyh przyrządów, zwanyh żyroskopami. Przyrządy e pozwalają wykryć obró przyrządu o 0,000 sopnia na godzinę (Eq. ). Efek Dopplera Zauważmy, że płyka P w inerferomerze spełnia podwójną rolę: źródła S świała dla wiązek świała oraz biegnąyh od płyki P w kierunku zwieriadeł oraz ; obserwaora O dla obydwu wiązek oraz gdy wiązki e przebywają w inerferomerze odpowiednie drogi w kierunkah wzajemnie przeiwnyh i biegną do płyki P. Zauważmy eż, że prędkość S źródła drgań S oraz prędkość O obserwaora O są sobie dokładnie równe oraz równe prędkośi dowolnego punku na obwodzie okręgu o promieniu inerferomeru: S O. Z powyższyh względów, wysępuje podwójny efek Dopplera dla poruszająego się źródła S drgań oraz obserwaora O. Ogólny opis podwójnego efeku Dopplera podany jes w książe: Janusz. Kępka uh absoluny i względny, Warszawa 999. Jeżeli obserwaor O wyprzedza źródło S, o w opisywanym wyżej przypadku odnosi się do wiązki świała, o spełnione są warunki: O fd ν S λ ( S ) gdzie: ν zęsoliwość generowanej fali w danym ośrodku, gdy źródło drgań jes nieruhome. λ długość fali generowanej w danym ośrodku przez nieruhome źródło drgań. Powyżej wskazaliśmy, że spełniony jes warunek: S O. Wobe ego, z powyższej zależnośi znajdujemy, że: f D ν (5) < λ Podobnie mamy dla przypadku, gdy źródło S wyprzedza obserwaora O: O fd ν S λ ( S ) oraz: f D ν (6) > λ Z powyższego wpros wynika, że w eksperymenie Sagnaa nie wysępuje zmiana zęsoliwośi inerferująyh wiązek świała oraz. Dyskusja. Przede wszyskim zauważmy, że pozyywny wynik eksperymenu Sagnaa zosał uzyskany za pomoą lekko zmodyfikowanego inerferomeru.. Mihelsona! Przed rokiem 933, uzony amerykański Dayon C. Miller przeprowadził eksperymeny za pomoą zmodyfikowanego inerferomeru Mihelsona w en sposób, że ramiona ego inerferomeru były wyraźnie wzajemnie sobie nierówne. Uzyskał wynik pozyywny (D.C. Miller, eiews of Modern Physis, 5, 03, 933).

5 Powyższe wpros oznaza, że (nie modyfikowany) inerferomer Mihelsona nie nadaje się do ego rodzaju eksperymenów. Jednak w 007 r. Janusz. Kępka ( uh absoluny i względny, Warszawa 007) wskazał, że możliwe jes uzyskanie pozyywnego wyniku za pomoą inerferomeru Mihelsona, jeżeli jedno z ramion ego inerferomeru zahowa sały kierunek w przesrzeni (lokalny układ odniesienia). Można o uzyskać za pomoą obrou przyrządu względem ylko jednego z jego ramion. Warunek en nie był spełniony w eksperymenah wykonywanyh przez Mihelsona, Morleya i innyh. W zw. lieraurze przedmiou, eksperymeny G. Sagnaa oraz D.C. Millera były i są sarannie przemilzane, lub znazenie ih jes maksymalnie zaniżane. Naomias wyolbrzymiane jes znazenie eksperymenu.. Mihelsona, kóry o eksperymen (ponoć) sanowił podsawę szzególnej i ogólnej, a nawe szzególnie ogólnej eorii względnośi niejakiego lbera Einseina. Esperymeny G. Sagnaa oraz D.C. Millera z opyki oraz wześniejszy (85 r.) eksperymen z wahadłem Fouaul (Jean ernard éon, , fizyk franuski), wpros dowodzą, że zw. eorie względnośi lbera Einseina są rażąo niezgodne z doświadzeniem. Wobe ego, niekórzy wierdzą, że: The Sagna effe (in auum) is onsisen wih saionary eher heories (suh as he orenz eher heory) as well as wih Einsein's heory of relaiiy. I is generally aken o be inonsisen wih emission heories of ligh, aording o whih he speed of ligh depends on he speed of he soure. ("hp://en.wikipedia.org/wiki/georges_sagna") Tak wię, wg Wikipedii, efek Sagnaa powierdza, że eer spozywa i jednoześnie fruwa. azem z eorią względnośi Einseina, ozywiśie. Poważnie? nie jes ak, że: albo albo? oo kolejne oszuswa w wydaniu Wikipedii. Oóż, nieprawdą jes, że H..orenz (853-98) jes wórą eorii eeru (sprężysy ośrodek rozhodzenia się fal świelnyh > bezwzględny układ odniesienia). Znaznie wześniej Holender Chrisian Huygens (69-695), wierdził, że świało polega na rozhodzeniu się fal w eerze sprężysej subsanji zapełniająej ały wszehświa ( Traka o świele, 690). Ponado, nieprawdą jes, że według eorii emisji świała prędkość świała zależy od prędkośi źródła świała. ył aki pomysł, ale nayhmias z niego zrezygnowano, ponieważ nie jes o słuszne dla ruhu falowego (świało ma wszyskie ehy ruhu falowego, jes o fala poprzezna). Naomias, według lbera Einseina prędkość świała jes dokładnie aka sama względem dowolnie poruszająego się (akże nieruhomego, sojąego, leżąego i nawe wisząego) obserwaora. Opisany wyżej efek Sagnaa wpros z doświadzenia dowodzi, że nie jes o prawdziwe. To lber Einsein nie ma raji? To jes niedopuszzalne! Wobe ego, relaywiśi z Wikipedii (i nie ylko) wierdzą, że efek Sagnaa jes zgodny z eorią względnośi lbera Einseina! I w en oo prosy sposób eoria względnośi lbera Einseina jes zgodna z doświadzeniem. Pyanie: ko u jes idioą, a ko oszusem? Pardon! Pyać nie wolno? Uwagi końowe Przy pomoy inerferomeru Sagnaa można wykryć zmianę kierunku ruhu układu obserwaora, np. ruh wirowy zy orbialny Ziemi. Jednak za pomoą ego przyrządu nie można wykryć ruhu ranslayjnego prosoliniowego obserwaora. Jednak aką możliwość deekji ruhu absolunego Ziemi, wskazano wyżej. Eksperymen jes dosyć rudny do wykonania ze względów ehniznyh. Jednak, ego rodzaju eksperymen można znakomiie uprośić wykorzysują ruh wirowy Ziemi, właśnie. Uwaga: akże w książe Janusza. Kępki uh absoluny i względny, Warszawa 007, podany jes pełny dowód sposobu wylizenia prędkośi ranslayjnej Słońa w Kosmosie (ok km/s), ylko na podsawie znajomośi prędkośi orbialnej Ziemi w perihelium oraz w aphelium, lub odległośi od Słońa Ziemi w perihelium oraz w aphelium. dr Janusz. Kępka Warszawa, 009 5

VII.5. Eksperyment Michelsona-Morleya.

VII.5. Eksperyment Michelsona-Morleya. Janusz. Kępka Ruch absoluny i względny VII.5. Eksperymen Michelsona-Morleya. Zauważmy że pomiar ruchu absolunego jakiegokolwiek obieku maerialnego z założenia musi odnosić się do prędkości fali świelnej

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A

Bardziej szczegółowo

II.1. Zagadnienia wstępne.

II.1. Zagadnienia wstępne. II.1. Zagadnienia wsępne. Arysoeles ze Sagiry wyraźnie łączy ruch z czasem: A jes niemożliwe, żeby zaczął się albo usał ruch, gdyż jak powiedzieliśmy ruch jes wieczny, a ak samo i czas, bo czas jes albo

Bardziej szczegółowo

Mechanika relatywistyczna

Mechanika relatywistyczna Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX

Bardziej szczegółowo

I.1. Paradoksy Zenona z Elei.

I.1. Paradoksy Zenona z Elei. I.1. Paradoksy Zenona z Eei. Janusz B. Kępka Ruch absouny i wzgędny Arysoees ze Sagiry w swej FIZYCE mówi o paradoksach Zenona z Eei (fiozof grecki, ok.490 430 p.n.e.): Isnieją czery argumeny Zenona doyczące

Bardziej szczegółowo

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.

7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu. 7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

Transformacja Galileusza ( )

Transformacja Galileusza ( ) Tansfomaja Galileusza (564-64) z z y y Zasada względnośi Galileusza: pawa mehaniki są jednakowe we wszyskih inejalnyh układah odniesienia. F F a a Uwaga: newonowskie dodawanie pędkośi: u u S S, S S Poblem

Bardziej szczegółowo

Oryginalna metoda wyprowadzania transformacji dla kinematyk z uniwersalnym układem odniesienia

Oryginalna metoda wyprowadzania transformacji dla kinematyk z uniwersalnym układem odniesienia Oryginalna meoda wyprowadzania ransformaji dla kinemayk z uniwersalnym układem odniesienia Roman Szosek Poliehnika Rzeszowska Kaedra Meod Ilośiowyh Rzeszów Polska rszosek@prz.edu.pl Sreszzenie: Arykuł

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

Transformacja Galileusza ( )

Transformacja Galileusza ( ) Tansfomaja Galileusza (564-64) z z y y Zasada względnośi Galileusza: pawa mehaniki są jednakowe we wszyskih inejalnyh układah odniesienia. F F a a Uwaga: newonowskie dodawanie pędkośi: u u S S, S S Poblem

Bardziej szczegółowo

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1)

2.1 Zagadnienie Cauchy ego dla równania jednorodnego. = f(x, t) dla x R, t > 0, (2.1) Wykład 2 Sruna nieograniczona 2.1 Zagadnienie Cauchy ego dla równania jednorodnego Równanie gań sruny jednowymiarowej zapisać można w posaci 1 2 u c 2 2 u = f(x, ) dla x R, >, (2.1) 2 x2 gdzie u(x, ) oznacza

Bardziej szczegółowo

Podwaliny szczególnej teorii względności

Podwaliny szczególnej teorii względności W-6 (Jarosewi) 7 slajdów Na podsawie preenaji prof. J. Rukowskiego Podwalin sególnej eorii wględnośi asada wględnośi Galileusa ekspermen Mihelsona i Morle a ransformaja Lorena pierwsa spreność współesnej

Bardziej szczegółowo

Laseryimpulsowe-cotojest?

Laseryimpulsowe-cotojest? Laseryimpulsowe-coojes? Pior Migdał marca5 Laseryciągłe Prawie każdy widział laser, choćby w posaci breloczka z odpowiednią diodą LED. Co jes charakerysyczne dla promienia emiowanego z akiego urządzenia?

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zakłócenia w modelu DAD/DAS: Wzros produkcji poencjalnej; Zakłócenie podażowe o sile

Bardziej szczegółowo

Przemieszczeniem ciała nazywamy zmianę jego położenia

Przemieszczeniem ciała nazywamy zmianę jego położenia 1 Przemieszczeniem ciała nazywamy zmianę jego położenia + 0 k k 0 Przemieszczenie jes wekorem. W przypadku jednowymiarowym możliwy jes ylko jeden kierunek, a zwro określamy poprzez znak. Przyjmujemy, że

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna

5. Równania Maxwella. 5.1 Równania Maxwella 5.2 Transformacja pól 5.3 Fala elektromagnetyczna 5 Równania Maxwella 5 Równania Maxwella 5 Transformaja pól 53 ala eleromagnezna 86 5 Równania Maxwella Wśród poazanh uprzednio równań Maxwella znajduje się prawo Ampere a j Jedna można pozać, że posać

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

Energia w ruchu harmonicznym

Energia w ruchu harmonicznym Energia w ruchu haroniczn cos 1 kx x k E p 1 1 kx x v E k k p kx E E E Fale przkład Fala echaniczna poprzeczna Fala echaniczna podłużna Fala echaniczna akusczna Fala elekroagneczna np. radiowa świało Fale:

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Wykład 3: Kinematyka - względność ruchów. dr inż. Zbigniew Szklarski

Wykład 3: Kinematyka - względność ruchów. dr inż. Zbigniew Szklarski Wykład 3: Kinemayka - względność ruhów dr inż. Zbigniew Szklarski szkla@agh.edu.pl hp://layer.ui.agh.edu.pl/z.szklarski/ Wzgledność ruhów Każdy ruh opisujemy względem jakiegoś układu odniesienia W hwili

Bardziej szczegółowo

Elementy mechaniki relatywistycznej

Elementy mechaniki relatywistycznej Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka

Bardziej szczegółowo

I. KINEMATYKA I DYNAMIKA

I. KINEMATYKA I DYNAMIKA piagoras.d.pl I. KINEMATYKA I DYNAMIKA KINEMATYKA: Położenie ciała w przesrzeni można określić jedynie względem jakiegoś innego ciała lub układu ciał zwanego układem odniesienia. Ruch i spoczynek są względne

Bardziej szczegółowo

9.6. Promieniowanie rentgenowskie. Dyfrakcja promieniowania rentgenowskiego (prawo Bragga).

9.6. Promieniowanie rentgenowskie. Dyfrakcja promieniowania rentgenowskiego (prawo Bragga). 9. Optyka 9.6. Promieniowanie rentgenowskie. yfrakja promieniowania rentgenowskiego (prawo Bragga). Shemat budowy lampy rentgenowskiej. Przyspieszone do dużej prędkośi elektrony uderzają w antykatodę zmniejszają

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 2. Kinematyka punktu materialnego. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I. Kinemayka punku maerialnego Kaedra Opyki i Fooniki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska hp://www.if.pwr.wroc.pl/~wozniak/fizyka1.hml Miejsce konsulacji: pokój

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Wykład 4: Względność ruchów. dr inż. Zbigniew Szklarski

Wykład 4: Względność ruchów. dr inż. Zbigniew Szklarski Wykład 4: Względność ruhów dr inż. Zbigniew Szklarski szkla@agh.edu.pl hp://layer.ui.agh.edu.pl/z.szklarski/ Wzgledność ruhów Każdy ruh opisujemy względem jakiegoś układu odniesienia W hwili 0 rusza samohód

Bardziej szczegółowo

2.6.3 Interferencja fal.

2.6.3 Interferencja fal. RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać

Bardziej szczegółowo

ANEMOMETRIA LASEROWA

ANEMOMETRIA LASEROWA 1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap szkolny 5 listopada 2013 Czas 90 minut Wojewódzki Konkurs Maemayczny dla uczniów gimnazjów. Eap szkolny 5 lisopada 2013 Czas 90 minu ZADANIA ZAMKNIĘTE Zadanie 1. (1 punk) Liczby A = 0, 99, B = 0, 99 2, C = 0, 99 3, D = 0, 99, E=0, 99 1 usawiono

Bardziej szczegółowo

Promieniowanie synchrotronowe i jego zastosowania

Promieniowanie synchrotronowe i jego zastosowania Universias Jagellonica Cracoviensis Promieniowanie synchroronowe i jego zasosowania Wykład II J.J. Kołodziej Pokój: G--11, IFUJ Łojasiewicza 11 Tel.+1 664 4838 jj.kolodziej@uj.edu.pl Wykłady na WFAiS,

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką,

zestaw laboratoryjny (generator przebiegu prostokątnego + zasilacz + częstościomierz), oscyloskop 2-kanałowy z pamięcią, komputer z drukarką, - Ćwiczenie 4. el ćwiczenia Zapoznanie się z budową i działaniem przerzunika asabilnego (muliwibraora) wykonanego w echnice dyskrenej oraz TTL a akże zapoznanie się z działaniem przerzunika T (zwanego

Bardziej szczegółowo

K gęstość widmowa (spektralna) energii: 12 Classical theory (5000 K) 10 Rozbieżność w obszarze krótkich fal (katastrofa w nadfiolecie)

K gęstość widmowa (spektralna) energii: 12 Classical theory (5000 K) 10 Rozbieżność w obszarze krótkich fal (katastrofa w nadfiolecie) Opyka kwanowa wprowadzenie Króka (pre-)hisoria foonu (9-93) Począki modelu foonowego Własności świała i jego oddziaływania z maerią, niedające się opisać w ramach fizyki klasycznej Deekcja pojedynczych

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Tema ćwiczenia: BADANIE MULTIWIBRATORA UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI. 2. 3. Imię i Nazwisko 4. Daa wykonania Daa oddania Ocena Kierunek Rok sudiów

Bardziej szczegółowo

Prawo odbicia światła. dr inż. Romuald Kędzierski

Prawo odbicia światła. dr inż. Romuald Kędzierski Prawo odbicia światła dr inż. Romuald Kędzierski Odbicie fal - przypomnienie Kąt padania: Jest to kąt pomiędzy tzw. promieniem fali padającej (wskazującym kierunek i zwrot jej propagacji), a prostą prostopadłą

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

IV.5. Promieniowanie Czerenkowa.

IV.5. Promieniowanie Czerenkowa. Jansz B. Kępka Rh absoltny i względny IV.5. Promieniowanie Czerenkowa. Fizyk rosyjski Pawieł A. Czerenkow podjął badania (1934 r.) nad znanym słabym świeeniem niebiesko-białym wydzielanym przez silne preparaty

Bardziej szczegółowo

Sprawujesz osobistą opiekę nad dzieckiem? Przeczytaj koniecznie!

Sprawujesz osobistą opiekę nad dzieckiem? Przeczytaj koniecznie! Sprawujesz osobisą opiekę nad dzieckiem? Przeczyaj koniecznie! Czy z yułu sprawowania osobisej opieki nad dzieckiem podlegasz ubezpieczeniom społecznym i zdrowonemu Od 1 września 2013 r. osoba sprawująca

Bardziej szczegółowo

z graniczną technologią

z graniczną technologią STUDIA OECOOMICA POSAIESIA 23, vol., no. (25) Uniwersye Ekonomiczny w Poznaniu, Wydział Informayki i Gospodarki Elekronicznej, Kaedra Ekonomii Maemaycznej emil.panek@ue.poznan.pl iesacjonarny model von

Bardziej szczegółowo

Wstęp do szczególnej teorii względności.

Wstęp do szczególnej teorii względności. Wsęp do szzególne eorii względnośi. o o nam szzególna eoria względnośi?? Drogi Uzni! omiaą aspeky nakowe akie ak na przykład fale elekromagneyzne, ząski elemenarne, asrofizyka, mehanika kwanowa, fizyka

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu.

Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Efekt Dopplera Cel ćwiczenia Celem ćwiczenia jest badanie zjawiska Dopplera dla fal dźwiękowych oraz wykorzystanie tego zjawiska do wyznaczania prędkości dźwięku w powietrzu. Wstęp Fale dźwiękowe Na czym

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna Elementy optyki Odbiie i załamanie fal Zasada Huygensa Zasada Fermata Interferenja Dyfrakja Siatka dyfrakyjna 1 Odbiie i załamanie fal elektromagnetyznyh na graniah dwóh ośrodków Normalna do powierzhni

Bardziej szczegółowo

Rozdział 4 Instrukcje sekwencyjne

Rozdział 4 Instrukcje sekwencyjne Rozdział 4 Insrukcje sekwencyjne Lisa insrukcji sekwencyjnych FBs-PLC przedsawionych w niniejszym rozdziale znajduje się w rozdziale 3.. Zasady kodowania przy zasosowaniu ych insrukcji opisane są w rozdziale

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przesrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozparywania

Bardziej szczegółowo

Ronda, skrzyżowania i inne trudne zjawiska (3 pytania) 1. Korzystając z pasa rozpędowego

Ronda, skrzyżowania i inne trudne zjawiska (3 pytania) 1. Korzystając z pasa rozpędowego Ronda, skrzyżowania i inne trudne zjawiska (3 pytania) 1. Korzystają z pasa rozpędowego a. można jadą nim wyprzedza ć samohody jadą e po naszej lewej stronie (Nie. Pas rozpędowy nie służy do wyprzedzania

Bardziej szczegółowo

Synteza i analiza stanu polaryzacji światła metodą ogólnego prawa Malusa

Synteza i analiza stanu polaryzacji światła metodą ogólnego prawa Malusa nsrukcja robocza do ćwiczenia 4 Syneza i analiza sanu polaryzacji świała meodą ogólnego prawa Malusa. Układ pomiarowy Układ pomiarowy składa się z polarymeru, zasilacza sabilizowanego ZS-52, wolomierza

Bardziej szczegółowo

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE

Gr.A, Zad.1. Gr.A, Zad.2 U CC R C1 R C2. U wy T 1 T 2. U we T 3 T 4 U EE Niekóre z zadań dają się rozwiązać niemal w pamięci, pamięaj jednak, że warunkiem uzyskania różnej od zera liczby punków za każde zadanie, jes przedsawienie, oprócz samego wyniku, akże rozwiązania, wyjaśniającego

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (B+C) Wykład VIII: Paradoks bliźniat Relatywistyczny efekt Dopplera Przypomnienie Transformacja Lorenza dla różnicy współrzędnych dwóch wybranych zdarzeń A i B: t x

Bardziej szczegółowo

Powstanie i rola Szczególnej Teorii Względności (STW)

Powstanie i rola Szczególnej Teorii Względności (STW) Powsanie i rola Szzególnej Teorii Względnośi (STW Co znał Einsein przed 905 rokiem? Równania Maxwella, Problem eeru (doświadzenie Mihelsona Morleya?, Aberaje świała, Wlezenia eeru Fresnela, Znał praę orenza

Bardziej szczegółowo

Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne

Przemysław Klęsk. Słowa kluczowe: analiza składowych głównych, rozmaitości algebraiczne Przemysław Klęsk O ALGORYTMIE PRINCIPAL MANIFOLDS OPARTYM NA PCA SŁUŻACYM DO ZNAJDOWANIA DZIEDZIN JAKO ROZMAITOŚCI ALGEBRAICZNYCH NA PODSTAWIE ZBIORU DANYCH, PROPOZYCJA MIAR JAKOŚCI ROZMAITOŚCI Sreszczenie

Bardziej szczegółowo

Rozkład i Wymagania KLASA III

Rozkład i Wymagania KLASA III Rozkład i Wymagania KLASA III 10. Prąd Lp. Tema lekcji Wymagania konieczne 87 Prąd w mealach. Napięcie elekryczne opisuje przepływ w przewodnikach, jako ruch elekronów swobodnych posługuje się inuicyjnie

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato

Sformułowanie Schrödingera mechaniki kwantowej. Fizyka II, lato Sformułowanie Schrödingera mechaniki kwanowej Fizyka II, lao 018 1 Wprowadzenie Posać funkcji falowej dla fali de Broglie a, sin sin k 1 Jes o przypadek jednowymiarowy Posać a zosała określona meodą zgadywania.

Bardziej szczegółowo

Fale mechaniczne i akustyczne

Fale mechaniczne i akustyczne Fale mechaniczne i akusyczne Zadania z rozwiązaniami Projek współfinansowany przez Unię uropejską w ramach uropejskiego Funduszu Społecznego Projek współfinansowany przez Unię uropejską w ramach uropejskiego

Bardziej szczegółowo

Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczytaj koniecznie!

Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczytaj koniecznie! Prowadzisz lub będziesz prowadzić działalność gospodarczą? Przeczyaj koniecznie! Jeseś osobą prowadzącą pozarolniczą działalność, jeśli: prowadzisz pozarolniczą działalność gospodarczą na podsawie przepisów

Bardziej szczegółowo

Zarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1)

Zarządzanie Projektami. Wykład 3 Techniki sieciowe (część 1) Zarządzanie Projekami Wykład 3 Techniki sieciowe (część ) Przedsięwzięcie wieloczynnościowe Przedsięwzięcie wieloczynnościowe skończona liczba wzajemnie ze sobą powiązanych czynności (eapów). Powiązania

Bardziej szczegółowo

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

O prędkościach nadświetlnych

O prędkościach nadświetlnych FOTON 94, Jesień 006 17 O prędkośiah nadświetlnyh Leszek M. Sokołowski Obserwatorium Astronomizne UJ Poskarżył się pewien nauzyiel fizyki, że w szkolnym wykładzie szzególnej teorii względnośi (STW) obowiązuje

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego

4.2. Obliczanie przewodów grzejnych metodą dopuszczalnego obciążenia powierzchniowego 4.. Obliczanie przewodów grzejnych meodą dopuszczalnego obciążenia powierzchniowego Meodą częściej sosowaną w prakyce projekowej niż poprzednia, jes meoda dopuszczalnego obciążenia powierzchniowego. W

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13

RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 RÓWNANIA RÓŻNICZKOWE WYKŁAD 13 Geomeria różniczkowa Geomeria różniczkowa o dział maemayki, w kórym do badania obieków geomerycznych wykorzysuje się meody opare na rachunku różniczkowym. Obieky geomeryczne

Bardziej szczegółowo

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI

WYKORZYSTANIE TESTU OSTERBERGA DO STATYCZNYCH OBCIĄŻEŃ PRÓBNYCH PALI Prof. dr hab.inż. Zygmun MEYER Poliechnika zczecińska, Kaedra Geoechniki Dr inż. Mariusz KOWALÓW, adres e-mail m.kowalow@gco-consul.com Geoechnical Consuling Office zczecin WYKORZYAIE EU OERERGA DO AYCZYCH

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH.

ĆWICZENIE 2. BADANIE WAHADEŁ SPRZĘŻONYCH. ĆWICZENIE BADANIE WAHADEŁ SPRZĘŻONYCH Wahadło sprzężone Weźmy pod uwagę układ złożony z dwóch wahadeł o długościach połączonych sprężyną o współczynniku kierującym k Rys Na wahadło działa siła będąca składową

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Zrozumieć fizykę Klasa III 10. Prąd elekryczny Tema według 10.1. Prąd elekryczny w mealach. Napięcie elekryczne 10.. Źródła prądu. Obwód elekryczny Wymagania na poszczególne oceny przy realizacji i podręcznika Zrozumieć

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak E i E E i r r 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa Oczekiwania Reguła poliyki monearnej

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1

WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1 A R C H I W U M I N S T Y T U T U I N Ż Y N I E R I I L Ą D O W E J Nr 5 ARCHIVES OF INSTITUTE OF CIVIL ENGINEERING 017 WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU

Bardziej szczegółowo

Przekaźniki czasowe ATI opóźnienie załączania Czas Napięcie sterowania Styki Numer katalogowy

Przekaźniki czasowe ATI opóźnienie załączania Czas Napięcie sterowania Styki Numer katalogowy W celu realizowania prosych układów opóźniających można wykorzysać przekaźniki czasowe dedykowane do poszczególnych aplikacji. Kompakowa obudowa - moduł 22,5 mm, monaż na szynie DIN, sygnalizacja sanu

Bardziej szczegółowo

Zostałeś delegowany do pracy za granicą w UE, EOG lub Szwajcarii? Sprawdź, gdzie jesteś ubezpieczony

Zostałeś delegowany do pracy za granicą w UE, EOG lub Szwajcarii? Sprawdź, gdzie jesteś ubezpieczony Zosałeś delegowany do pracy za granicą w UE, EOG lub Szwajcarii? Sprawdź, gdzie jeseś ubezpieczony Każde z pańsw członkowskich Unii Europejskiej (UE), Europejskiego Obszaru Gospodarczego (EOG) oraz Szwajcaria

Bardziej szczegółowo

Tabela doboru przekaźników czasowych MTR17

Tabela doboru przekaźników czasowych MTR17 M17-A07-240-... M17-B07-240-... M17-Q-240-... M17--240-... M17--240-... M17--240-... M17--240-... M17-VW-240-... M17-XY-240-... M17-Z-240-... M17-AB-240-116 M17-CD-240-116 M17-BA-240-116 M17-P-240-...

Bardziej szczegółowo

00013 Mechanika nieba A

00013 Mechanika nieba A 1 00013 Mechanika nieba A Dane osobowe właściciela arkusza 00013 Mechanika nieba A Czas pracy 90/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny

Bardziej szczegółowo

Zasady względności w fizyce

Zasady względności w fizyce Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,

Bardziej szczegółowo

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe),

W tym module rozpoczniemy poznawanie właściwości fal powstających w ośrodkach sprężystych (takich jak fale dźwiękowe), Fale mechaniczne Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Ruch falowy jest bardzo rozpowszechniony w przyrodzie. Na co dzień doświadczamy obecności fal dźwiękowych i fal świetlnych. Powszechnie też wykorzystujemy

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa

Bardziej szczegółowo