Matematyczne Metody Chemii I

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyczne Metody Chemii I"

Transkrypt

1 Zwi ekszenie liczby wysoko wykwalifikowanych absolwentów kierunków ścis lych Uniwersytetu Jagiellońskiego POKL /09-00 Matematyczne Metody Chemii I Wyk lad dla III roku Chemii UJ Grzegorz Mazur, Marcin Makowski, Lukasz Pi ekoś Projekt wspó lfinansowany przez Unie Europejska w ramach Europejskiego Funduszu Spo lecznego

2 2 Wyk lad 1 Wst ep

3 3 Plan zaj eć Wst ep Literatura Powtórzenie wiadomości Liczby zespolone Macierze Permutacje Kwaterniony

4 4 Wst ep Na kursie omawiane sa podstawy algebry liniowej i teorii reprezentacji ilustrowane przyk ladami zastosowań do zagadnień krystalografii spektroskopii chemii kwantowej chemii organicznej i nieorganicznej To nie jest kurs matematyki waski zakres materia lu pominiete matematycznie interesujace zagadnienia aplikatywne podejście Ale nie jest to kurs spektroskopii czy mechaniki kwantowej tylko matematyczne podstawy interpretacja chemiczna i fizyczna na innych kursach

5 5 Literatura Materia ly to ilustracja do wyk ladu a nie podr ecznik Literatura: A. Herdegen, Wyk lady z algebry liniowej i geometrii A. Staruszkiewicz, Algebra i geometria A. Kowalska, Zastosowania teorii grup w fizyce F. A. Cotton, Teoria grup. Zastosowania w chemii M. T. Pawlikowski, Wst ep do teoretycznej spektroskopii molekularnej. Teoria grup

6 6 Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: Definicja Liczby zespolone I z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 + y 2 ) z 1 z 2 = (x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2 y 1 y 2, x 1 y 2 + y 1 x 2 ) Powyższy zbiór z wyżej określonymi dzia laniami nazywamy cia lem liczb zespolonych i oznaczamy (C, +, ). Definicja Jeżeli z = (x, y), to liczbe rzeczywista x nazywamy cześci a rzeczywista, zaś liczbe rzeczywista y cześci a urojona liczby zespolonej z i piszemy x = Rz, y = Iz lub x =Rez, y =Imz.

7 7 Liczby zespolone II Liczby zespolone postaci (x, 0) (o zerowej cz eści urojonej) utożsamiamy z liczbami rzeczywistymi. Liczbe (0, 1) nazywamy jednostka urojona i oznaczamy i. Ma ona te w lasność, że i 2 = 1. Latwo sprawdzić, że z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0). Stad otrzymujemy zapis z = x + iy (postać kanoniczna liczby zespolonej). Definicja Sprz eżeniem liczby zespolonej z = (x, y) nazywamy liczb e z = z := x iy. Modu lem liczby zespolonej nazywamy liczb e z := x 2 + y 2. Zachodzi równość z z = (x + iy)(x iy) = x 2 + y 2 = z 2.

8 8 Liczby zespolone III Definicja Pamietaj ac, że x = z cos ϕ i y = z sin ϕ otrzymujemy postać trygonometryczna liczby zespolonej: z = z (cos ϕ + i sin ϕ) Potegowanie liczb zespolonych u latwia wzór de Moivre a: z n = z n (cos nϕ + i sin nϕ) Definicja Pierwiastkiem algebraicznym stopnia n liczby zespolonej z nazywamy zbiór (n-elementowy) postaci: n z := {w C : w n = z}

9 9 Liczby zespolone IV Zachodzi nastepuj acy wzór Eulera: Stad wynikaja zależności cos ϕ = eiϕ + e iϕ 2 e iϕ = cos ϕ + i sin ϕ i sin ϕ = eiϕ e iϕ 2i oraz postać wyk ladnicza liczby zespolonej z = z e iϕ W szczególności, dla x = π otrzymujemy najpi ekniejszy wzór matematyki: e iπ + 1 = 0

10 10 Permutacje I Rozważmy zbiór skończony E := {1,..., n}, n 1 oraz zbiór S n := {σ : E E : σ bijekcja}. Definicja Elementy zbioru S n (czyli bijekcje zbioru skończonego) nazywamy permutacjami. Permutacje zapisujemy symbolem: σ = ( 1... n a 1... a n ), gdzie σ(j) = a j. Zbiór S n z dzia laniem sk ladania (mnożenia) permutacji tworzy grupe (nieprzemienna dla n 3), która oznaczamy (S n, ).

11 11 Permutacje II Definicja Niech a 1, a 2,..., a k bedzie uk ladem k n liczb. Permutacje ϱ określona wzorem: ϱ(a i ) = a i+1, dla i = 1,..., k 1, ϱ(a k ) = a 1 ϱ(j) = j, dla j / {a 1, a 2,..., a k } nazywamy cyklem k-elementowym i zapisujemy skrótowo ϱ = (a 1,..., a k ). Liczbe k nazywamy d lugościa cyklu ϱ. Cykl dwuelementowy nazywamy transpozycja.

12 12 Definicja Permutacje III Cykle ϱ 1 = (a 1,..., a k ) i ϱ 2 = (b 1,..., b l ) nazywamy cyklami roz l acznymi, gdy {a 1,..., a k } {b 1,..., b l } =. Twierdzenie Każda permutacja ze zbioru S n jest cyklem lub z lożeniem cykli roz l acznych. Rozk lad permutacji na cykle roz l aczne jest jednoznaczny. Każda permutacja jest iloczynem transpozycji. Rozk lad taki nie musi być jednoznaczny a transpozycje nie musza być roz l aczne. Jeżeli w pewnym rozk ladzie permutacji σ na transpozycje liczba transpozycji jest parzysta, to jest też taka w dowolnym rozk ladzie na transpozycje tej permutacji.

13 13 Permutacje IV Definicja Permutacje σ S n, w której rozk ladzie wystepuje parzysta (nieparzysta) liczba transpozycji nazywamy permutacja parzysta (nieparzysta). Liczbe sgn (σ) := ( 1) k, gdzie k jest liczba transpozycji w rozk ladzie permutacji σ nazywamy znakiem permutacji σ. Dzieki wcześniejszej uwadze znak permutacji jest dobrze określony (nie zależy od wyboru rozk ladu permutacji σ na transpozycje).

14 14 Wyk lad 2 Grupy

15 15 Plan zaj eć Dzia lanie wewn etrzne Definicja grupy

16 16 Definicja Dzia lanie wewn etrzne Dzia laniem wewn etrznym na zbiorze A nazywamy (dowolne) odwzorowanie f : A A A. Jeżeli nie prowadzi to do niejednoznaczności, dzia lanie wewn etrzne cz esto określa si e jako dzia lanie. Notacja Przy zapisie dzia lań cz esto używana jest notacja infiksowa. Wtedy a f b := f (a, b). Przy zapisie infiksowym najcz eściej oznacza si e dzia lania symbolami zamiast literami, np. : A A A a b := (a, b).

17 17 Dzia lanie l aczne Definicja Dzia lanie : A A A jest l aczne jeżeli a, b, c A : ( (a, b), c) = (a, (b, c)) czy też, w notacji infiksowej Przyk lad a, b, c A : (a b) c = a (b c) Sk ladanie odwzorowań jest dzia laniem l acznym Odejmowanie liczb ca lkowitych jest dzia laniem wewnetrznym, ale nie jest dzia laniem l acznym

18 18 Definicja Dzia lanie f : A A A jest przemienne jeżeli czy też, w notacji infiksowej Przyk lad a, b A : f (a, b) = f (b, a) a, b A : a b = b a Dzia lanie przemienne Mnożenie macierzy kwadratowych nie jest dzia laniem przemiennym Iloczyn wektorowy jest dzia laniem wewn etrznym w R 3, ale nie jest dzia laniem przemiennym Odejmowanie liczb ca lkowitych jest dzia laniem wewn etrznym, ale nie jest dzia laniem przemiennym

19 19 Element neutralny I Definicja Elementem neutralnym wzgl edem dzia lania : A A A nazywamy e A jeżeli Przyk lad a A : a e = e a = a. 0 jest elementem neutralnym dla dodawania liczb 1 jest elementem neutralnym dla mnożenia liczb macierz jednostkowa jest elementem neutralnym dla mnożenia macierzy kwadratowych odwzorowanie identycznościowe jest elementem neutralnym dla sk ladania odwzorowań

20 20 Element neutralny II Twierdzenie Jeżeli element neutralny dzia lania istnieje, to jest wyznaczony jednoznacznie. Dowód. Za lóżmy, że istnieja dwa różne elementy neutralne e 1, e 2 A dzia lania : A A A. Wtedy e 1 = e 1 e 2 = e 2 e 1 = e 2

21 21 Element odwrotny I Definicja Elementem odwrotnym do elementu a A wzgl edem dzia lania : A A A nazywamy b A jeżeli a b = b a = e gdzie e A jest elementem neutralnym. Przyk lad Elementem odwrotnym jest (o ile istnieje) liczba przeciwna dla dodawania liczb liczba odwrotna dla mnożenia liczb macierz odwrotna dla mnożenia macierzy kwadratowych odwzorowanie odwrotne dla sk ladania odwzorowań

22 22 Twierdzenie Element odwrotny II Jeżeli dzia lanie jest l aczne, to element odwrotny (o ile istnieje) jest wyznaczony jednoznacznie. Dowód. Niech b 1, b 2 A bed a różnymi elementami odwrotnymi do elementu a A wzgledem dzia lania : A A A. Wtedy b 1 = b 1 e = b 1 (a b 2 ) = (b 1 a) b 2 = e b 2 = b 2 gdzie e jest elementem neutralnym. Notacja W przypadku dzia lań l acznych zwykle oznaczamy element odwrotny do elementu a przez a 1.

23 23 Grupa Definicja Grupa nazywamy pare uporzadkowan a (G, ) jeżeli 1 : G G G jest dzia laniem l acznym 2 istnieje w G element neutralny wzgledem dzia lania 3 każdy element zbioru G posiada element odwrotny w G Dzia lanie nazywamy dzia laniem grupowym. Definicja Grupe nazywamy przemienna lub abelowa jeżeli dzia lanie grupowe jest przemienne. Notacja Jeżeli nie prowadzi to do niejednoznaczności, grup e (G, ) cz esto oznacza si e przez G. Dzia lanie grupowe zwykle nazywa si e iloczynem.

24 24 Rzad grupy Definicja Rzad grupy G, oznaczany przez G, to moc zbioru G. Ze wzgledu na rzad, grupy dzielimy na skończone nieskończone przeliczalne nieprzeliczalne

25 25 Generator grupy Definicja Zbiór S G nazywamy zbiorem generujacym grupe (G, ) jeżeli każdy element G da sie przedstawić jako iloczyn elementów zbioru S. Definicja Minimalnym zbiorem generujacym nazywamy element minimalny rodziny zbiorów generujacych.

26 26 Rzad elementu grupy Definicja Pot eg e elementu grupy definiujemy przez dla n N. Definicja g n = g g... g }{{} n-krotnie Rz edem elementu g grupy skończonej (G, ) nazywamy najmniejsze takie n N, że g n = e.

27 27 Grupa cykliczna Definicja Grupe nazywamy cykliczna, jeżeli minimalny zbiór generujacy jest jednoelementowy. Taki element nazywamy generatorem grupy. Wniosek Grupa cykliczna jest przemienna. Przyk lad { 1, 1} jest zbiorem generujacym (Z, +) obrót wzgledem osi n-krotnej jest generatorem grupy C n ; grupy te sa grupami cyklicznymi

28 28 Podgrupa Definicja Grupa (H, ) jest podgrupa grupy (G, ) jeżeli 1 H G 2 dzia lanie jest zaw eżeniem do zbioru H Notacja Jeżeli nie prowadzi to do niejednoznaczności, dzia lanie grupowe podgrupy zwykle oznacza si e tym samym symbolem co dzia lanie grupowe grupy. Definicja Podgrupa H grupy G jest podgrupa w laściwa jeżeli H G.

29 29 W lasności podgrup Każda grupa jest zarazem swoja podgrupa (niew laściwa) Każda grupa zawiera podgrupe jednoelementowa, zawierajac a element neutralny

30 30 Wyk lad 3 Homomorfizmy

31 31 Homomorfizm Definicja Niech (G, ) i (H, ) bed a grupami. Odwzorowanie f : G H jest homomorfizmem jeżeli a, b G : f (a b) = f (a) f (b).

32 32 W lasności homomorfizmów Wniosek Niech homomorfizm h : G H a e G G i e H H oznaczaja elementy neutralne grup G i H. Wtedy h(e G ) = e H. Dowód. g G : h(g) = h(g e G ) = h(g) h(e G ) Wniosek Niech dla homomorfizmu h : G H zachodzi b = h(a). Wtedy h(a 1 ) = b 1. Dowód. h(e G ) = h(a a 1 ) = h(a) h(a 1 ) = b h(a 1 )

33 33 Warstwa Definicja Niech H bedzi e podgrupa w laściwa grupy (G, ). Dla dowolnego a G zbiór ah = {a h : h H} nazywamy warstwa lewostronna elementu a wzgledem podgrupy H. Analogicznie warstwe prawostronna definiujemy przez Ha = {h a : h H}

34 34 Podzia l grupy na warstwy Niech H bedzi e podgrupa w laściwa grupy (G, ). Wprowadźmy relacje L H przynależności do tej samej warstwy lewostronnej a, b G : a L H b h H : a = b h Analogicznie konstruujemy relacje R H dla warst prawostronnych.

35 35 Lemat L H i R H sa relacjami równoważności. Dowód. 1 Relacja L H jest zwrotna: a = a e Podzia l grupy na warstwy 2 Relacja L H jest symetryczna: jeżeli a = b h to b = a h 1. 3 Relacja L H jest przechodnia: jeżeli a = b h 1 i b = c h 2, to a = c h 2 h 1 i h 2 h 1 H 4 Dowód dla relacji R H jest analogiczny. Wniosek Klasami równoważności relacji L H i R H sa warstwy, odpowiednio lewostronne i prawostronne. Oznacza to, że różne warstwy sa roz l aczne a ich suma jest równa ca lej grupie.

36 36 Lemat Weźmy grup e (G, ). Dla dowolnych a, b, c G takich, że a e, b c zachodzi a b a c. Dowód. Moc warstw Mnożac a b = a c lewostronnie przez a 1 otrzymujemy b = c. Twierdzenie Niech H bedzi e podgrupa w laściwa grupy (G, ). Dla dowolnego a G zachodzi ah = H. Analogiczne twierdzenie zachodzi dla warst prawostronnych. Dowód. Wprost z lematu wynika możliwość skonstruowania bijekcji H ah.

37 37 Rzad podgrupy Twierdzenie (Lagrange a) Dla grup skończonych rzad podgrupy jest dzielnikiem rzedu grupy. Dowód. Wynika wprost z możliwości podzia lu grupy na warstwy i z faktu, że warstwy skonstruowane z tej samej podgrupy sa równoliczne.

38 38 Podgrupa niezmiennicza Definicja Niech H bedzi e podgrupa w laściwa grupy (G, ). Jeżeli a G : ah = Ha to H nazywamy podgrupa niezmiennicza. Wniosek Każda podgrupa grupy abelowej jest niezmiennicza.

39 39 Grupa ilorazowa Niech H bedzi e podgrupa niezmiennicza grupy (G, ). Oznaczmy zbiór warstw generowanych przez podgrupe H jako G/H i wprowadźmy dzia lanie : G/H G/H G/H Ponieważ ah bh = (a b)h 1 jest to dzia lanie l aczne 2 jego elementem neutralnym jest H (czyli warstwa elementu neutralnego) 3 dla każdej warstwy ah istnieje element odwrotny a 1 H (G/H, ) stanowi grupe. Tak skonstruowana grupe nazywamy grupa ilorazowa.

40 40 Elementy sprz eżone Definicja Elementy a, b G nazywamy sprz eżonymi jeżeli g G : g 1 a g = b Twierdzenie Sprzeżenie jest relacja równoważności. Wniosek Relacja sprz eżenia dzieli grup e na klasy elementów sprz eżonych.

41 41 Wyk lad 4 Przestrzenie wektorowe

42 42 Definicja Cia lem nazywamy strukture algebraiczna (K, +,, 0, 1) jeżeli 1 (K, +) jest grupa przemienna z elementem neutralnym 0; dzia lanie grupowe nazywamy dodawaniem Cia lo 2 (K \ {0}, ) jest grupa przemienna z elementem neutralnym 1; dzia lanie grupowe nazywamy mnożeniem 3 zachodzi rozdzielność mnożenia wzgl edem dodawania + Notacja a, b, c K : (a + b) c = a c + b c Jeżeli nie prowadzi to do niejednoznaczności, cia lo (K, +,, 0, 1) zwykle oznacza si e przez K. Zwykle też pomija si e w zapisie mnożenia symbol dzia lania.

43 43 Przyk lady Cia lo stanowia (R, +,, 0, 1) (C, +,, 0, 1) (Q, +,, 0, 1) Nie jest cia lem zbiór liczb ca lkowitych z dodawaniem i mnożeniem liczb jako dzia laniami

44 44 W lasności cia l Twierdzenie Weźmy cia lo (K, +,, 0, 1). Wtedy a K : 0 a = 0 Dowód. 0 a = (0 + 0)a = 0 a + 0 a

45 45 Dzia lanie zewn etrzne Definicja Dzia laniem zewn etrznym nazywamy dowolne odzworowanie : A B B. Przyk lad Dzia laniem zewnetrznym jest : R C C (mnożenie liczby zespolonej przez liczbe rzeczywista).

46 46 Przestrzeń wektorowa Definicja Weźmy cia lo (K, +,, 0, 1), grupe przemienna (V, ) i dzia lanie zewnetrzne : K V V. Trójke uporzadkowan a (K, V, ) nazywamy przestrzenia wektorowa nad cia lem K jeżeli 1 α K : u, v V : α (u v) = α u α v 2 α, β K : u V : (α + β) u = α u β u 3 α, β K : u V : α (β u) = (α β) u 4 u V : 1 u = u

47 47 Liniowa niezależność Definicja Weźmy przestrzeń wektorowa V nad cia lem K. Uk lad wektorów v 1,..., v n V nazywamy liniowo niezależnym jeżeli α 1,..., α n K : n α i v i = 0 α 1 = α 2... = α n = 0 i=1

48 48 Wymiar i baza przestrzeni Definicja Przestrzeń wektorowa jest n-wymiarowa, jeżeli istnieje w niej liniowo niezależny n-elementowy zbiór wektorów, a każdy n + 1 elementowy uk lad wektorów jest liniowo zależny. Jeżeli dla każdego n istnieje liniowo niezależny n-elementowy zbiór wektorów, przestrzeń jest nieskończenie wymiarowa. Definicja Baza (uporzadkowan a) przestrzeni n-wymiarowej jest dowolny n-elementowy ciag liniowo niezależnych wektorów.

49 Definicja Macierz zmiany bazy Weźmy bazy (e) i (e ) n-wymiarowej przestrzeni V nad cia lem K. e 1 = A 11 e 1 + A 12 e A 1n e n e 2 = A 21 e 1 + A 22 e A 2n e n.. e n = A n1 e 1 + A n2 e A nn e n Tak określona macierz A nazywamy macierza zmiany bazy. Wniosek Macierz zmiany bazy jest nieosobliwa. Wniosek Jeżeli A jest macierza zmiany bazy z (e) do (e ), to macierz zmiany bazy z (e ) do (e) jest macierza odwrotna do A. 49

50 50 Reprezentacja wektora Twierdzenie Weźmy n-wymiarowa przestrzeń wektorowa V nad cia lem K. Każdy wektor v V można w sposób jednoznaczny przedstawić jako kombinacje liniowa wektorów bazy. Dowód. Weźmy baze e 1,..., e n. Niech v 0. Ponieważ przestrzeń jest n-wymiarowa, istnieja takie skalary α 1,..., α n nie wszystkie równe zero i β 0, że n i α i e i + βv = 0. Czyli v = β 1 n i α i e i. Wektor zerowy dany jest kombinacja o wspó lczynnikach równych zero. Definicja Ciag z lożony ze wspó lczynników kombinacji liniowej wektorów bazy przedstawiajacej wektor v nazywamy reprezentacja wektora v.

51 51 W lasności transformacyjne wektorów Weźmy dwie bazy (e) i (e ) n-wymiarowej przestrzeni V nad cia lem K. Dla każdego wektora v V v = n i=1 v i e i = n v j e j j=1 Niech A bedzie macierza zmiany bazy: e i = n j=1 A ij e j. Wtedy ) v = n i=1 v i e i = n i=1 v i n A ij e j = j=1 ( n n v i A ij e j j=1 i=1 }{{} v j czyli sk ladowe wektora transformuja sie przez macierz odwrotna do macierzy zmiany bazy.

52 52 Notacja macierzowa Weźmy dwie bazy (e) i (e ) n-wymiarowej przestrzeni V nad cia lem K. Niech A bedzie macierza zmiany bazy: e i = n j=1 A ij e j. Przedstawmy reprezentacje wektora v V w bazie (e ) w postaci macierzowej v 1 v v = 2. Wtedy postać macierzowa reprezentacji wektora w bazie (e) otrzymujemy v = Av v n

53 53 Wyk lad 5 Formy liniowe. Przestrzeń dualna

54 54 Forma liniowa Definicja Weźmy przestrzeń liniowa V nad cia lem K. Forma liniowa nazywamy przekszta lcenie f : V K liniowe, czyli takie, że 1 α K : v V : f (αv) = αf (v) (jednorodność) 2 u, v V : f (u + v) = f (u) + f (v) (addytywność)

55 55 Reprezentacja form liniowych Definicja Weźmy forme liniowa f : V K. Niech (e) bedzie baza przestrzeni V. Dla dowolnego wektora v V ( n ) n f (v) = f v i e i = v i f (e i ) }{{} i=1 i=1 f i Ciag (n-elementowy) f i := f (e i ) nazywamy reprezentacja formy liniowej f w bazie (e).

56 56 W lasności transformacyjne form liniowych Weźmy dwie bazy (e) i (e ) n-wymiarowej przestrzeni V nad cia lem K. Niech A bedzie macierza zmiany bazy: e i = n j=1 A ij e j. Dla dowolnej formy liniowej f : V K n n n = f (e i ) = f A ij e j = A ij f (e j ) = A ij f j f i j=1 czyli sk ladowe formy liniowej transformuja sie przez macierz zmiany bazy. j=1 j=1

57 57 Wariantność Definicje Notacja Obiekty transformujace sie zgodnie z wektorami bazy określamy jako kowariantne (np. formy liniowe) Obiekty transformujace sie przez macierz odwrotna do macierzy zmiany bazy określamy jako kontrawariantne (np. wektory) Ściślej, jeżeli reprezentacja obiektu jest wieloindeksowa, poj ecie wariantności odnosi si e do poszczególnych indeksów. Sk ladowe reprezentacji obiektów kowariantnych zwykle oznacza si e indeksem dolnym, a kontrawariantnych górnym. Czyli sk ladowe wektora v oznaczamy przez v i a formy liniowej f przez f i.

58 58 Konwencja sumacyjna W konwencji sumacyjnej Einsteina opuszcza sie znak sumy jeżeli sumowanie przebiega po parze sasiaduj acych ze soba indeksów kowariantnego i kontrawariantnego. Na przyk lad wynik dzia lania forma liniowa f na wektor v f (v) = n f i v i i=1 zapiszemy jako f (v) = f i v i

59 59 Notacja macierzowa Weźmy baze (e) w n-wymiarowej przestrzeni liniowej V nad cia lem K. Z postaci wyrażenia opisujacego dzia lanie formy liniowej f : V K na wektor v f (v) = f i v i i faktu, że v jest macierza kolumnowa widać, że reprezentacja formy liniowej f musi być macierza wierszowa f = (f 1, f 2,..., f n) Wtedy f (v) = fv

60 60 Grupa form liniowych Weźmy przestrzeń liniowa V nad cia lem K. Zdefiniujmy dodawanie form liniowych przez (f + g)(v) := f (v) + g(v) gdzie v V a f, g sa formami liniowymi V K. Od razu widać, że Tak zdefiniowane dodawanie jest dzia laniem wewnetrznym, l acznym i przemiennym Elementem neutralnym jest f (v) = 0 Dla każdej formy liniowej f istnieje element odwrotny f 1 = f Wniosek Zbiór wszystkich form liniowych f : V K, oznaczany przez V, z dodawaniem zdefiniowanym powyżej stanowi grupe przemienna.

61 61 Przestrzeń dualna Weźmy przestrzeń liniowa V nad cia lem K. Wprowadźmy naturalne mnożenie formy liniowej f : V K przez skalar α K (αf )(v) := αf (v) dla każdego v V. Od razu widać, że V stanowi przestrzeń liniowa nad cia lem K. Definicja Przestrzeń V nad cia lem K nazywamy przestrzenia dualna (sprzeżon a) do przestrzeni V. Definicja Niech (e i ) bedzie baza przestrzeni V. Ciag form liniowych (f j ) takich, że f j (e i ) = δ ij nazywamy baza dualna.

62 62 Wyk lad 6 Operatory liniowe

63 63 Operator liniowy Definicja Weźmy przestrzeń liniowa V nad cia lem K. Operatorem liniowym nazywamy odwzorowanie L : V V liniowe, czyli takie, że 1 α K : v V : L(αv) = αl(v) (jednorodność) 2 u, v V : L(u + v) = L(u) + L(v) (addytywność) Notacja Zapisujac dzia lanie operatora liniowego na wektor zwykle pomija sie nawiasy Lv L(v)

64 64 Reprezentacja operatora liniowego Weźmy n-wymiarowa przestrzeń wektorowa V i baze e w tej przestrzeni. Rozpatrujac i-ta sk ladowa wyniku dzia lania operatora L : V V na dowolny wektor v V n n n (Lv) i = L v j e j = v j Le j = v j (Le j ) }{{} i j=1 i j=1 i j=1 L ij stwierdzamy, że reprezentacja operatora liniowego L jest macierz otrzymana przez dzia lanie L na wektory bazy.

65 W lasności transformacyjne operatorów liniowych 65

66 Grupa liniowa 66

67 67 Wyk lad 7 Zagadnienie w lasne

68 Zagadnienie w lasne 68

69 69 Wyk lad 8 Reprezentacja grupy

70 70 Poj ecie reprezentacji Definicja Reprezentacja grupy G nazywamy w ogólności homomorfizm ρ : G GL(V ) gdzie V jest n-wymiarowa przestrzenia wektorowa, a GL grupa odwracalnych przekszta lceń liniowych T : V V Wprowadzenie bazy przestrzeni V pozwala na utożsamienie reprezentacji z homomorfizmem w grup e odwracalnych macierzy stopnia n.

71 71 Zaw eżenie zainteresowań Na potrzeby tego wyk ladu ograniczymy si e do: skończonych grup operatorów symetrii reprezentacji unitarnych

72 Konstrukcja postaci macierzowej reprezentacji w przestrzeni wektorowej V wprowadźmy pewna baze z lożona z wektorów e 1, e 2,..., e N zdefiniujmy dzia lanie grupy dla operatorów z grupy G takie, że: wynikiem dzia lania dowolnego operatora na dowolny wektor bazy jest pewien wektor z przestrzeni V Re i = struktura grupy jest zachowana N e j D ji (R) j=1 SR = U D(S)D(R) = D(U) Macierz D(R) bedziemy traktować jako reprezentanta macierzowego operatora R w danej bazie, zbiór takich macierzy wyznaczonych dla wszystkich operatorów grupy G bedziemy nazywać reprezentacja macierzowa grupy G. 72

73 73 Reprezentacje macierzowe - przyk lad grupa: C 4 baza: kanoniczna przestrzeni kartezjańskiej dzia lanie grupowe: przekszta lcenia geometryczne E C C C

74 74 Reprezentacje równoważne Zmiana bazy przestrzeni V prowadzi do zmiany postaci macierzowej reprezentacji. Odpowiednie reprezentacje macierzowe bedziemy nazywać reprezentacjami równoważnymi. Zwiazek miedzy macierzami reprezentacji równoważnych jest zadany przez macierz zmiany bazy. Twierdzenie Jeśli dwie bazy przestrzeni wektorowej sa zwiazane nastepuj ac a zależnościa (e 1, e 2,... e N) = (e 1, e 2,... e N)C to odpowiednie reprezentanty macierzowe D (R) i D(R) spe lniaja zwiazek D (R) = C 1 D(R)C

75 75 Przywiedlność reprezentacji Definicja Niech G bedzie dzia laniem grupy G określonym na przestrzeni V. Niech W bedzie zbiorem wszystkich podprzestrzeni przestrzeni V zamknietych ze wzgledu na G. Jeśli W zawiera tylko dwa elementy: podprzestrzeń zerowa i ca l a przestrzeń V, to reprezentacje zadana przez G nazywamy reprezentacja nieprzywiedlna. W każdym innym przypadku, reprezentacja ta jest reprezentacja przywiedlna. Twierdzenie Każda reprezentacje grupy skończonej można roz lożyć na sume prosta reprezentacji nieprzywiedlnych.

76 76 Przywiedlność w obrazie macierzowym Rozk lad reprezentacji na reprezentacje nieprzywiedlne można utożsamić z podzia lem przestrzeni V na podprzestrzenie. Wprowadzenie bazy przestrzeni umożliwia prze lożenie tej operacji na j ezyk macierzy: reprezentacja macierzowa wymiaru 1 jest nieprzywiedlna każda grupa posiada trywialna reprezentacje nieprzywiedlna z lożona z macierzy jednostkowych wymiaru 1 reprezentacja macierzowa o wymiarze wiekszym od 1 jest przywiedlna, jeżeli istnieje reprezentacja równoważna, w której wszystkie reprezentanty macierzowe sa blokowo-diagonalne i maja identyczna strukture blokowa macierze utworzone z odpowiednich diagonalnych bloków reprezentantów macierzowych tworza reprezentacje

77 77 Rozk lad reprezentacji I grupa C 4 oryginalna baza: baza kanoniczna przestrzeni kartezjańskiej Reprezentacja Γ E C C 4 C

78 78 Rozk lad reprezentacji II Macierz zmiany bazy 1 2 i 2 0 i Reprezentacja równoważna E C C 4 C 3 4 i i i i

79 79 Rozk lad reprezentacji III Γ = Γ 1 Γ 2 Γ 3 E C 4 C 2 4 C 3 4 Γ 1 (1) (-i) (-1) (i) Γ 2 (1) (i) (-1) (-i) Γ 3 (1) (1) (1) (1)

80 80 Wyk lad 9 Twierdzenia o ortogonalności

81 81 I lemat Schura Twierdzenie Jeśli D (µ) (R) i D (ν) (R) sa macierzami różnych reprezentacji nieprzywiedlnych oraz dla pewnej macierzy A zwiazek AD (µ) (R) = D (ν) (R)A jest spe lniony dla każdego operatora R w grupie, to A = 0

82 82 II lemat Schura Twierdzenie Jeśli D (µ) (R) jest macierza reprezentacji nieprzywiedlnej oraz dla pewnej macierzy A zwiazek AD (µ) (R) = D (ν) (R)A jest spe lniony dla każdego operatora R w grupie, to A = λ1, gdzie λ jest liczba rzeczywista

83 83 Wielkie twierdzenie o ortogonalności Twierdzenie Jeśli Γ µ i Γ ν sa reprezentacjami nieprzywiedlnymi grupy G skończonego rzedu g o wymiarach odpowiednio n µ i n ν, to reprezentanty macierzowe spe lniaj a zwiazek R G D (µ) il (R) D (ν) jm (R) = g δ il δ jm δ µν n µ

84 84 Charaktery Definicja Charakterem operatora R w µ-tej reprezentacji nazywamy ślad reprezentanta macierzowego operatora R w tej reprezentacji χ (µ) (R) = n µ i=1 D (µ) ii (R)

85 85 Ma le twierdzenie o ortogonalności I Twierdzenie Jeśli Γ µ i Γ ν sa reprezentacjami nieprzywiedlnymi grupy G skończonego rzedu g, to χ (µ) (R) χ (ν) (R) = gδ µν R G

86 86 Ma le twierdzenie o ortogonalności II Dowód. Na mocy wielkiego twierdzenia o ortogonalności R G ( nµ ) D (µ) ii (R) R G i=1 Stad i z definicji charakteru D (µ) ii (R) D (ν) jj (R) = g δ n ijδ 2 µν µ n ν j=1 D (ν) jj χ (µ) (R) χ (ν) (R) = g R G (R) = g n µ n µ i=1 1 n µ n ν j=1 δ 2 ijδ µν. n µ n µ δ 2 ij δ µν = g i=1 j=1

87 87 Pożyteczne w laściwości Twierdzenie Suma kwadratów wymiarów reprezentacji nieprzywiedlnych grupy jest równa rz edowi tej grupy Twierdzenie Suma kwadratów charakterów dowolnej reprezentacji nieprzywiedlnej jest równa rz edowi tej grupy Twierdzenie Charaktery dowolnej reprezentacji sa równe dla elementów grupy należacych do tej samej klasy Twierdzenie Liczba reprezentacji nieprzywiedlnych danej grupy równa jest liczbie klas wystepuj acych w tej grupie

88 88 Charaktery reprezentacji nieprzywiedlnych I Grupa D 3 E, 2C 3, 3C 2 ; rzad grupy g = 6, liczba klas: 3 liczba reprezentacji nieprzywiedlnych jest równa liczbie klas: m = 3 suma kwadratów wymiarów reprezentacji nieprzywiedlnych jest równa rzedowi grupy: rozwiazanie równania n1 2 + n2 2 + n2 3 = 6 daje informacje, że mamy do czynienia z dwiema reprezentacjami jednowymiarowymi i jedna reprezentacja dwuwymiarowa Każda grupa posiada reprezentacje nieprzywiedlna, dla której wszystkie charaktery sa równe jedności (dlaczego?) χ Γ 1 (E) = 1, χ Γ 1 (C 3 ) = 1, χ Γ 1 (C 2 ) = 1

89 89 Charaktery reprezentacji nieprzywiedlnych II Charaktery dla reprezentacji jednowymiarowych moga być równe jedynie 1 lub -1 (dlaczego?). Ponadto, charakter odpowiadajacy elementowi neutralnemu grupy musi być równy wymiarowi reprezentacji (dlaczego?). Z powyższych i z ma lego twierdzenia o ortogonalności możemy wywnioskować, że: zestaw charakterów dla drugiej z reprezentacji jednowymiarowych ma postać χ Γ 2 (E) = 1, χ Γ 2 (C 3 ) = 1, χ Γ 2 (C 2 ) = 1 zestaw charakterów dla reprezentacji dwuwymiarowej to χ Γ 3 (E) = 2, χ Γ 3 (C 3 ) = 1, χ Γ 3 (C 2 ) = 0

90 90 Tabele charakterów D 3 E 2C 3 3C 2 A x 2 + y 2, z 2 A z, R z E (x, y), (R x, R y ) (x 2 y 2, xy), (xz, yz) W kolejnych kolumnach symbol reprezentacji charaktery dla poszczególnych klas operacji symetrii w lasności transformacyjne translacji i obrotów w lasności transformacyjne iloczynów x, y, z

91 91 Symbolika Mullikena I reprezentacje jednowymiarowe oznacza si e symbolem A lub B, dwuwymiarowe - symbolem E, trójwymiarowe - symbolem T reprezentacje jednowymiarowe, dla których charakter odpowiadajacy obrotowi wzgledem osi g lównej C n wynosi 1 (zwane reprezentacjami symetrycznymi wzgledem tego obrotu) oznacza sie symbolem A, reprezentacje dla których χ(c n ) = 1 (reprezentacje antysymetryczne) - symbolem B Indeksy dolne 1 i 2 dopisane do symbolu A lub B oznaczaja odpowiednio symetrie i antysymetrie reprezentacji wzgledem obrotu wokó l osi C 2 prostopad lej do osi g lównej lub, jeśli taka oś nie istnieje, symetrie(antysymetri e) dla odbicia wzgledem σ v

92 92 Symbolika Mullikena II Znaki i dodaje si e dla zaznaczenia odpowiednio symetrii i antysymetrii wzgl edem odbicia w p laszczyźnie σ h Indeksy dolne g i u stosuje si e dla zaznaczenia odpowiednio symetrii i antysymetrii wzgl edem operacji inwersji Na nasze potrzeby możemy przyjać, że stosowanie indeksów liczbowych dla reprezentacji wielowymiarowych jest dowolne i s luży jedynie ich odróżnieniu od siebie w razie konieczności

93 93 W lasności transformacyjne translacji I grupa D 3 baza dla reprezentacji - trójka wersorów w przestrzeni kartezjańskiej wybieram do rozważań obrót wzgledem osi C 2 pokrywajacej sie z osia OY E C 3 C 2 cos 2π 3 sin 2π 3 0 sin 2π 3 cos 2π

94 94 W lasności transformacyjne translacji II blokowa struktura macierzy reprezentacji pozwala na rozk lad ( E ) ( C 3 ) ( C 2 ) 1 0 cos 2π Γ 3 sin 2π x,y 0 1 sin 2π 3 cos 2π ( ) ( ) ( ) Γ z charaktery reprezentacji Γ x,y odpowiadaja reprezentacji nieprzywiedlnej E para wersorów w kierunkach x, y stanowi baze reprezentacji E wspó lrz edne x, y transformuja sie zgodnie z reprezentacja E wspó lrz edna z transformuje sie zgodnie z reprezentacja A 2

95 95 Wyk lad 10 Operatory rzutowe

96 96 Twierdzenie o rozk ladzie I Twierdzenie Jeżeli reprezentacje Γ przedstawimy w postaci sumy prostej reprezentacji nieprzywiedlnych,. to reprezentacja Γ (ν) pojawi sie w takim rozk ladzie reprezentacji a ν razy, gdzie a ν jest zadane nastepuj aco a ν = 1 χ (ν) (R) χ(r) g R G

97 97 Twierdzenie o rozk ladzie II Dowód. Jeżeli reprezentacje Γ jest suma prosta reprezentacji Γ (µ) a a µ sa odpowiednimi liczbami wystapień, to spe lniona jest nastepuj aca zależność: χ(r) = a µ χ (µ) (R). µ Mnożac obustronnie przez χ (ν) (R) i sumujac po wszystkich elementach grupy otrzymujemy χ (ν) (R) χ(r) = a µ χ (ν) (R) χ (µ) (R) = gδ µν = a ν g R G µ R G

98 98 Operatory rzutowe I Niech ψ = µ n µ i=1 ψ (µ) i gdzie ψ jest dowolna funkcja (wektorem) z przestrzeni V, a ψ (µ) i funkcja (wektorem) transformujacym sie zgodnie z i-tym wierszem reprezentacji nieprzywiedlnej Γ µ. Jak wyznaczyć poszczególne ψ (µ) i? Twierdzenie gdzie ψ (µ) P (µ) i = n µ g i = P (µ) i ψ R D (µ) ii (R) R

99 99 Operatory rzutowe II Rozważmy sume n µ funkcji transformujacych sie zgodnie z kolejnymi wierszami reprezentacji Γ µ ψ (µ) = n µ i=1 ψ (µ) i Twierdzenie ψ (µ) = P (µ) ψ gdzie P (µ) = n µ g χ (µ) (R) R R

100 100 Operatory rzutowe III pos lugiwanie sie operatorami P (µ) jest wygodniejsze niż operatorami P (µ) i w przypadku reprezentacji jednowymiarowych oba zestawy operatorów sa identyczne dla n µ > 1 operatory P (µ) gubia cześć informacji

101 101 W lasności operatorów rzutowych Operatory P sa idempotentne i ortogonalne P (µ) i P (ν) j = P (µ) i δ ij δ µν Suma wszystkich operatorów P jest operatorem identycznościowym ψ = µ n µ i=1 P (µ) i ψ

102 102 Struktura π-elektronowa etylenu I grupa: D 2h baza: walencyjne orbitale p z atomów w egla konwencja: oś x skierowana wzd luż wiazania podwójnego Reprezentacja Γ ( ) 1 0 E 0 1 C z 2 ( ) C y 2 ( ( ) ( ) ( C2 x i σ xy ( ) ( ) σ xz 1 0 σ yz ) )

103 103 Struktura π-elektronowa etylenu II Rozk lad reprezentacji Γ na reprezentacje nieprzywiedlne E C z 2 C y 2 C x 2 i σ xy σ xz σ yz A g B 1g B 2g B 3g A u B 1u B 2u B 3u Γ Γ = B 2g B 1u

104 104 Struktura π-elektronowa etylenu III Operatory rzutowe P B 2g = 1 8 ( E C z 2 + C y 2 C x 2 + i σ xy + σ xz σ yz) P B 1u = 1 8 ( E + C z 2 C y 2 C x 2 i σ xy + σ xz + σ yz)

105 105 Struktura π-elektronowa etylenu IV Rezultat dzia lania operatorów rzutowych P B 2g p z1 = 1 2 (p z 1 p z2 ) P B 2g p z2 = 1 2 (p z 2 p z1 ) P B 1u p z1 = 1 2 (p z 1 + p z2 ) P B 1u p z2 = 1 2 (p z 1 + p z2 )

106 106 Baza orbitali symetrii Struktura π-elektronowa etylenu V φ 1 = 1 2 (p z1 p z2 ) φ 2 = 1 2 (p z1 + p z2 ) Reprezentacja w bazie orbitali symetrii ( ) ( 1 0 E C z ) C y 2 ( ( ) ( ) ( C2 x i σ xy ( ) ( ) σ xz 1 0 σ yz ) )

107 107 Wyk lad 11 Iloczyn prosty reprezentacji. Regu ly wyboru.

108 108 Iloczyn prosty reprezentacji Definicja Niech zestawy funkcji {(ψ (µ) } i {(ψ (ν) } bed a bazami odpowiednio reprezentacji Γ µ i Γ ν Rψ (µ) i = Rψ (ν) j = n µ ψ (µ) k D (µ) ki (R) k=1 n ν l=1 ψ (ν) l D (ν) lj (R) Przez iloczyn prosty reprezentacji Γ µ ν = Γ µ Γ ν bedziemy rozumieć reprezentacje, dla której baza zbiór iloczynów ψ (µ) i ψ (ν) j

109 109 Reprezentacja macierzowa iloczynu prostego Wynik dzia lania operatora R na element zbioru ψ (µ) i ψ (ν) j ma postać R(ψ (µ) i ψ (ν) j ) = n µ n ν k=1 l=1 ψ (µ) k ψ (ν) l D (µ) ki (R)D (ν) (R) lj Stad D (µ ν) kl,ij (R) = D (µ) ki (R)D (ν) lj (R)

110 110 Charaktery reprezentacji iloczynowej Twierdzenie Dowód. χ (µ ν) (R) = χ (µ ν) (R) = χ (µ) (R)χ (ν) (R) χ (µ ν) (R) = n µ n ν i=1 j=1 D (µ) ij n µ n ν i=1 j=1 D (µ ν) ij,ij (R) (R)D (ν) (R) = χ (µ) (R)χ (ν) (R) ij

111 111 Rozk lad reprezentacji iloczynowej Z twierdzenia o rozk ladzie: D 3 E 2C 3 3C 2 A A E E A E E E A 2 = E E A 2 = A 1 A 2 E

112 112 W laściwości iloczynu prostego Twierdzenie Reprezentacja Γ σ zawiera si e w iloczynie Γ µ Γ ν tyle razy, ile razy reprezentacja Γ µ zawiera si e w iloczynie Γ ν Γ σ i tyle razy, ile razy reprezentacja Γ ν zawiera si e w iloczynie Γ µ Γ σ Twierdzenie Iloczyn prosty reprezentacji nieprzywiedlnych Γ µ i Γ ν zawiera reprezentacje pe lnosymetryczna 0 lub 1 razy. Drugi z wymienionych przypadków zachodzi wtedy i tylko wtedy, gdy µ = ν.

113 113 Ca lki I Twierdzenie Jeśli funkcja ψ (µ) i o argumentach x 1, x 2,... x N transformuje sie zgodnie z i-tym wierszem reprezentacji Γ µ, to ca lka... ψ (µ) i dx 1, dx 2,... dx N jest równa zeru lub Γ µ jest reprezentacja pe lnosymetryczna

114 114 Ca lki II Twierdzenie Jeśli funkcje ψ (µ) i i ψ (ν) j o argumentach x 1, x 2,... x N transformuja sie odpowiednio zgodnie z i-tym wierszem reprezentacji Γ µ i j-tym wierszem reprezentacji Γ ν, to... ψ (µ) i φ (ν) j dx 1, dx 2,... dx N = aδ ij δ µν gdzie a jest pewna liczba.

115 115 Regu ly wyboru Kiedy ca lka... ψ 1 Ôψ 2 dx 1, dx 2,... dx N może być różna od zera? Twierdzenie Jeśli jeden ze stanów, mi edzy którymi zachodzi przejście, należy do reprezentacji Γ µ drugi do reprezentacji Γ ν a operator Ô do reprezentacji Γ σ, to przejście indukowane przez operator Ô jest dozwolone, jeśli Γ σ Γ µ Γ ν

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Niezb. ednik matematyczny. Niezb. ednik matematyczny Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )

Bardziej szczegółowo

Matematyczne Metody Chemii I

Matematyczne Metody Chemii I Zwi ekszenie liczby wysoko wykwalifikowanych absolwentów kierunków ścis lych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Matematyczne Metody Chemii I Wyk lad dla III roku Chemii UJ Grzegorz

Bardziej szczegółowo

Matematyczne Metody Chemii I

Matematyczne Metody Chemii I Zwi ekszenie liczby wysoko wykwalifikowanych absolwentów kierunków ścis lych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Matematyczne Metody Chemii I Wyk lad dla III roku Chemii UJ Grzegorz

Bardziej szczegółowo

Matematyczne Metody Chemii I

Matematyczne Metody Chemii I Zwi ekszenie liczby wysoko wykwalifikowanych absolwentów kierunków ścis lych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Matematyczne Metody Chemii I Wyk lad dla III roku Chemii UJ Grzegorz

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Wyk lad 1 Podstawowe struktury algebraiczne

Wyk lad 1 Podstawowe struktury algebraiczne Wyk lad 1 Podstawowe struktury algebraiczne 1 Dzia lanie w zbiorze Majac dane dowolne dwa przedmioty a b możemy z nich utworzyć pare uporzadkowan a (a b) o poprzedniku a i nastepniku b. Warunek na równość

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje

Bardziej szczegółowo

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni

Bardziej szczegółowo

Algebra i jej zastosowania ćwiczenia

Algebra i jej zastosowania ćwiczenia Algebra i jej zastosowania ćwiczenia 13 stycznia 013 1 Reprezentacje liniowe grup skończonych 1. Pokazać, że zbiór wszystkich pierwiastków stopnia n z jedności jest grupa abelowa wzgle dem mnożenia.. Pokazać,

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach

(α + β) a = α a + β a α (a + b) = α a + α b (α β) a = α (β a). Definicja 4.1 Zbiór X z dzia laniami o wyżej wymienionych w lasnościach Rozdzia l 4 Przestrzenie liniowe 4.1 Przestrzenie i podprzestrzenie 4.1.1 Definicja i podstawowe w lasności Niech X z dzia laniem dodawania + b edzie grupa przemienna (abelowa). Oznaczmy przez 0 element

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 6 Podprzestrzenie przestrzeni liniowych Wyk lad 6 Podprzestrzenie przestrzeni liniowych 1 Określenie podprzestrzeni Definicja 6.1. Niepusty podzbiór V 1 V nazywamy podprzestrzeni przestrzeni liniowej V, jeśli ma on nastepuj ace w lasności: (I)

Bardziej szczegółowo

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:

Bardziej szczegółowo

Zadania egzaminacyjne

Zadania egzaminacyjne Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j = 11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas

Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Przestrzenie wektorowe, liniowa niezależność Javier de Lucas Ćwiczenie 1. W literaturze można znaleźć pojȩcia przestrzeni liniowej i przestrzeni wektorowej. Obie rzeczy maj a tak a sam a znaczenie. Nastȩpuj

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

spis treści 1 Zbiory i zdania... 5

spis treści 1 Zbiory i zdania... 5 wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów

Bardziej szczegółowo

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych

Przestrzenie wektorowe, liniowa niezależność wektorów, bazy przestrzeni wektorowych Grupa, cia lo Zadanie 1. Jakie w lasności w zbiorze liczb naturalnych, ca lkowitych, wymiernych, rzeczywistych maj dzia lania a b = a b, a b = a 2 + b 2, a b = a+b, a b = b. 2 Zadanie 2. Pokazać, że (R

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Wyk lad 10 Przestrzeń przekszta lceń liniowych

Wyk lad 10 Przestrzeń przekszta lceń liniowych Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Algebra liniowa. 1. Macierze.

Algebra liniowa. 1. Macierze. Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy

Bardziej szczegółowo

Wyk lad 13 Funkcjona ly dwuliniowe

Wyk lad 13 Funkcjona ly dwuliniowe 1 Izomorfizmy kanoniczne Wyk lad 13 Funkcjona ly dwuliniowe Definicja 13.1. Niech V i W bed przestrzeniami liniowymi. Funkcje ξ : V W R nazywamy funkcjona lem dwuliniowym, jeżeli i a,b R α,β V γ W ξa α

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

Informacje o kursie. Historia mechaniki kwantowej. Niezb. ednik matematyczny. Wyk lad 1

Informacje o kursie. Historia mechaniki kwantowej. Niezb. ednik matematyczny. Wyk lad 1 Wyk lad 1 Informacje o kursie. Historia mechaniki kwantowej. Niezb ednik matematyczny Plan wyk ladów 13 X, 20 X, 27 X, 3 XI - podstawy mechaniki kwantowej: postulaty, uk lady modelowe, formalizm drugiego

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Matematyczne Metody Chemii I Zadania

Matematyczne Metody Chemii I Zadania Matematyczne Metody Chemii I Zadania Mariusz Radoń, Marcin Makowski, Grzegorz Mazur Zestaw Zadanie. Pokazać, że wyznacznik dowolnej macierzy unitarnej jest liczbą o module. Zadanie. Pokazać, że elementy

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

A. Strojnowski - Twierdzenie Jordana 1

A. Strojnowski - Twierdzenie Jordana 1 A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f

Bardziej szczegółowo

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas

Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,

Bardziej szczegółowo

4. Dzia lanie grupy na zbiorze

4. Dzia lanie grupy na zbiorze 17 4. Dzia lanie grupy na zbiorze Znaczna cze ść poznanych przez nas przyk ladów grup, to podgrupy grupy bijekcji jakiegoś zbioru. Cze sto taka podgrupa sk lada sie z bijekcji, które zachowuja dodatkowa

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

w = w i ξ i. (1) i=1 w 1 w 2 :

w = w i ξ i. (1) i=1 w 1 w 2 : S. D. G lazek, www.fuw.edu.pl/ stglazek, 11.III.2005 1 I. MACIERZ LINIOWEGO ODWZOROWANIA PRZESTRZENI WEKTOROWYCH Wyobraźmy sobie, że przestrzeń wektorowa W jest zbudowana z kombinacji liniowych n liniowo

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych

1 Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych Rozwiązywanie układów równań. Wyznaczniki. 2 Wektory kilka faktów użytkowych 2. Wektory. 2.. Wektor jako n ka liczb W fizyce mamy do czynienia z pojęciami lub obiektami o różnym charakterze. Są np. wielkości,

Bardziej szczegółowo

c ze wzoru dwumianowego Newtona obliczyć sumy: a) 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi,

c ze wzoru dwumianowego Newtona obliczyć sumy: a) 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi, 3 Korzystaja c ze wzoru dwumianowego Newtona obliczyć sumy: a) n ( n n k) ; b) 4 W rozwinie ciu dwumianowym: ( 4 a) ) 1, 3 2 obliczyć wartości wyrazów będa cych liczbami ca lkowitymi, ( ) b) 3 13, 5 +

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Literatura: Oznaczenia:

Literatura: Oznaczenia: Literatura: 1. R.R.Andruszkiewicz,,,Wyk lady z algebry ogólnej I, Wydawnictwo UwB, Bia lystok 2005. 2. Cz. Bagiński,,,Wst ep do teorii grup, Wydawnictwo Script, Warszawa 2002. 3. M. Bryński i J. Jurkiewicz,,,Zbiór

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Wyk lad 3 Wyznaczniki

Wyk lad 3 Wyznaczniki 1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

1 Znaleźć wszystkie możliwe tabelki dzia lań grupowych na zbiorze 4-elementowym.

1 Znaleźć wszystkie możliwe tabelki dzia lań grupowych na zbiorze 4-elementowym. Algebra I Bardzo dobrym źród lem zadań (ze wskazówkami do rozwia zań) jest M Bryński, J Jurkiewicz - Zbiór zadań z algebry, doste pny w bibliotece Moje zadania dla studentów z *: https://wwwmimuwedupl/%7eaweber/zadania/algebra2014/grupyzadpdf

Bardziej szczegółowo

Dzia lanie grupy na zbiorze. Twierdzenie Sylowa

Dzia lanie grupy na zbiorze. Twierdzenie Sylowa Dzia lanie grupy na zbiorze. Twierdzenie Sylowa Niech G be dzie dowolna grupa, zaś X zbiorem. 1. Definicja. Dzia laniem grupy G na zbiorze X nazywamy funkcje µ: G X X, µ(g, x) = g x, spe lniaja ca dwa

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

14. Przestrzenie liniowe

14. Przestrzenie liniowe 14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie

Bardziej szczegółowo

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE

Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Elementy analizy funkcjonalnej PRZESTRZENIE LINIOWE Niech K = R lub K = C oraz X - dowolny zbiór. Określmy dwa dzia lania: dodawanie + : X X X i mnożenie przez liczbȩ : K X X, spe lniaj ace nastȩpuj ace

Bardziej szczegółowo

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH Katedra Matematyki i Ekonomii Matematycznej SGH 23 października 2018 Definicja iloczynu skalarnego Definicja Iloczynem skalarnym w przestrzeni liniowej R n nazywamy odwzorowanie ( ) : R n R n R spełniające

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo