Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô

Wielkość: px
Rozpocząć pokaz od strony:

Download "Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô"

Transkrypt

1 Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô Instytut Matematyk Unwersytetu Jagellońskego Instytut Nauk Ekonomcznych PAN Wynk wspólne z prof. Ł. Stettnerem (IM PAN) prof. Z. Palmowskm (UWr)

2 Oznaczena (Ω, F, P) - przestrzeń probablstyczna, T := [; T ], gdze T <, J := {J(t) : t T} - neredukowalny łańcuch Markowa, E := {e 1, e 2,..., e N }, gdze e R N oraz j-ta współrzędna e jest delta Kroneckera δ j dla każdego, j = 1, 2,..., N, Λ(t) = [λ j (t)],j=1,2,...,n - macerz ntensywnośc przejśca ze stanu do stanu j.

3 Proces Markowsko addytywny Proces {(X(t), J(t)) : t } nazywamy Markowsko addytywny jeśl: 1. {(X(t), J(t)) : t } jest procesem Markowa, 2. Rozkład warunkowy (X(t + s) X(t), J(t + s)) względem (X(t), J(t)) zależy tylko od J(t).

4 Proces Markowsko addytywny gdze X(t) = X(t) + X(t), X(t) := j E Ψ j (t), Ψ j (t) := n 1 U (j) n 1 {J(Tn)=e j, T n t}. Zakładamy, że U () n (n 1, 1 N) sa nezależnym zmennym losowym, które sa nezależne od J oraz dla ustalonego, U () n maja ten sam rozkład.

5 Proces Lévyego-Itô X(t) = X() + µ (s)ds + σ (s )dw (s) + R γ(s, x) Π(ds, dx), gdze W (t) jest ruchem Browna nezależnym od J(t), Π(dt, dx) = Π(dt, dx) ν(dx)dt jest skompensowan nezależna od W (t) od J(t). Ponadto µ (t) = µ, J(t) = N =1 µ < e, J(t) >, σ (t) = σ, J(t) = N =1 σ < e, J(t) >, a mara Possona γ(t, x) = γ(x), J(t) = N =1 γ (x) < e, J(t) >, gdze γ(x) := (γ 1 (x), γ 2 (x),..., γ (x)), µ := (µ 1, µ2,..., µn ) R N, σ := (σ 1, σ2,..., σn ) R N oraz σ >, µ > r dla każdego = 1, 2,..., N.

6 Skokowy martyngał Markova Nech T n, n = 1, 2,... będze okresem skoku łańcucha Markova J nech J n := J(T n ). Wtedy proces skokowy Φ j (t) defnujemy jako: Φ j (t) := Φ([, t] e j ) = n 1 1 {Tn t,j n=e j }. Nech φ j (t) := j = 1, 2,..., N. Wtedy proces λ j (s)ds, gdze λ j (t) := j 1 {J(t )=ej }λ j dla każdego Φ j (t) := Φ j (t) φ j (t) nazywamy skokowym martyngałem Markova.

7 Martyngały potęgowo-skokowe Lévyego-Itô Corcuera, Nualart and Schoutens [23] Nech X (k) (t) := ( X(s)) k, k 2, <s t gdze X(s) = X(s) X(s ) oraz berzemy X (1) (s) = X(s). Ponadto ( EX (k) (t) = E <s t ( X(s)) k ) = R γ k (s, x)ν(dx)ds <, k 2, zatem X (k) (t) := X (k) (t) R γ k (s, x)ν(dx)ds, k 2, nazywamy martyngałam potęgowo-skokowym.

8 Martyngały potęgowo-skokowe Nech Ψ (l) j (t) := ( n 1 U (j) n ) l 1{J(Tn)=ej, T n t}, l 1. Wtedy Ψ (l) j (t) := Ψ (l) (t) EΨ (l) (t) nazywamy martyngałem potęgowo-skokowym. j j

9 Twerdzene reprezentacyjne Nech F t := σ{x(s), Φ 1 (s),..., Φ N (s), Ψ 1 (s),..., Ψ N (s); s t} oraz F := t F t. Każdy martyngał całkowalny z kwadratem M(t) możemy przedstawć jako: M(t) = M() + + j=1 h (1) X (s)dx(s) + h (j) Φ (s)dφ j(s) + gdze h (1) X (t), h(2) X (t),..., h(1) Φ sa procesam prognozowalnym. (t), h(2) Φ k=2 l=1 =1 (t),..., h(n) Φ h (k) X (s)dx (k) (s) h (l,) Ψ (s)dψ(l) (s), (t), h(1,1) Ψ (t), h(1,2) Ψ (t),...

10 Lemat 1. Mamy następujac a reprezentację: X g (t)φ j (t)ψ b (t) = f g+b+1 (t) + s+υ g b s=1 υ=1 (ι 1,...,ι s+υ) {1,...,g+b} s+υ 1 f g+b+1 (ι 1,...,ι s+υ) (t,, t 1, t 2,..., t s+υ+1 )dψ (ιυ) (t s+υ+1 )... dψ (ι 1) (t s+2 )dφ j (t s+1 )dx (ιs) (t s )...dx (ι 2) (t2 )dx (ι 1) (t1 ), gdze f g+b+1 (ι 1,...,ι sa funkcjam determnstycznym w s+υ) L2 (R s+υ + )....

11 Lemat 2. Nech { P := X g 1 (t 1 ) ( X(t 2 ) X(t 1 ) ) g2... (X(t m ) X(t m 1 ) ) g m N Φ j (t 1 ) ( Φ j (t 2 ) Φ j (t 1 ) )... (Φ j (t m ) Φ j (t m 1 ) ),j=1 Ψ b 1 (t 1 ) ( Ψ (t 2 ) Ψ (t 1 ) ) b2... (Ψ (t m ) Ψ (t m 1 ) ) b m : t1 <... } < t m, g 1,..., g m 1, b 1,..., b m 1. Lnowa podprzestrzeń rozpęta nad P jest gęsta w L 2 (Ω, F).

12 Szkc dowodu twerdzena reprezentacyjnego Z Lematu każda zmenna losowa F w L 2 (Ω, F) możemy przedstawć jako: F = E(F ) + + j=1 h (1) X (s)dx(s) + h (j) Φ (s)dφ j(s) + k=2 l=1 =1 h (k) X (s)dx (k) (s) (1) h (l,) Ψ (s)dψ(l) (s), gdze h (1) X (t), h(2) X (t),..., h(1) Φ (t), h(2) Φ (t),..., h(n) Φ (t), h(1,) Ψ (t), h(2,) Ψ (t),... s a procesam prognozowalnym. Jeśl M M 2, wtedy lm t E(M2 (t)) = E(M 2 ( )) < oraz M(t) = E[M( ) F t ], co kończy dowód.

13 Dynamka ceny nstrumentu bez ryzyka: db(t) = r(t)b(t)dt, B() = 1, gdze r(t) =< r, J(t) >= N =1 r < e, J(t) >, r := (r 1, r 2,..., r N ) R N, r > dla każdego = 1, 2,..., N.

14 Dynamka cen akcj ( ds (t) = S (t ) µ (t)dt + σ (t )dw (t) + R ) γ(t, x) Π(dt, dx), S () = s >.

15 Dynamka cen skokowych nstrumentów fnansowych ds j (t) = S j (t )[µ j (t )dt + σ j (t )d Φ j (t)], S j () >, gdze µ j (t) = µ j, J(t) = σ j (t) = σ j, J(t) = µ j < e, J(t) >, =1 σj < e, J(t) >, =1 µ j := (µ 1 j, µ2 j,..., µn j ) R N, σ j := (σ 1 j, σ 2 j,..., σ N j ) R N, j = 1, 2,..., N.

16 Dynamka cen potęgowo-skokowych nstrumentów fnansowych gdze S (k) (t) = S (k) (t )[r(t)dt + σ (k) (t )dx (k) (t)], S (k) () >. σ (k) (t) = σ (k), J(t) = j=1 σ (k) j < e j, J(t) >, σ (k) := (σ (k) 1, σ(k) 2,..., σ(k) N ) R N dla k 2.

17 Dynamka cen potęgowo-skokowych nstrumentów fnansowych gdze ds (l) (t) = S (l) (t )[r(t)dt + σ (l) (t )dψ (l) (t)], S (l) () >. σ (l) (t) = σ (l), J(t) = j=1 σ (l) j < e j, J(t) >, σ (l) := (σ (l) 1, σ(l) 2,..., σ(l) N ) R N dla l 1 oraz = 1,..., N.

18 Rozszerzony model Blacka-Scholesa-Mertona db(t) = r(t)b(t)dt, ( ds (t) = S (t ) µ (t)dt + σ (t )dw (t) + R ds j (t) = S j (t )[µ j (t)dt + σ j (t )dφ j (t)], ds (k) (t) = S (k) (t )[r(t)dt + σ (k) (t )dx (k) (t)], (t) = S (l) (t )[r(t)dt + σ (l) (t )dψ (l) (t)], ds (l) gdze, j = 1,..., N, k = 2, 3,... oraz l = 1, 2, 3,... ) γ(t, x)n(dt, dx), (2)

19 Twerdzene o zupełnośc rozszerzonego modelu Blacka-Scholesa-Mertona Rozszerzony model Blacka-Scholesa-Mertona jest zupełny (każda wypłata jest doskonale replkowalna).

20 Szkc dowodu Nech oraz T M(t) := E[exp( r(s)ds)a F t ] M K (t) = M K () + h (s)d X Q (s) + + K k=2 h (k) (s)d X (k) (s) + j=1 K =1 l=1 h j (s)d Φ Q j (s) h (l) (s)dψ (l) (s). Wtedy lm K MK (t) = M(t).

21 Defnujemy portfel: θ K (t) := (α K (t), β (t), β 1 (t),..., β N (t), β (1) (t),..., β (K ) (t), β (1) 1 gdze α K (t) := M K (t ) β (t)b 1 (t)s (t ) K β (k) (t)b 1 (t)s (k) (t ) k=2 β (t) := h (t)b(t)s 1 (t ), β j (t) := h j(t) σ j (t ) B(t)S 1 j (t ), β (k) (t) := h(k) (t) σ (k) (t ) B(t)(S(k) ) 1 (t ), (t) := h(l) (t) σ (l) (t ) B(t)(S(l) ) 1 (t ). β (l) ) (t),..., β(k (t)). β j (t)b 1 (t)s j (t ) j=1 K =1 l=1 β (l) N (t)b 1 (t)s (l) (t ),

22 Replkacja: V K (t) = α K (t)b(t) + β (t)s (t) + + K =1 l=1 β (l) Proces zdefnowany następujaco: G K (u) = + u K k=2 α K (t)db(t) + u β j (t)s j (t) + j=1 β () (t)s () (t) =2 (t) S (l) (t) = M K (t)b(t). u β (k) (t)ds (k) (t) + β (t)ds (t) + K =1 l=1 u j=1 β (l) u (t)ds (l) (t) nazywamy procesem zysku. Można pokazać że G K (u) + M() = M K (u)b(u), co mplkuje, że portfel jest samofnansujacy. β j (t)ds j (t)

23 Bblografa Boel R., Kohlmann M., Semmartngale models of stochastc optmal control, wth applcatons to double Martngales, SIAM Journal on Control and Optmzaton 18 (198), p Corcuera J.M., Nualart D., Schoutens W., Completon of a Levy market by power-jumpassets, Fnance and Stochastcs, 9(1)(23), p Oksendal B., Sulem A., Appled Stochastc Control of Jump Dffusons, Sprnger, 24. Palmowsk Z., Stettner Ł. and Sulma A. (216) A note on chaotc and predctable representatons for Itô-Markov addtve processes, w przygotowanu Zhang X., Kuen Su T., Meng Q., Portfolo Selecton n the Enlarged Markovan Regme-Swtchng Market, SIAM Journal of Control and Optmzaton, 48 (21), p

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia 1 Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik Całka stochastyczna ( t ) H s dx s = H X. t Historia K. Itô (1944) konstrukcja całki stochastycznej

Bardziej szczegółowo

}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0,

}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0, Zadania z Procesów Stochastycznych II - 1 1. Niech π n = {t (n), t(n) 1,..., t(n) k n }, gdzie a = t (n) < t (n) 1

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Zadania z Procesów Stochastycznych 1

Zadania z Procesów Stochastycznych 1 Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

Procesy stochastyczne 2.

Procesy stochastyczne 2. Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,

Bardziej szczegółowo

Modelowanie ryzyka kredytowego Zadania 1.

Modelowanie ryzyka kredytowego Zadania 1. 1 Ex-dividend prices Modelowanie ryzyka kredytowego Zadania 1. Mariusz Niewęgłowski 19 października 2014 Definicja 1. Dla każdego t [0, T ] cena ex-dividend wypłaty (X, A, X, Z, τ) ( ) S t := B t E Q Bu

Bardziej szczegółowo

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n. Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Stochastyczne równania różniczkowe, studia II stopnia

Stochastyczne równania różniczkowe, studia II stopnia Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Modelowanie ryzyka kredytowego: MODEL BLACK-COX A

Modelowanie ryzyka kredytowego: MODEL BLACK-COX A Modelowanie ryzyka kredytowego: MODEL BLACK-COX A Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014 Niewęgłowski MiNI PW Modele wartości firmy Warszawa

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA FUNKCJI HAZARDU cz. II: CDS y - swapy kredytowe Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Seria 1. Zbieżność rozkładów

Seria 1. Zbieżność rozkładów Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie

Bardziej szczegółowo

Rozdziaª 9: Wycena opcji

Rozdziaª 9: Wycena opcji Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć

Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć Jan Ob lój Uniwersytet Warszawski Université Paris 6 Konwersatorium IMPAN, Listopad 2004 p.1/22 Plan referatu 1. Wstępne definicje

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej

Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Teoria opcji 2018/19. Instytut Matematyki Uniwersytet Gdański. (IM UG) Teoria opcji 1 / 49

Teoria opcji 2018/19. Instytut Matematyki Uniwersytet Gdański. (IM UG) Teoria opcji 1 / 49 Teoria opcji Instytut Matematyki Uniwersytet Gdański 2018/19 (IM UG) Teoria opcji 1 / 49 Sprawy organizacyjne Kontakt i strona E-mail: mwrzosek@mat.ug.edu.pl Konsultacje: środa, 12 14, p.323 Materiały:

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny

Bardziej szczegółowo

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci

Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy

Bardziej szczegółowo

Wokół nierówności Dooba

Wokół nierówności Dooba Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Tomasz Tkocz Nr albumu: 24957 Wokół nierówności Dooba Praca licencjacka na kierunku MATEMATYKA w ramach Międzywydziałowych Indywidualnych

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

1 Przestrzenie statystyczne, statystyki

1 Przestrzenie statystyczne, statystyki M. Beśka, Statystyka matematyczna, wykład 1 1 1 Przestrzene statystyczne, statystyk 1.1 Rozkłady zmennych losowych Nech Ω, F, P ) będze ustaloną przestrzeną probablstyczną, a X : Ω IR zmenną losową na

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz.i

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz.i Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA FUNKCJI HAZARDU cz.i Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 214 hazardu Warszawa 214 1 /

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Zabezpieczenie przed spadkiem wartości aktywów w modelu typu Lévy ego z fazowymi skokami i dowolną funkcją wynagrodzenia

Zabezpieczenie przed spadkiem wartości aktywów w modelu typu Lévy ego z fazowymi skokami i dowolną funkcją wynagrodzenia Zbigniew Palmowski 1, Joanna Tumilewicz 2 Zabezpieczenie przed spadkiem wartości aktywów w modelu typu Lévy ego z fazowymi skokami i dowolną funkcją wynagrodzenia 1. Wstęp W artykule rozważymy proces spadku,

Bardziej szczegółowo

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ.

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ. Wprowadzenie Mamy ustalone T > 0 horyzont, (Ω, F, P) z F filtracja, F = {F t } t [0,T ] oraz Proces chwilowej stopy procentowej r = (r t ) t [0,T ], tzn. rachunek bankowy spełnia ODE: db t = B t r t dt,

Bardziej szczegółowo

ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE.

ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Joachim Syga III Konferencja Zastosowań

Bardziej szczegółowo

Stochastyczne równania różniczkowe, model Blacka-Scholesa

Stochastyczne równania różniczkowe, model Blacka-Scholesa Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO

ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem

Bardziej szczegółowo

Szkice do zajęć z Przedmiotu Wyrównawczego

Szkice do zajęć z Przedmiotu Wyrównawczego Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce

Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Piotr Bańbuła atedra Ekonomii Ilościowej, AE Czerwiec 2017 r. Warszawa, Szkoła Główna Handlowa Wypłata Wypłata Opcja binarna 0

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

/ / * ** ***

/ / * ** *** 91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

ZASTOSOWANIA CAŁEK OZNACZONYCH

ZASTOSOWANIA CAŁEK OZNACZONYCH YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t)

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Figure 1: Aproksymacja drzewem dwumianowym Wycena opcji Dynamika cen akcji:

Bardziej szczegółowo

4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:

4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K: /, Dirac,, Bismut[B]., [B], [B],, [K], [T], [W].,,,,, /.,.,,,..,.. M, g): n = l,. P SO : T M, M SOn) 3. P Spin : M Spinn), P SO 4. P : P SO P Spin, π : P M: 5. S = S + S : Spinn) l S +, S l ) 6. F = P

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0

Bardziej szczegółowo

Afiniczne rekursje stochastyczne z macierzami trójkatnymi

Afiniczne rekursje stochastyczne z macierzami trójkatnymi Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach

V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach 1. Niezależność wielomianów, funkcji wykładniczych i trygonometrycznych W paragrafie tym podamy pewien lemat 1 potrzebny w

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

1. Obciążenie statyczne

1. Obciążenie statyczne . Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

5 Przegląd najważniejszych rozkładów

5 Przegląd najważniejszych rozkładów 5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja

Bardziej szczegółowo

MODELE STOCHASTYCZNE Plan wykładu

MODELE STOCHASTYCZNE Plan wykładu UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady

Bardziej szczegółowo

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!!

!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!! DB WMA(ns) semestr zimowy 2017 rozgrzewka przed kolokwium SPIS TREŚCI Teoria w niniejszym zbiorku została opracowana na podstawie książki: R. Murawski, K. Świrydowicz, Wstęp do teorii mnogości, Wyd. Naukowe

Bardziej szczegółowo

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n

Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

W3 - Niezawodność elementu nienaprawialnego

W3 - Niezawodność elementu nienaprawialnego W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego

Bardziej szczegółowo

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014

Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014 Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Notatki do wykładu: Procesy Stochastyczne

Notatki do wykładu: Procesy Stochastyczne Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Witold Bednorz Notatki do wykładu: Procesy Stochastyczne 21 stycznia 213 Spis treści 1 Twierdzenie Girsanowa i SDE 3 1.1 Zamiana miary................................

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,

Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ, Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład

Bardziej szczegółowo