Zmęczenie Materiałów pod Kontrolą

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zmęczenie Materiałów pod Kontrolą"

Transkrypt

1 Zmęczi Matriałów pod Kotrolą Wyład Nr 6 ANALIZA SPRĘŻYSTO PLASTYCZNYCH STANÓW NAPRĘŻŃ i ODKSZTAŁCŃ Wydział Iżyirii Mcaiczj i Robotyi Katdra Wytrzymałości, Zmęczia Matriałów i Kostrucji ttp://zwmi.imir.ag.du.pl

2 6.. WYZNACZNI NAPRĘŻŃ i ODKSZTAŁCŃ W PRZYPADKU UPLASTYCZNINIA MATRIAŁU a) rozwiązaia w formi sończoj tylo dla prętów pryzmatyczyc, por. p.6.; b) gomtri złożo: mtody umrycz (p. mtoda lmtów sończoyc MS) sposoby uproszczo, p. rguła Nubra put. 6.3, modl Glii A fic AN AG A A fic AG AN

3 6.. ZGINANI SPRĘZYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH MONOTONICZNYCH Rys. 6.. Bla o przroju prostoątym (a) przy czystym zgiaiu stałym momtm (b) powodującym uplastyczii. Liiowy rozład odształcń (c), tórmu towarzyszy iliiowy rozład aprężń (d lub ). 3

4 4 6.. ZGINANI SPRĘZYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH MONOTONICZNYCH Założia: zgiai prost: momt zgiający działa wzdłuż jdj z główyc osi bzwładości; Koswcja: przroj poprzcz płasi przd odształcim pozostają płasi po odształciu awt gdy wystąpią odształcia plastycz. Stąd: liiowy rozład odształcń (por. rys. 6. c), czyli: (6.) y Wios: Rozład aprężń g (y) w przroju poprzczym bli ma ształt rzywj () w zarsi odształcń od = do = (wartość odształcia w srajj warstwi bli). Rys. 6.. Waru rówowagi: M t Rozład aprężń g (y) możmy wyzaczyć wstawiając do rówaia 6. fucję =f() opisującą rzywą matriału. g ydy t ydy g (6.)

5 5 6.. ZGINANI SPRĘZYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH MONOTONICZNYCH Np. matriał sprężystoidali plastyczy (rys. 6. d): g = dla R / ( ) g = R dla > R / ( > ) (6.3) Rys. 6.. Jśli odształcia w przroju poprzczym bli w puci o współrzędj y=y b osiągą wartość = R / (por. prawa stroa rys. 6.), to a podstawi rów. 6.: y b R (6.4) stąd: yb (6.5) Poiważ rozład aprężń w przroju bli i jst opisay jdym rówaim, rówai (6.) musi być całowa w dwóc przdziałac. W t sposób, dla matriału sprężysto idali plastyczgo, podstawiając (6.4) do (6.), otrzymamy: M y b t y dy R y dy (6.6) yb

6 6 6.. ZGINANI SPRĘZYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH MONOTONICZNYCH Rys. 6.. y y b b dy y R dy y t M (6.6) (6.5) b R y 3 g R R t M dla R / (6.7)

7 6.. ZGINANI SPRĘZYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH MONOTONICZNYCH M g t R 3 R dla R / (6.7) M i momt początu uplastycziia przroju ( = ), M pl momt płgo uplastycziia przroju, Rys. 6.. Zalżość między zormalizowaym momtm gącym (M g /M pl ) a zormalizowaym odształcim warstwy srajj przroju ( / ). t R Począt uplastycziia przroju, gdy = R / =, wówczas: M g M i (6.8) 3 Cały przrój zostai uplastyczioy, gdy y b =, wówczas (z rów. 6.6): Z porówaia rówań 6.7 i 6.9 wyia, ż: M pl lim M g lub M pl lim M / g M M t R. 5M (6.9) g pl i 7

8 8 6.. ZGINANI SPRĘZYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH MONOTONICZNYCH W blc statyczi wyzaczalj momt M g =M pl powoduj utratę ośości, a sut powstaia dodatowgo przgubu w uplastyczioym przroju (rys.6.3). Jżli M g M i, to z rów. 6.7 moża wyzaczyć masymal odształci jao: R t R (6.) 3 t R M lub uwzględiając (6.9): R M pl (6.) 3M pl M g g Rys Powstai przgubu plastyczgo przy trójputowym zgiaiu.

9 6.3. ZGINANI SPRĘŻYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH CYKLICZNYCH ( a = cost.) 9 Nic M g zmiia się cyliczi między M i M mi (rys.6.4a). Rys Bla o przroju prostoątym przy cyliczym zgiaiu (a) powodującym uplastyczii przy obciążiu i odciążiu. Rozład cyliczyc aprężń (b) i odształcń (c). Zmiość aprężń w fucji odształcń w włóac srajyc (d) oraz zalżość między poziomm odształcń w włóac srajyc a obciążim cyliczym Mg ().

10 6.3. ZGINANI SPRĘŻYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH CYKLICZNYCH ( a = cost.) Rówaia rówowagi a poziomac M g = M i M g = M mi (por. rów. 6.): M t ydy M mi t mi ydy (6.) M M M t mi ydy (6.3) gdzi: = (y) mi (y) ( mi ) rozład aprężń (y) gdy M g =M (M g =M mi ) Na ażdym poziomi momtu M g obowiązuj prawo płasic przrojów (por. rys. 6.4c): / y / (6.4) Rys. 6.4.

11 6.3. ZGINANI SPRĘŻYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH CYKLICZNYCH ( a = cost.) Rys Rówaia (6.3) i (6.4) są formali idtycz z (6.) i (6.): (6.) t ydy M t g ydy (6.3) (6.) M / y / / y / (6.4) Stąd aprężia i odształcia przy odciążaiu od M do M mi moża obliczyć ja przy mootoiczym obciążaiu od O do M g = M, przy czym: I. M g, g, zastępujmy przz M,, II. posługujmy się dwuroti rozszrzoą rzywą = f(): / = f(/), tj. a = f( a ) (6.5) III. obliczamy: mi = = a ; mi = = a (6.6) IV. przy poowym obciążiu stosujmy tę samą procdurę, al począt uładu (, ) jst w puci ( mi, mi ). Gdy M g po raz drugi osiąga poziom M, wirzcoł pętli istrzy zajduj się poowi w puci (, ), rys.6.4d.

12 6.3. ZGINANI SPRĘŻYSTOPLASTYCZN PRĘTA PRYZMATYCZNGO O PRZKROJU PROSTOKĄTNYM PRZY OBCIĄŻNIACH CYKLICZNYCH ( a = cost.) Przy wyidalizowaym założiu, ż własości matriału i ulgają zmiai przy obciążiac cyliczyc, put (,) poruszałby się cały czas po jdj i tj samj zamiętj pętli istrzy. Jżli oprujmy amplitudami, a i zarsami to, rówaia mootoiczj i cyliczj rzywj odształcia są formali idtycz: =f( ) a =f( a ) (6.7) Stąd zalżości między, i M oraz między a i M a są tż formali idtycz: = g(m ) a = g(m a ) (6.8) Rys Przyład: matriał sprężystoidali plastyczy. W przypadu uplastycziia przroju przy M i M mi dostajmy z rówań (6.3b) i (6.) astępując wartości aprężń i odształcń w warstwi srajj: ; R M pl R M pl R ; a R ; 3( M pl M ) a ; ( M M ) 3 pl a mi mi a a R (6.9)

13 3 6.4 PRZYBLIŻON WYZNACZANI NAPRĘŻŃ I ODKSZTAŁCŃ W STRFI PLASTYCZNJ KARBU RGUŁA NUBRA Rys.6.5. Ilustracja rguły Nubra: a) lmt z arbm i rzywa odształcia wraz z iprbolą Nubra; b) zmiość współczyia octracji aprężń i odształcń w arbi; c), d) zmiość odpowidio odształcń i aprężń w arbi w fucji aprężia omialgo (liia przrywaa rozwiązai liiowosprężyst).

14 4 6.4 PRZYBLIŻON WYZNACZANI NAPRĘŻŃ I ODKSZTAŁCŃ W STRFI PLASTYCZNJ KARBU RGUŁA NUBRA Jżli matriał w strfi arbu uplastyczia się, to loal odształcia są więsz, iż t S/ (rys.6.5c), a loal aprężia iższ iż t S (rys.6.5d). Nalży, więc zdfiiować oddzili współczyii octracji dla aprężń i odształcń: S (6.) Rys.6.5 Jżli S R (co zazwyczaj ma mijsc), to: Rguła Nubra: gdzi: odształcia omial związa z aprężim omialym S w myśl rówaia rzywj odształcia matriału S=f(). S (6.) t (6.)

15 6.4 PRZYBLIŻON WYZNACZANI NAPRĘŻŃ I ODKSZTAŁCŃ W STRFI PLASTYCZNJ KARBU RGUŁA NUBRA Rguła Nubra: t (6.) Rys.6.5 Jżli przy osiowym rozciągaiu astąpiłoby pł uplastyczii przroju, (S = R ), to, a więc w myśl (6.), t, co przdstawia rys. 6.5b. S S S t t S S S (6.3) t Jżli = f() ma postać rzywj Rambrga Osgooda: H S t (6.4) H (6.5) 5

16 6 6.4 PRZYBLIŻON WYZNACZANI NAPRĘŻŃ I ODKSZTAŁCŃ W STRFI PLASTYCZNJ KARBU RGUŁA NUBRA Rguła Nubra: t (6.) t S (6.3) ts (6.5) H Rys.6.5 Uwaga: W pratyc w clu wyzaczia loalyc odształcń i aprężń przy użyciu rguły Nubra ajwygodij jst orzystać z uładu rówań (6.3) i (6.5). W clu wyzaczia amplitud, zastępujmy w (6.3) i (6.5), i S przz odpowidio a, a i S a.

17 7 6.4 PRZYBLIŻON WYZNACZANI NAPRĘŻŃ I ODKSZTAŁCŃ W STRFI PLASTYCZNJ KARBU RGUŁA NUBRA S H t (6.5) Przybliżo rozwiązaia (6.5) mtoda Nwtoa: ) ( ) ( x f x f x x I ta oljo: ) ( ) ( x f x f x x Procs otyuoway jst, pói (x i+ x i ) i spadi poiżj pwj ustaloj wartości. Szrg {x i } jst zbiży do pirwiasta rówaia, o il f (x i ). i i t i i i i H S H (6.7) (6.6) Jżli x jst przybliżoą wartością pirwiasta rówaia f(x) =, to lpsz przybliżi daj wartość:

18 6.5. UOGÓLNIONA PROCDURA WYZNACZANIA SPRĘŻYSTO PLASTYCZNYCH NAPRĘŻŃ I ODKSZTAŁCŃ Obciążia stałoamplitudow: Założia: a) Fucja = f() pozostaj przz cały czas izmia; zazwyczaj fucję f przyjmujmy ta, by opisywała ustabilizowaą cyliczą rzywą odształcia: a = f( a ) b) Gałęzi pętli istrzy moża opisać rówaim a = f( a ), lub / = f(/), przy czym począt uładu ( a, a ) lub (, ) ażdorazowo lży w puci awrotu obciążia, a początu daj gałęzi. odształci uogólio (liiow lub ątow w próbc gładij lub w arbi) S siła uogólioa (siła, momt, ciśii, aprężi omial w próbc z arbm) Jżli przy obciążiu mootoiczym = g(s) (6.8) oraz = f() (6.9) to przy spłiiu założń a) i b) mamy dla obciążń cyliczi zmiyc: =g(s ), =f( ), a =g(s a ), a =f( a ), mi = a, mi = a (6.3) Uwaga: Dla lmtów z arbami rówaia (6.8) i (6.9) ajorzystij jst przształcić do postaci (6.3) i (6.5). 8

19 UOGÓLNIONA PROCDURA WYZNACZANIA SPRĘŻYSTO PLASTYCZNYCH NAPRĘŻŃ I ODKSZTAŁCŃ Obciążia stałoamplitudow: Przyład: Płyta z arbm o współczyiu ształtu t =.8 z stali AISI 434 obciążaa jst cyliczi zmiiającą się siłą osiową. Wyiając stąd aprężia omial wyoszą S = 75 MPa i S mi = 5 MPa. Wyzaczyć loal aprężia i odształcia w arbi, załadając, ż cyliczą rzywą odształcia moża opisać rówaim Rambrga Osgooda, w tórym: = 7 MPa, H' = 655 MPa, ' =.3. Rozwiązai: Stosujmy procdurę wg rówań (6.8) do (6.3), przy czym (6.8) i (6.9) przdstawiamy w formi (6.3) i (6.5). / (6.5) ( / H ) / ( S ) t Po podstawiiu wartości liczbowyc: (7 /655 /.3 ) /.3 (.875) Z przybliżogo rozwiązaia mtodą Nwtoa (rów. 6.7) dostajmy: (6.3) t S S t = 97 MPa =.9

20 6.5. UOGÓLNIONA PROCDURA WYZNACZANIA SPRĘŻYSTO PLASTYCZNYCH NAPRĘŻŃ I ODKSZTAŁCŃ Przyład: Da: t =.8, S = 75 MPa, S mi = 5 MPa, = 7 MPa, H' = 655 MPa, ' =.3 /.3 /.3 Rozwiązai (c.d.): (7 /655 ) (.875) S t = 97 MPa =.9 W aalogiczy sposób wyzacza się a i a : / / (6.5) ( / H ) ( S ) S a a S S / 75 5/ 35 MPa mi a t a /.3 a (7 /655 ) a /.3 (.835) Z mtody Nwtoa dostajmy: a = 755 MPa (6.3) a tsa a a a =.65 mi = a =.96 mi = a = 538 MPa

21 S (MPa) a, S a (MPa) 6.5. UOGÓLNIONA PROCDURA WYZNACZANIA SPRĘŻYSTO PLASTYCZNYCH NAPRĘŻŃ I ODKSZTAŁCŃ Obciążia zmioamplitudow: Obowiązują założia z p.6.4. Przyład: Da: lmt z arbm ja a rys. 6.6a. a) b) P fucja = g(s), rys.6.6b 6 / t (,) fucja = f(), rys.6.6b t =.4 4 a =f( a ) przbig aprężia omialgo w czasi S = P/A a =g(s a ) S(t), rys 6.6c P. a. c) 4 A C A G d) G A 4 B B D F F t D H F m B = a MPa.5 Rys.6.6. Aaliza aprężń i odształcń w lmci z arbm poddaym zmioamplitudowj istorii obciążia, objaśiia w tści

22 S (MPa) 6.5. UOGÓLNIONA PROCDURA WYZNACZANIA SPRĘŻYSTO PLASTYCZNYCH NAPRĘŻŃ I ODKSZTAŁCŃ Rozwiązai: I. Przstawiamy fucję S(t) ta, by zaczyała się i ończyła a ajwyższym co do modułu strmum (S A Rys. 6.6c). II. Wyzaczamy aprężia i odształcia w arbi A i A, odpowidio z (6.5) i (6.3), ładąc = A, = A, S = S A, tj.: / / A ( / H ) A ( ts A) A ts A A 4 4 Rys 6.6c A A C G B B F F D t III. Uwzględiając ft pamięci matriału, wyzaczamy (zgodi z IV bc) amplitudy loalyc aprężń i odształcń a i a (lub zarsy, ), gdzi, i S są mirzo od putów odoszącyc się do oljyc strmów w S(t). Wartości a i a (, ) wyzaczamy z uładu rówań (6.3) i (6.5) ładąc = a (lub /), = a (lub /) i S = S A (lub S/). IV.Przy przjściu do ażdgo oljgo strmum Z w przbigu S(t) sprawdzamy, czy aliczay jst cyl XY mtodą Raiflow. Jżli ta, to alży: a) zapamiętać cyl od (S x, x, x ) do (S y, y, y ) b) przy otyuacji aalizy usuąć wydarzi XY X' z S(t), tz. gdy S x = S x to x = x, x = x c) cofąć się do strmum W (poprzdzającgo X) i otyuować zgodi z III. X W Y X Z Y( y, y ) X( X, x ) X ( X, x )

23 S (MPa) 6.5. UOGÓLNIONA PROCDURA WYZNACZANIA SPRĘŻYSTO PLASTYCZNYCH NAPRĘŻŃ I ODKSZTAŁCŃ Rozwiązai: Z IV (a) do (c) wyia, ż ażda zamięta pętla istrzy orspoduj z cylm zliczaym mtodą Raiflow. Doumtacja zastosowaia procdury III i IV do przyładu z rys 6.6 Zars S AB S BC S AD S D S F S FG S H Naliczay cyl BC FG H AD Wyzaczoy wirzcoł pętli istrzy (począt uładu,) B (A) C (B) B B D (A) (D) F () G (F) F F H (H) A A c) 4 4 A C B B D Zapomia wydarzi wg (4b) BCB FGF H ADA A G F F t D H d) m F B = a G C A MPa.5 3

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI

Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai

Bardziej szczegółowo

L.Kowalski Systemy obsługi SMO

L.Kowalski Systemy obsługi SMO SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń

Bardziej szczegółowo

Integralność konstrukcji w eksploatacji

Integralność konstrukcji w eksploatacji 1 Integralność konstrukcji w eksploatacji Wykład 0 PRZYPOMNINI PODSTAWOWYCH POJĘĆ Z WYTRZYMAŁOŚCI MATRIAŁÓW Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji Integralność konstrukcji Wykład Nr 3 Zależność między naprężeniami i odkształceniami Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji 2 3.. Zależność

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

WYKŁAD 2. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 1 Drgania swobodne

WYKŁAD 2. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 1 Drgania swobodne WYKŁD Rozdział : Drgaia układu liiowgo o jdym stopiu swobody Część Drgaia swobod.. Modl fizycz układów o jdym stopiu swobody Przypomijmy, ż drgaia swobod to drgaia, któr odbywają się bz udziału wymuszń

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

X, K, +, - przestrzeń wektorowa

X, K, +, - przestrzeń wektorowa Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

3. KRATOWNICA JAKO BEZPOŚREDNIA ILUSTRACJA METODY

3. KRATOWNICA JAKO BEZPOŚREDNIA ILUSTRACJA METODY 3. KRAOWNICA JAKO BEZPOŚREDNIA IUSRACJA MEODY 3. KRAOWNICA JAKO BEZPOŚREDNIA IUSRACJA MEODY Chcąc w ajprostszy sposób zilustrować ię poziału struktury a lmty (yskrtyzacji) oraz tchikę buowaia macirzy sztywości

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska MATEMATYKA zadaia domow dla studtów Ekoomii rok /7 Zstaw opraowała dr iż Alia Jóźwikowska PRACA DOMOWA 5/EK CIĄGI LICZBOWE Zad Zbadać mootoizość iągu o wyrazi ogólym! a a b a a! zad Wykazać ograizoość

Bardziej szczegółowo

ZAJĘCIA 3 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY

ZAJĘCIA 3 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY PRZYKŁADY OBLICZENIOWE WYMIAROWANIE PRZEKROJÓW ZGINANYCH PROSTOKĄTNYCH POJEDYNCZO ZBROJONYCH ZAJĘCIA 3 PODSTAWY PROJEKTOWANIA KONSTRUKCJI

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak

Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak Modl Ramsy a-cass a-koopmas a Dr hab. Joaa Siwińsa-Gorzla Pla wyładu Wprowadzi do modlu Mody mamayz Rozwiązai modlu Wiosi Uwaga a slajdah zajdują się wyłązi głów lmy; sporo wyjaśiń js omawiayh podzas wyładu,

Bardziej szczegółowo

H brak zgodności rozkładu z zakładanym

H brak zgodności rozkładu z zakładanym WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy

Bardziej szczegółowo

Zadanie 1. Dla ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych. DANE

Zadanie 1. Dla ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych. DANE 4. Obiczanie sił wewnętrznych w ramach płaskich i przestrzennych. Sporządzanie wykresów 4.1 Zadanie 1. Da ramy przestrzennej przedstawionej na rys. 1 wyznaczyć reakcje i sporządzić wykresy sił wewnętrznych.

Bardziej szczegółowo

INDUKCJA MATEMATYCZNA

INDUKCJA MATEMATYCZNA MATEMATYKA DYSKRETNA (4/5) dr hab. iż. Małgorzata Stera malgorzata.stera@cs.put.poza.pl www.cs.put.poza.pl/mstera/ INDUKCJA MATEMATYCZNA Matematya Dysreta Małgorzata Stera FUNKCJA SILNIA dla, fucja silia

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Wytrzymałość śruby wysokość nakrętki

Wytrzymałość śruby wysokość nakrętki Wyzymałość śuby wysoość aęi Wpowazeie zej Wie Działająca w śubie siła osiowa jes pzeoszoa pzez zeń i zwoje gwiu. owouje ozciągaie lub ścisaie zeia śuby, zgiaie i ściaie zwojów gwiu oaz wywołuje acisi a

Bardziej szczegółowo

Metoda najszybszego spadku

Metoda najszybszego spadku Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4 .9. Stalowy ustrój niosący. Poład drewniany spoczywa na dziewięciu belach dwuteowych..., swobodnie podpartych o rozstawie... m. Beli wyonane są ze stali... Cechy geometryczne beli: długość całowita: L

Bardziej szczegółowo

PROCEDURA ANALIZY KOLIZYJNEGO STRUMIENIA POJAZDÓW SKRĘCAJACYCH W LEWO. Osobna faza i dodatkowy pas ruchu dla relacji w lewo SL jest konieczna, gdy

PROCEDURA ANALIZY KOLIZYJNEGO STRUMIENIA POJAZDÓW SKRĘCAJACYCH W LEWO. Osobna faza i dodatkowy pas ruchu dla relacji w lewo SL jest konieczna, gdy ROCEDURA ANALIZY KOLIZYJNEO TRUMIENIA OJAZDÓW KRĘCAJACYCH W LEWO 1) Koiczość wydziia osobj azy i dodatkowgo pasa rch da racji w o L Osoba aza i dodatkowy pas rch da racji w o L jst koicza, gdy 1 400 /h

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

Integralność konstrukcji

Integralność konstrukcji 1 Integralność konstrukcji Wykład Nr 4 Metoda naprężenia nominalnego Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl/dydaktyka/dla_studentow/imir/imir.html

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

15. CAŁKA NIEOZNACZONA cz. I

15. CAŁKA NIEOZNACZONA cz. I 5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Obciążenia zmienne. Zdeterminowane. Sinusoidalne. Okresowe. Rys Rodzaje obciążeń elementów konstrukcyjnych

Obciążenia zmienne. Zdeterminowane. Sinusoidalne. Okresowe. Rys Rodzaje obciążeń elementów konstrukcyjnych PODSTAWOWE DEFINICJE I OKREŚLENIA DOTYCZĄCE OBCIĄŻEŃ Rodzaje obciążeń W warunkach eksploatacji elementy konstrukcyjne maszyn i urządzeń medycznych poddane mogą być obciążeniom statycznym lub zmiennym.

Bardziej szczegółowo

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Problem. Jak praktycznie badać jednostajną ciągłość funkcji? EAIiIB-Iormatya - Wyład 3- dr Adam Ćmiel miel@.agh.edu.pl Ciągłość uji w puie e. Fuję : azywamy iągłą w puie jeżeli Heie Cauhy Uwaga: Put ale ie musi być putem supieia zbioru. Jeżeli jest putem izolowaym

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Automatyzacja Procesów Przemysłowych

Automatyzacja Procesów Przemysłowych Automatyzacja Procsów Przmysłowych Tmat: Układ rgulacji zamknięto-otwarty Zspół: Kirunk i grupa: Data: Mikuś Marcin Mizra Marcin Łochowski Radosław Politowski Dariusz Szymański Zbigniw Piwowarski Przmysław

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI

ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące

Bardziej szczegółowo

WYBRANE METODY BADANIA STABILNOŚCI UKŁADÓW LTV SELECTED STABILITY EXAMINATION METHODS OF LTV SYSTEMS

WYBRANE METODY BADANIA STABILNOŚCI UKŁADÓW LTV SELECTED STABILITY EXAMINATION METHODS OF LTV SYSTEMS ELEKTRYKA 215 Zszy 1 (233) Rok LXI Aa PIWOWAR Polichika Śląska w Gliwicach WYBRANE METODY BADANIA STABILNOŚCI UKŁADÓW LTV Srszczi. W arykul przprowadzoo aalizę sabilości ilrów paramryczych pirwszgo rzędu

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH

CHARAKTERYSTYKI CZASOWE UKŁADÓW DYNAMICZNYCH CHARAKERYSYKI CZASOWE UKŁADÓW DYNAMICZNYCH Zadani Chararyyi czaow uładów. Odpowidź oową wyznacza ię z wzoru: { } Problm: h L G X Wyznaczyć odpowidz oową i impulową całującgo z inrcją G h L G gdzi: Y X

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2

k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2 Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Wymiana ciepła przez promieniowanie

Wymiana ciepła przez promieniowanie dr iż. Michał Strzszwski 003-006 yiaa cipła przz proiiowai Matriały do ćwiczń z wyiay cipła v..05. prowadzi Każd ciało wysyła pwą ilość rgii ciplj w postaci proiiowaia. Proiiowai cipl oż być traktowa jako

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI 2 PEARSONA ROZKŁAD GAUSSA Ćwiczeia rachuowe TEST ZGODOŚCI PEARSOA ROZKŁAD GAUSSA UWAGA: a stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz alulacyjy do programu Calc paietu Ope Office, iezbędy podczas

Bardziej szczegółowo

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego

W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Zmiana wartości pieniądza

Zmiana wartości pieniądza Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI

WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo