Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô
|
|
- Zdzisław Artur Biernacki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Reprezentacja martyngałowa względem addytywnych procesów Markowa-Itô Instytut Matematyk Unwersytetu Jagellońskego Instytut Nauk Ekonomcznych PAN Wynk wspólne z prof. Ł. Stettnerem (IM PAN) prof. Z. Palmowskm (UWr)
2 Oznaczena (Ω, F, P) - przestrzeń probablstyczna, T := [; T ], gdze T <, J := {J(t) : t T} - neredukowalny łańcuch Markowa, E := {e 1, e 2,..., e N }, gdze e R N oraz j-ta współrzędna e jest delta Kroneckera δ j dla każdego, j = 1, 2,..., N, Λ(t) = [λ j (t)],j=1,2,...,n - macerz ntensywnośc przejśca ze stanu do stanu j.
3 Proces Markowsko addytywny Proces {(X(t), J(t)) : t } nazywamy Markowsko addytywny jeśl: 1. {(X(t), J(t)) : t } jest procesem Markowa, 2. Rozkład warunkowy (X(t + s) X(t), J(t + s)) względem (X(t), J(t)) zależy tylko od J(t).
4 Proces Markowsko addytywny gdze X(t) = X(t) + X(t), X(t) := j E Ψ j (t), Ψ j (t) := n 1 U (j) n 1 {J(Tn)=e j, T n t}. Zakładamy, że U () n (n 1, 1 N) sa nezależnym zmennym losowym, które sa nezależne od J oraz dla ustalonego, U () n maja ten sam rozkład.
5 Proces Lévyego-Itô X(t) = X() + µ (s)ds + σ (s )dw (s) + R γ(s, x) Π(ds, dx), gdze W (t) jest ruchem Browna nezależnym od J(t), Π(dt, dx) = Π(dt, dx) ν(dx)dt jest skompensowan nezależna od W (t) od J(t). Ponadto µ (t) = µ, J(t) = N =1 µ < e, J(t) >, σ (t) = σ, J(t) = N =1 σ < e, J(t) >, a mara Possona γ(t, x) = γ(x), J(t) = N =1 γ (x) < e, J(t) >, gdze γ(x) := (γ 1 (x), γ 2 (x),..., γ (x)), µ := (µ 1, µ2,..., µn ) R N, σ := (σ 1, σ2,..., σn ) R N oraz σ >, µ > r dla każdego = 1, 2,..., N.
6 Skokowy martyngał Markova Nech T n, n = 1, 2,... będze okresem skoku łańcucha Markova J nech J n := J(T n ). Wtedy proces skokowy Φ j (t) defnujemy jako: Φ j (t) := Φ([, t] e j ) = n 1 1 {Tn t,j n=e j }. Nech φ j (t) := j = 1, 2,..., N. Wtedy proces λ j (s)ds, gdze λ j (t) := j 1 {J(t )=ej }λ j dla każdego Φ j (t) := Φ j (t) φ j (t) nazywamy skokowym martyngałem Markova.
7 Martyngały potęgowo-skokowe Lévyego-Itô Corcuera, Nualart and Schoutens [23] Nech X (k) (t) := ( X(s)) k, k 2, <s t gdze X(s) = X(s) X(s ) oraz berzemy X (1) (s) = X(s). Ponadto ( EX (k) (t) = E <s t ( X(s)) k ) = R γ k (s, x)ν(dx)ds <, k 2, zatem X (k) (t) := X (k) (t) R γ k (s, x)ν(dx)ds, k 2, nazywamy martyngałam potęgowo-skokowym.
8 Martyngały potęgowo-skokowe Nech Ψ (l) j (t) := ( n 1 U (j) n ) l 1{J(Tn)=ej, T n t}, l 1. Wtedy Ψ (l) j (t) := Ψ (l) (t) EΨ (l) (t) nazywamy martyngałem potęgowo-skokowym. j j
9 Twerdzene reprezentacyjne Nech F t := σ{x(s), Φ 1 (s),..., Φ N (s), Ψ 1 (s),..., Ψ N (s); s t} oraz F := t F t. Każdy martyngał całkowalny z kwadratem M(t) możemy przedstawć jako: M(t) = M() + + j=1 h (1) X (s)dx(s) + h (j) Φ (s)dφ j(s) + gdze h (1) X (t), h(2) X (t),..., h(1) Φ sa procesam prognozowalnym. (t), h(2) Φ k=2 l=1 =1 (t),..., h(n) Φ h (k) X (s)dx (k) (s) h (l,) Ψ (s)dψ(l) (s), (t), h(1,1) Ψ (t), h(1,2) Ψ (t),...
10 Lemat 1. Mamy następujac a reprezentację: X g (t)φ j (t)ψ b (t) = f g+b+1 (t) + s+υ g b s=1 υ=1 (ι 1,...,ι s+υ) {1,...,g+b} s+υ 1 f g+b+1 (ι 1,...,ι s+υ) (t,, t 1, t 2,..., t s+υ+1 )dψ (ιυ) (t s+υ+1 )... dψ (ι 1) (t s+2 )dφ j (t s+1 )dx (ιs) (t s )...dx (ι 2) (t2 )dx (ι 1) (t1 ), gdze f g+b+1 (ι 1,...,ι sa funkcjam determnstycznym w s+υ) L2 (R s+υ + )....
11 Lemat 2. Nech { P := X g 1 (t 1 ) ( X(t 2 ) X(t 1 ) ) g2... (X(t m ) X(t m 1 ) ) g m N Φ j (t 1 ) ( Φ j (t 2 ) Φ j (t 1 ) )... (Φ j (t m ) Φ j (t m 1 ) ),j=1 Ψ b 1 (t 1 ) ( Ψ (t 2 ) Ψ (t 1 ) ) b2... (Ψ (t m ) Ψ (t m 1 ) ) b m : t1 <... } < t m, g 1,..., g m 1, b 1,..., b m 1. Lnowa podprzestrzeń rozpęta nad P jest gęsta w L 2 (Ω, F).
12 Szkc dowodu twerdzena reprezentacyjnego Z Lematu każda zmenna losowa F w L 2 (Ω, F) możemy przedstawć jako: F = E(F ) + + j=1 h (1) X (s)dx(s) + h (j) Φ (s)dφ j(s) + k=2 l=1 =1 h (k) X (s)dx (k) (s) (1) h (l,) Ψ (s)dψ(l) (s), gdze h (1) X (t), h(2) X (t),..., h(1) Φ (t), h(2) Φ (t),..., h(n) Φ (t), h(1,) Ψ (t), h(2,) Ψ (t),... s a procesam prognozowalnym. Jeśl M M 2, wtedy lm t E(M2 (t)) = E(M 2 ( )) < oraz M(t) = E[M( ) F t ], co kończy dowód.
13 Dynamka ceny nstrumentu bez ryzyka: db(t) = r(t)b(t)dt, B() = 1, gdze r(t) =< r, J(t) >= N =1 r < e, J(t) >, r := (r 1, r 2,..., r N ) R N, r > dla każdego = 1, 2,..., N.
14 Dynamka cen akcj ( ds (t) = S (t ) µ (t)dt + σ (t )dw (t) + R ) γ(t, x) Π(dt, dx), S () = s >.
15 Dynamka cen skokowych nstrumentów fnansowych ds j (t) = S j (t )[µ j (t )dt + σ j (t )d Φ j (t)], S j () >, gdze µ j (t) = µ j, J(t) = σ j (t) = σ j, J(t) = µ j < e, J(t) >, =1 σj < e, J(t) >, =1 µ j := (µ 1 j, µ2 j,..., µn j ) R N, σ j := (σ 1 j, σ 2 j,..., σ N j ) R N, j = 1, 2,..., N.
16 Dynamka cen potęgowo-skokowych nstrumentów fnansowych gdze S (k) (t) = S (k) (t )[r(t)dt + σ (k) (t )dx (k) (t)], S (k) () >. σ (k) (t) = σ (k), J(t) = j=1 σ (k) j < e j, J(t) >, σ (k) := (σ (k) 1, σ(k) 2,..., σ(k) N ) R N dla k 2.
17 Dynamka cen potęgowo-skokowych nstrumentów fnansowych gdze ds (l) (t) = S (l) (t )[r(t)dt + σ (l) (t )dψ (l) (t)], S (l) () >. σ (l) (t) = σ (l), J(t) = j=1 σ (l) j < e j, J(t) >, σ (l) := (σ (l) 1, σ(l) 2,..., σ(l) N ) R N dla l 1 oraz = 1,..., N.
18 Rozszerzony model Blacka-Scholesa-Mertona db(t) = r(t)b(t)dt, ( ds (t) = S (t ) µ (t)dt + σ (t )dw (t) + R ds j (t) = S j (t )[µ j (t)dt + σ j (t )dφ j (t)], ds (k) (t) = S (k) (t )[r(t)dt + σ (k) (t )dx (k) (t)], (t) = S (l) (t )[r(t)dt + σ (l) (t )dψ (l) (t)], ds (l) gdze, j = 1,..., N, k = 2, 3,... oraz l = 1, 2, 3,... ) γ(t, x)n(dt, dx), (2)
19 Twerdzene o zupełnośc rozszerzonego modelu Blacka-Scholesa-Mertona Rozszerzony model Blacka-Scholesa-Mertona jest zupełny (każda wypłata jest doskonale replkowalna).
20 Szkc dowodu Nech oraz T M(t) := E[exp( r(s)ds)a F t ] M K (t) = M K () + h (s)d X Q (s) + + K k=2 h (k) (s)d X (k) (s) + j=1 K =1 l=1 h j (s)d Φ Q j (s) h (l) (s)dψ (l) (s). Wtedy lm K MK (t) = M(t).
21 Defnujemy portfel: θ K (t) := (α K (t), β (t), β 1 (t),..., β N (t), β (1) (t),..., β (K ) (t), β (1) 1 gdze α K (t) := M K (t ) β (t)b 1 (t)s (t ) K β (k) (t)b 1 (t)s (k) (t ) k=2 β (t) := h (t)b(t)s 1 (t ), β j (t) := h j(t) σ j (t ) B(t)S 1 j (t ), β (k) (t) := h(k) (t) σ (k) (t ) B(t)(S(k) ) 1 (t ), (t) := h(l) (t) σ (l) (t ) B(t)(S(l) ) 1 (t ). β (l) ) (t),..., β(k (t)). β j (t)b 1 (t)s j (t ) j=1 K =1 l=1 β (l) N (t)b 1 (t)s (l) (t ),
22 Replkacja: V K (t) = α K (t)b(t) + β (t)s (t) + + K =1 l=1 β (l) Proces zdefnowany następujaco: G K (u) = + u K k=2 α K (t)db(t) + u β j (t)s j (t) + j=1 β () (t)s () (t) =2 (t) S (l) (t) = M K (t)b(t). u β (k) (t)ds (k) (t) + β (t)ds (t) + K =1 l=1 u j=1 β (l) u (t)ds (l) (t) nazywamy procesem zysku. Można pokazać że G K (u) + M() = M K (u)b(u), co mplkuje, że portfel jest samofnansujacy. β j (t)ds j (t)
23 Bblografa Boel R., Kohlmann M., Semmartngale models of stochastc optmal control, wth applcatons to double Martngales, SIAM Journal on Control and Optmzaton 18 (198), p Corcuera J.M., Nualart D., Schoutens W., Completon of a Levy market by power-jumpassets, Fnance and Stochastcs, 9(1)(23), p Oksendal B., Sulem A., Appled Stochastc Control of Jump Dffusons, Sprnger, 24. Palmowsk Z., Stettner Ł. and Sulma A. (216) A note on chaotc and predctable representatons for Itô-Markov addtve processes, w przygotowanu Zhang X., Kuen Su T., Meng Q., Portfolo Selecton n the Enlarged Markovan Regme-Swtchng Market, SIAM Journal of Control and Optmzaton, 48 (21), p
Rynek, opcje i równania SDE
Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż
Teoria ze Wstępu do analizy stochastycznej
eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.
8 Całka stochastyczna względem semimartyngałów
M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia
1 Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik Całka stochastyczna ( t ) H s dx s = H X. t Historia K. Itô (1944) konstrukcja całki stochastycznej
}, gdzie a = t (n) )(f(t(n) k. ) f(t(n) k 1 ) 1+δ = 0,
Zadania z Procesów Stochastycznych II - 1 1. Niech π n = {t (n), t(n) 1,..., t(n) k n }, gdzie a = t (n) < t (n) 1
4 Kilka klas procesów
Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Zadania z Procesów Stochastycznych 1
Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Procesy stochastyczne 2.
Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,
Modelowanie ryzyka kredytowego Zadania 1.
1 Ex-dividend prices Modelowanie ryzyka kredytowego Zadania 1. Mariusz Niewęgłowski 19 października 2014 Definicja 1. Dla każdego t [0, T ] cena ex-dividend wypłaty (X, A, X, Z, τ) ( ) S t := B t E Q Bu
Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.
Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Stochastyczne równania różniczkowe, studia II stopnia
Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna
Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008
Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
Modelowanie ryzyka kredytowego: MODEL BLACK-COX A
Modelowanie ryzyka kredytowego: MODEL BLACK-COX A Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014 Niewęgłowski MiNI PW Modele wartości firmy Warszawa
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA FUNKCJI HAZARDU cz. II: CDS y - swapy kredytowe Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Seria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie
Rozdziaª 9: Wycena opcji
Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć
Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć Jan Ob lój Uniwersytet Warszawski Université Paris 6 Konwersatorium IMPAN, Listopad 2004 p.1/22 Plan referatu 1. Wstępne definicje
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej
Dyskretne procesy stacjonarne o nieskończonej entropii nadwyżkowej Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Co to jest entropia nadwyżkowa? Niech (X i ) i Z będzie procesem
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Teoria opcji 2018/19. Instytut Matematyki Uniwersytet Gdański. (IM UG) Teoria opcji 1 / 49
Teoria opcji Instytut Matematyki Uniwersytet Gdański 2018/19 (IM UG) Teoria opcji 1 / 49 Sprawy organizacyjne Kontakt i strona E-mail: mwrzosek@mat.ug.edu.pl Konsultacje: środa, 12 14, p.323 Materiały:
p Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
Wokół nierówności Dooba
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Tomasz Tkocz Nr albumu: 24957 Wokół nierówności Dooba Praca licencjacka na kierunku MATEMATYKA w ramach Międzywydziałowych Indywidualnych
Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
1 Przestrzenie statystyczne, statystyki
M. Beśka, Statystyka matematyczna, wykład 1 1 1 Przestrzene statystyczne, statystyk 1.1 Rozkłady zmennych losowych Nech Ω, F, P ) będze ustaloną przestrzeną probablstyczną, a X : Ω IR zmenną losową na
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz.i
Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA FUNKCJI HAZARDU cz.i Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 214 hazardu Warszawa 214 1 /
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Zabezpieczenie przed spadkiem wartości aktywów w modelu typu Lévy ego z fazowymi skokami i dowolną funkcją wynagrodzenia
Zbigniew Palmowski 1, Joanna Tumilewicz 2 Zabezpieczenie przed spadkiem wartości aktywów w modelu typu Lévy ego z fazowymi skokami i dowolną funkcją wynagrodzenia 1. Wstęp W artykule rozważymy proces spadku,
r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ.
Wprowadzenie Mamy ustalone T > 0 horyzont, (Ω, F, P) z F filtracja, F = {F t } t [0,T ] oraz Proces chwilowej stopy procentowej r = (r t ) t [0,T ], tzn. rachunek bankowy spełnia ODE: db t = B t r t dt,
ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE.
Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski ODWZOROWANIA JEDNO- I WIELOWARTOŚCIOWE. PODOBIEŃSTWA, RÓŻNICE I PROBLEMY Z TEGO WYNIKAJĄCE. Joachim Syga III Konferencja Zastosowań
Stochastyczne równania różniczkowe, model Blacka-Scholesa
Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Wykład 11: Martyngały: definicja, twierdzenia o zbieżności
RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,
ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO
ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 1. Oblicz funkcję tworzącą momenty zmiennych o następujących rozkładach: a) symetryczny dwupunktowy; b) dwumianowy z parametrami n, p; c) Poissona z parametrem
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce
Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Piotr Bańbuła atedra Ekonomii Ilościowej, AE Czerwiec 2017 r. Warszawa, Szkoła Główna Handlowa Wypłata Wypłata Opcja binarna 0
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126
Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać
/ / * ** ***
91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
ZASTOSOWANIA CAŁEK OZNACZONYCH
YH JJ, MiF UP 13 D BL PÓL FGUR PYŹ e wszystkich wzorach zakładamy, że funkcje: f (x), g(x), r(ϕ), x(t), y(t) sa cia głe w odpowiednich przedziałach oraz że r(ϕ). D BL PÓL FGUR PYŹ Pole obszaru D = {(x,
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t)
Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Figure 1: Aproksymacja drzewem dwumianowym Wycena opcji Dynamika cen akcji:
4. P : P SO P Spin, π : P M: 6. F = P Spin Spin(n) S, F ± = P Spin Spin(n) S ± 7. ω: Levi-Civita, R:, K:
/, Dirac,, Bismut[B]., [B], [B],, [K], [T], [W].,,,,, /.,.,,,..,.. M, g): n = l,. P SO : T M, M SOn) 3. P Spin : M Spinn), P SO 4. P : P SO P Spin, π : P M: 5. S = S + S : Spinn) l S +, S l ) 6. F = P
EGZAMIN MAGISTERSKI, Biomatematyka
Biomatematyka 91...... Zadanie 1. (8 punktów) Liczebność pewnej populacji jest opisana równaniem różniczkowym: dn = r N(α N)(N β), (1) dt w którym, N(t) oznacza liczebność populacji w chwili t, a r > 0
Afiniczne rekursje stochastyczne z macierzami trójkatnymi
Afiniczne rekursje stochastyczne z macierzami trójkatnymi Ewa Damek (Uniwersytet Wrocławski ) (wyniki wspólne z Witoldem Światkowskim, Jackiem Zienkiewiczem - Uniwersytet Wrocławski, Muneya Matsui - Nanzan
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach
V. Jednorodne układy równań różniczkowych liniowych o stałych współczynnikach 1. Niezależność wielomianów, funkcji wykładniczych i trygonometrycznych W paragrafie tym podamy pewien lemat 1 potrzebny w
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Statystyka i eksploracja danych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja
MODELE STOCHASTYCZNE Plan wykładu
UNIWERSYTET WROCŁAWSKI Wydział Matematyki i Informatyki Instytut Matematyczny M.Majsnerowska rok akademicki 2018/2019 MODELE STOCHASTYCZNE Plan wykładu 1. Łańcuchy Markowa 1.1. Podstawowe pojęcia i przykłady
!!! Teoria, która się tutaj znajduje też wchodzi w zakres kolokwium.!!!
DB WMA(ns) semestr zimowy 2017 rozgrzewka przed kolokwium SPIS TREŚCI Teoria w niniejszym zbiorku została opracowana na podstawie książki: R. Murawski, K. Świrydowicz, Wstęp do teorii mnogości, Wyd. Naukowe
Zadania z RP 2. seria Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n
Zadania z RP 2. seria 1. 1. Dla x R n, niech δ x oznacza miarę Diraca, skupioną w punkcie x. Wykazać, że dla dowolnego ciągu x n R n zachodzi δ xn δ x wtedy i tylko wtedy, gdy x n x. 2. Podać przykład
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska
VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Strategie zabezpieczaj ce
04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Notatki do wykładu: Procesy Stochastyczne
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Witold Bednorz Notatki do wykładu: Procesy Stochastyczne 21 stycznia 213 Spis treści 1 Twierdzenie Girsanowa i SDE 3 1.1 Zamiana miary................................
Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład