4. Statystyka elektronów i dziur
|
|
- Jakub Kwiatkowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu rmigo o tmpratury
2 Gęstość staów w paśmi D D D ( ( ( ( ( ( 4 ( ( * ( m c + c m * ( / ρ * ( m ρ c m ρ / * ( D D D la ulistyc powirzci izorgtyczyc: ( ( (a j ł
3 Gęstość staów w paśmi przwoictwa i walcyjym Gęstość staów w paśmi walcyjym: m m *; (- c ( v - pasmo przwoictwa: g(~(m * / (- c / pasmo walcyj: g(~(m * / ( V - / g( pasmo walcyj g pasmo przwoictwa v C rgia Ogólij (la lipsoialyc powirzci izorgtyczyc, zgrowayc pasm: masa ftywa gęstości staów m M / / * (mxmymz liczba miimów
4 Przyła - strutura -wymiarowa C C g A g g( g D * L Z g D Al x Ga -x As v L z GaAs GaAs v rgia Al x Ga -x As lasr półprzwoiowy warstwa buforowa PODŁOŻ więsz prawopoobiństwo misji scytoowj mijsza gęstość staów mijsza gęstość prąu progowgo w acji lasrowj 4
5 prawopoobistwo f( Rozła rmigo-diraca T T0 T >0 T >T rgia T f f f T ( la < ( > ( 0 K : 0 K 0 la + xp T > - poziom rmigo, f( ½ - >> T: f ( xp{-(- / T} Dla ziur: f( f + xp T ->> T: f ( xp{-( -/ T} 5
6 Koctracja swoboyc ltroów i ziur w rówowaz trmoyamiczj T0 K bra ltroów w paśmi przwoictwa i ziur w p. walcyjym T>0 Im wyższa tmpratura, tym więsz prawopoobiństwo pojawiia się swobogo ltrou w pasmi przw. i ziury w pasmi walcyjym 6
7 Koctracja ltroów w paśmi przwoictwa ( f (g ( ( c Półprzwoi izgroway 7
8 Koctracja ltroów w paśmi przwoictwa w rówowaz trmoyamiczj Półprzwoi izgroway ( C - >> T ( m * T / / c c f ( ξ ; (g c ξ T ( / ( ξ 0 / x x + xp( x ξ / ξ ξ ( ξ la << cxp c T, gzi C (m * T / 8
9 Koctracja ziur w paśmi walcyjym w rówowaz trmoyamiczj Półprzwoi izgroway ( - V >> T p p v p( f m * v T ( ρ ( / / ( η ; η T V / ( η 0 / x x + xp( x η (η η la η << p v xp T v, gzi v (m * T / 9
10 0 0 Półprzwoi zgroway / >> >> >> >> T 4 ] ( m 8[ la ; ξ (ξ( c c / c * ξ / > T 4 p la ; η (η( V c η /
11 Półprzwoi samoisty Poziom rmigo w półprzwoiu samoistym: p ½ g p i cv xp T g + ¾ m * Tl m * ½ g i - octracja ośiów samoistyc p i zawsz w waruac rówowagi trmoyamiczj! g i (00 K ~0.5 V 0 6 cm - ISb,PbS ~ V 0 0 cm - G, Si, GaAs ~4 V <0 0 cm - ZS, SiC, Ga
12 Poziom rmigo w fucji tmpratury w półprzwoiu samoistym C rgia i m *<m * m *>m * V tmpratura zwyl g g (0-βT (wyia z rozszrzalości ciplj ryształu
13 Domiszowai typ p i Przyła - rzm Sb oor (5 ltroów walcyjyc acptor ( ltroy walcyj
14 Doory i acptory mol wooropooby Atom wooru: m (4ε.6 V 4ε r o m o 0.05 m Płyti oor w rysztal: ε o εε o m m* (masa ftywa la G: r m * ε m rεm m * 0.0V 80 r płyti poziom rgtyczy w przrwi wzbroioj 4
15 5 5 Koctracja ltroów i ziur a poziomac loalyc p ; p ; T A A T D D A A A D D D D + + +
16 Półprzwoi omiszoway - octracja oorów waru utralości: D+ + p D - D +p D + oc. zjoizowayc oorów D oc. obsazoyc oorów T<Ts pomięzy poziomm omiszowym a rawęzią pasma c + T l c T s <T<T i c Tl c T>T i : i ja w półprz. samoistym 6
17 Koctracja ltroów w pasmi przwoictwa w fucji tmpratury (półprzwoi omiszoway isi T c xp( / pośri T wysoi T <<, g / T tgα tgα g ośii mijszościow: p i /<< i 7
18 8 8 Półprzwoi sompsoway ( ( ( a p a a a Dla ostatczi użyc T i >> a - a T xp C
4. Statystyka elektronów i dziur
4. Statystya ltroów i ziur Gęstość staów Kotraja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i aptory Półprzwoi omiszoway, zalżość otraji swoboy ośiów i poziomu
3. Struktura pasmowa
3. Strutura pasmowa Funcja Blocha Quasi-pęd, sić odwrotna Przybliżni prawi swobodngo ltronu Dziura w paśmi walncyjnym Masa ftywna Strutura pasmowa (), przyłady Półprzwodnii miszan ltron w rysztal sformułowani
Półprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś
3. Struktura pasmowa
3. Stutua pasmowa Funcja Blocha Quasi-pęd, sić odwotna Pzybliżni pawi swobodngo ltonu Dziua w paśmi walncyjnym Masa ftywna Stutua pasmowa (), pzyłady Półpzwodnii miszan lton w ysztal sfomułowani poblmu
Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Proste struktury krystaliczne
Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne
Półprzewodniki (ang. semiconductors).
-5- Półrzwod a. sodutors. Ja.Szzyto@uw.du.l tt://www.uw.du.l/~szzyto/ RGIA LKROÓW ora asowa ał stały. aso ust aso ust aso ust aso ł aso ł aso ł Uwrsytt Warszaws tal ółrzwod zolator Ja zobazyć rzrwę? Przrwa
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu
Własności płynów - zadania
Zadanie 1 Naczynie o objętości V = 0,1 m³ jest wypełnione cieczą o masie m = 85 kg. Oblicz gęstość cieczy oraz jej ciężar właściwy. Gęstość cieczy: ciężar właściwy cieczy: ρ = m V = 85 = 850 kg/m³ 0,1
Teoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Wiązania. w świetle teorii kwantów fenomenologicznie
Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja
Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4
MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego
Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa
Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych
Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima
Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Półprzewodniki (ang. semiconductors).
Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn
ul. Umultowska 89b, Collegium Chemicum, Poznań tel ; fax
Wydział Chemii Zakład Chemii Analitycznej Plazma kontra plazma: optyczna spektrometria emisyjna w badaniach środowiska Przemysław Niedzielski ul. Umultowska 89b, Collegium Chemicum, 61-614 Poznań tel.
1. Struktura pasmowa from bonds to bands
. Strutura pasmowa from bonds to bands Wiązania owalencyjne w cząsteczach Pasma energetyczne w ciałach stałych Przerwa energetyczna w półprzewodniach Dziura w paśmie walencyjnym Przybliżenie prawie swobodnego
Układ okresowy Przewidywania teorii kwantowej
Przewiywania teorii kwantowej Chemia kwantowa - oumowanie Czątka w ule Atom wooru Równanie Schroeingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - oumowanie rozwiązanie Czątka w ule Atom wooru Ψn
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola
Ł Ę Ć Ż ć Ć Ł Ł Ó Ź Ń Ż Ś Ó Ó ć Ę Ś Ź Ś Ó Ż Ź ź Ć Ź Ś Ź Ę Ż Ł Ó Ć Ś Ć Ć Ę Ł Ś ć Óć Ó Ę Ń ć Ę Ó Ź Ż Ź Ź ć ź Ó Ę Ę Ę Ź Ę Ź Ę Ś Ź ć Ć Ć Ł Ó Ó Ń ź Ę Ę Ń Ł Ź Ń Ż ć Ę ź Ę ź Ę Ł ć Ł Ź ź ź Ł Ę Ó ź ć Ż Ś ć Ł Ł
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Krawędź absorpcji podstawowej
Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka
Zmęczenie Materiałów pod Kontrolą
Zmęczi Matriałów pod Kotrolą Wyład Nr 6 ANALIZA SPRĘŻYSTO PLASTYCZNYCH STANÓW NAPRĘŻŃ i ODKSZTAŁCŃ Wydział Iżyirii Mcaiczj i Robotyi Katdra Wytrzymałości, Zmęczia Matriałów i Kostrucji ttp://zwmi.imir.ag.du.pl
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
EFEKT PAMIĘCI KSZTAŁTU
EFEKT PIĘCI KSZTŁTU 1. Przykłady efektu. 2. Co się dzieje podczas odwracalnej przemiany martenzytycznej? 3. Przykłady stopów wykazujących pamięć kształtu. 4. Charakterystyka przemiany. 5. Opis termodynamiczny.
Model elektronów swobodnych w metalu
Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Projekt FPP "O" Kosma Jędrzejewski 13-12-2013
Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Przewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
ELEMENTY ELEKTRONICZNE
AKADMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWI Wydział Iformatyki, lektroiki i Telekomuikacji Katedra lektroiki LMNTY LKTRONICZN dr iż. Piotr Dziurdzia aw. C-, okój 41; tel. 617-7-0, iotr.dziurdzia@agh.edu.l
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Wykład 12. Anna Ptaszek. 16 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 12.
Wykład 12 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 16 września 2016 1 / 23 Pomiar lepkości wiskozymetry (lepkościomierze) 2 / 23 Pomiar lepkości reometry rotacyjne 3 / 23 Pomiar lepkości reometry
Ń Ź ź Ź ć Ę ć Ę Ż Ą ć Ą ć ć Ż ć ć ć Ó Ż ć ć ć ć ć Ź ć Ś Ż ć Ń ć Ż Ć ć Ś Ć Ż Ń ź Ż Ń Ż Ź ć Ę Ś ć ź ć Ż ć Ź ć Ś ć ć ć Ż ć ć ć ć ć ć ć ć Ź ć Ż Ś ć Ń Ń Ź Ź Ź Ź ć Ź Ż Ż Ż Ż Ą Ż ć ć Ż Ż Ź ź Ż Ż Ą ć Ż Ś ć Ż Ó
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Pasma energetyczne. W krysztale około cm -3 atomów dostępne energie dla elektronów układają się w pasma.
Pasa tycz W ysztal ooło 3 c -3 atoów dostęp i dla ltoów uładają się w pasa. Pozioy tycz dla o Ni o óżj Ilości atoów Scat powstawaia pas tyczyc pzy zbliżaiu do sibi dużj liczby atoów. Moży ić pzwy tycz
Teoria struktury kapitału
Toria strutury apitału Dr Tomasz Słońsi Toria strutury apitału, Moigliani-Millr (MM), Nobl w zizini onomii Powaliny nowoczsnj torii strutury apitału zostały położon w rou 1958 w molu, tóry opirał się o
II WARMIŃSKO-MAZURSKIE FORUM DROGOWE LIDZBARK WARMIŃSKI
II WARMIŃSKO-MAZURSKIE FORUM DROGOWE LIDZBARK WARMIŃSKI dr hab. inż. Marek J. Ciak dr inż. Natalia Ciak mgr inż. Kacper Sikora 2015-10-04 Tempo realizacji inwestycji w budownictwie i drogownictwie ostatnich
NATURALNY REAKTOR JĄDROWY
Piotr Bednarczyk Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk NATURALNY REAKTOR JĄDROWY CZY WARTOŚĆ STAŁEJ STRUKTURY SUBTELNEJ ZMIENIA SIĘ W CZASIE? WYKŁAD HABILITACYJNY
NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim
Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i
Teoria VSEPR. Jak przewidywac strukturę cząsteczki?
Teoria VSEPR Jak przewidywac strukturę cząsteczki? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie. Rozkład elektronów walencyjnych w cząsteczce (struktura Lewisa) stuktura
PL B1. Politechnika Wrocławska,Wrocław,PL BUP 02/04
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203033 (13) B1 (21) Numer zgłoszenia: 355071 (51) Int.Cl. H01S 5/343 (2006.01) H01L 31/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Ą ć ć ć ć Ź Ź ź ź Ę Ł Ń Ą ź Ł Ę Ę Ń Ń Ź Ź ć Ę Ę Ś ź ć ć ć ć Ź ź ć ć ć ć ć ć ć ć ć Ź ć ć ć ć ć Ź ć ć Ć ć Ę Ą Ś Ń Ń ź Ń Ź ź ć ć ć Ą Ą ć ź ź ć Ę ć ź Ą ć Ń Ę Ę Ę Ę ć Ą Ę ć ź Ó ć ć Ń Ę Ń Ń ć Ś Ą Ę ć Ś ć Ń
Plan wykładu. Wybrane aspekty nanotechnologii. Zasady zaliczenia. Epoka NANO. Wydział Fizyki UW
7 Wybra asty aotolo Pla wyładu Powtórz. Pasma w ółrzwoda Htrostrutury ółrzwodow stud watow Potjał armozy. Kro watow. rasort, tulowa, bloada ulombowsa. Obsadza staów, ęstoś staów, ozom rmo. Htrostrutury
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Załącznik nr 1. Projekty struktur falowodowych
Załącznik nr 1 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal
1 Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal Gęste pary metali (wzrost gęstości -> I-M) niemetale poddane wysokiemu ciśnieniu -> I-M Cs-CsH (wzrost ciśnienia wodoru
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
PIERWIASTKI W UKŁADZIE OKRESOWYM
PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy
ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa]
ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI 1. NapręŜenia pierwotne z ρ napręŝenia od obciąŝenia nadległymi warstwami gdzie: z = ( ρ h ) g = ( γ h ) i i i i ρ ρ i gęstość
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina
Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących
Relacje pomiędzy strukturą, symetrią i widmem energetycznym kryształów w ramach koncepcji elementarnych pasm energetycznych
Relacje pomiędzy strukturą symetrią i widmem energetycznym kryształów w ramach koncepcji elementarnych pasm energetycznych Małgorzata Sznajder Instytut Fizyki Uniwersytet Rzeszowski Instytut Fizyki Jądrowej
Porównanie statystyk. ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt. - potencjał chemiczny
Porównanie statystyk ~1/(e x -1) ~e -x ~1/(e x +1) x=( - )/kt - potencjał chemiczny Rozkład Maxwella dla temperatur T1
Uchwała nr 54/IX/2016 Komendy Chorągwi Dolnośląskiej ZHP z dnia r.
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 5 4 / I X / 2 0 1 6 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 5. 0 2. 0 1 6 r. w s p r a w i e p r z y j ę
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Zjawiska kontaktowe. Pojęcia.
Zjawiska kotaktowe. Pojęcia. Próżia, E vac =0 Φ m W Φ s χ E c µ E v metal półprzewodik W praca przeiesieia elektrou z da pasma przewodictwa do próżi, bez zwiększaia jego eergii kietyczej (którą ma zerową).
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru
Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz
Instrukcja Montażu PROFI 160, PROFI 140 Część 5: Instrukcja użytkowania i ograniczenia w zastosowaniu 18 Rozdział 5 KONFIGURACJA MONTAŻOWE 5.1. Zestawienie modeli: PROFI 160 ARTYKUŁ h całkowite [cm] Masa
Wrocław, dnia 27 marca 2015 r. Poz UCHWAŁA NR VIII/113/15 RADY MIEJSKIEJ WROCŁAWIA. z dnia 19 marca 2015 r.
ZE URZĘY JEÓZTA LŚLĄE, 27 2015 P 1376 UCHAŁA R V/113/15 RAY EJEJ RCŁAA 19 2015 b ó ó ą 4,5% ( ą ), 18 2 15 8 1990 ą g ( U 2013 594, óź 1) ) ą 12 1 26 ź 1982 źś ( U 2012 1356, óź 2) ) R, ę: 1 1 U ś bę ó
Laboratorum teledetekcji. Sensory akustyczne. ppłk dr inż. Mateusz Pasternak
Laboratorum teledetekcji Sensory akustyczne ppłk dr inż. Mateusz Pasternak 22 683 76 67 mpasternak@wat.edu.pl http://strony.aster.pl/mpasternak/ czujnik (sensor) def. Czujnikiem akustycznym nazywa się