Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13
|
|
- Wojciech Milewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał odisiia d(), tóry staowi pwi rodzaj wzorca dla uładu filtrującgo. Na wyjściu uładu zajdują się rówiż dwa sygały. Wyi filtracji y(), staowi zbiór prztworzoych daych sygału wjściowgo. Sygał błędu (), zawirający wartości błędu dopasowaia sygału filtrowago x(), do sygału odisiia d().
2 Srcm uładu jst zmia w czasi trasmitacja uładu H (z), tóra przształca sygał wjściowy x() w tai sposób, aby wyi filtracji y() ja ajmij różił się od sygału odisiia d(). J = E [ ] [ ] = E ( d y ) Sygał y() jst liiowo przształcoym sygałm x(), ajlpij sorlowaym z d(), a sygał błędu () = d() y() zbiorm iformacji zawartj w d(), tórj x()i posiada, Krytria miimalizacji mogą być róż, w zalżości od stosowago algorytmu filtracji. Pozwalają o a obliczai optymalych wag filtra H (z)i ich zmiaę w procsi adaptacji. Filtry adaptacyj z uwagi a swą lastyczość zajdują szroi zastosowai w pratyc. Dorlacja sygałów Usuwai itrfrcji w tlomuiacji i w mdycyi Wyodrębiai sygału z szumu (prztwarzai dźwięów i sygałów EKG) Prdycja sygałów z pomiięcim szumu isorlowago Projtowai filtrów cyfrowych
3 Używać będzimy adaptacyjgo filtru irursywgo typu FIR, tórgo odpowidź impulsowa w dzidzii z ma postać: H ( z) = h + h z + h z + K+ h z Sygał wyjściowy uładu y() rówa się y = h x( ) = = d h x( ) = dopasowaia y()do wjściowgo sygału d()zalży od współczyiów trasmitacji h = = ( ) E d h x( ) J h Główym założim graditowych algorytmów adaptacyjych jst modyfiacja (orta ozaczoa przz h()) wtora współczyiów filtra h(), ta aby w ażdj chwili czasowj była proporcjoala do wtora graditu fucji osztu (czyli pochodj tj fucji względm wtora wag h(), lcz mić za przciwy). h( + ) = h + h = h µ ( ) J h J J J J = =,,, L, Graditow modyfiowai wtora wag h() zmirza w stroę miimalj fucji osztu J(.). O szybości miimalizacji dcyduj współczyi salujący µ. Im więszy, tym więsza modyfiacja (orta h()) iszybsz dostrajai się uładu do zmiych waruów, izalż od wartości graditu.współczyi salujący µmoż być zmiy w czasi. Wprowadzaa macirz wagowa W(), ma za zadai poprawii zbiżości algorytmu i zwięszi szybości adaptacji. h µ ( + ) = h W T
4 Najprostszy i jd z bardzij popularych algorytmów adaptacyjych zway jst filtrm LS (ag. Last a Squars). Przyjmujmy, iż zadaim filtra jst miimalizacja chwilowj (a i ocziwaj) wartości błędu. Jda gdy filtr miimalizuj śrdi błąd wadratowy. J = ( h ) h = T ( d h x( ) ),,, L, = = = = ( +) = h W x h µ x( ) h() olj współczyii filtra w chwili µ() współczyi salujący W() macirz wagowa () sygał błędu x() sygał poddaway filtracji Klasyczy filtr LS otrzymujmy przyjmując stały współczyi salujący (µ() = µ)oraz macirz wagową w postaci macirzy diagoalj jdostowj (W() = I). Rówai a wtor współczyiów filtra w rou +przyjmuj postać: ( + ) = h + µ x h
5 Rodzia filtrów LS (ag. Last Squars) i RLS (ag. Rcursiv Last Squars), w clu adaptacji, wyorzystuj rytrium ajmijszych wadratów LS (ag. Last Squars): J = = oraz WLS (ag. Wightd Last Squars) J = = λ < λ ( +) = h K h + Współczyi K() występujący w powyższym wzorz jst o zalży od stymaty macirzy autoorlacji sygału x() w astępujący sposób: K = R x R T = x x xx xx λ = Podstawiając powyższ do rówaia a wagi filtra w chwili + otrzymujmy: h ( + ) = h + R x xx ożliw jst w miarę szybi uzysai odwrotj macirzy [R xx (+)] - a podstawi macirzy odwrotj [R xx ()] - przyjmując współczyi λ=, powyższy wzór staj się lasyczym przyładm algorytmu RLS
6 Usuwai sorlowaych załócń z sygałów, zwa iaczj usuwaim itrfrcji odlowy przyład sygału użytczgo s(): Sygał odisiia d()jao suma sygału użytczgo s() i sygału załócia siciowgo z (): Sygał wjściowy x()jao opia załócia siciowgo z ()
7 Użytczą iformację isi z sobą sygał d(). Jst oa zaszumioa załócim z (). Clm przyładu jst próba ftywgo usuięcia załócia i wyodrębiia sygału użytczgo ja ajbardzij zbliżogo do s(): Wyii uzysa algorytmm LS, przy współczyiu adaptacji µ = Sygał wyjściowy y(). Sygał błędu (). Wyii uzysa algorytmm RLS, przy współczyiu adaptacji µ =
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
Wyższe momenty zmiennej losowej
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla
n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka
Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu
Algebra liniowa z geometrią analityczną
WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai
X, K, +, - przestrzeń wektorowa
Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi
OCHRONA PRZECIWPOŻAROWA BUDYNKÓW
95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm
PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD
POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili
Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy
Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
Plan wykładu. Sztuczne sieci neuronowe. Algorytmy gradientowe optymalizacji. Uczenie z nauczycielem. Wykład 4: Algorytmy optymalizacji
Pla wyładu yład 4: Algorytmy optymalizacji Małgorzata Krtowsa Katedra Oprogramowaia e-mail: mmac@iipbbialystopl Algorytmy gradietowe optymalizacji Algorytm ajwiszego spadu Algorytm zmieej metryi Algorytm
Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak
Modl Ramsy a-cass a-koopmas a Dr hab. Joaa Siwińsa-Gorzla Pla wyładu Wprowadzi do modlu Mody mamayz Rozwiązai modlu Wiosi Uwaga a slajdah zajdują się wyłązi głów lmy; sporo wyjaśiń js omawiayh podzas wyładu,
L.Kowalski Systemy obsługi SMO
SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń
PROCESY STOCHASTYCZNE
.Kowali Wybra zagadiia z roców ochayczych PROCESY STOCHASTYCZNE WYBRANE ZAGADNIENIA uca Kowali Warzawa 5 .Kowali Wybra zagadiia z roców ochayczych iraura: A.Plucińa, E.Plucińi, Probabiliya, D.Bobrowi,
Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
WYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI
Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei
Zmęczenie Materiałów pod Kontrolą
Zmęczi Matriałów pod Kotrolą Wyład Nr 6 ANALIZA SPRĘŻYSTO PLASTYCZNYCH STANÓW NAPRĘŻŃ i ODKSZTAŁCŃ Wydział Iżyirii Mcaiczj i Robotyi Katdra Wytrzymałości, Zmęczia Matriałów i Kostrucji ttp://zwmi.imir.ag.du.pl
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
Przetwarzanie sygnałów biomedycznych
Przetwarzaie sygałów biomeyczyc Człowiek- ajlesza iwestycja Projekt wsółfiasoway rzez Uię uroejską w ramac uroejskiego Fuuszu Sołeczego Wykła XII Rutkowski L. Filtry aatacyje i aatacyje rzetwarzaie sygałów,
Systemy Czasu Rzeczywistego (SCR)
ystmy Czasu Rzczywistgo (CR) Wyład 4: Świat analogowy a cyfrowy wprowadzni 2/2 Modlowani i symulacja w środowisu Matlab/imulin - podstawy ii2017 WYDZIAŁ ELEROECHNII I AUOMAYI AEDRA INŻYNIERII YEMÓW EROWANIA
Metoda najszybszego spadku
Metody Gradietowe W tym rozdziale bdziemy rozwaa metody poszuiwaia dla fucji z przestrzei R o wartociach rzeczywistych Metody te wyorzystuj radiet fucji ja rówie wartoci fucji Przypomijmy, czym jest zbiór
Liczby Stirlinga I rodzaju - definicja i własności
Liczby Stiriga I rodzaju - defiicja i własości Liczby Stiriga I rodzaju ozaczae symboem s(, ) moża defiiować jao współczyii w rozwiięciu x s(, )x, 0 (1) 0 gdzie x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały
9. Sprzężenie zwrotne własności
9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób
2. Architektury sztucznych sieci neuronowych
- 8-2. Architktury sztucznych sici nuronowych 2.. Matmatyczny modl nuronu i prostj sici nuronowj Sztuczn sici nuronow są modlami inspirowanymi przz strukturę i zachowani prawdziwych nuronów. Podobni jak
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą
Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć
Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć
Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę
ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć
Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą
Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę
Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
FILTRY O TŁUMIENIU KRYTYCZNYM
FILTRY O TŁUMIENIU KRYTYCZNYM Filtry atywe Rys Uład filtru o tłumieiu rytyczym i jeo charaterystya przeoszeia K( s ) U ( s) U( s) T RC, K (j ω) K ( ω) + j ω T + ω T K( s ) + s T ; Dla oiw: K( s ) ( + s
L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)
ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
H brak zgodności rozkładu z zakładanym
WSPÓŁZALEŻNOŚĆ PROCESÓW MASOWYCH Test zgodości H : rozład jest zgody z załadaym 0 : H bra zgodości rozładu z załadaym statystya: p emp i p obszar rytyczy: K ;, i gdzie liczba ategorii p Przyład: Wyoujemy
Wymiana ciepła przez promieniowanie
dr iż. Michał Strzszwski 003-006 yiaa cipła przz proiiowai Matriały do ćwiczń z wyiay cipła v..05. prowadzi Każd ciało wysyła pwą ilość rgii ciplj w postaci proiiowaia. Proiiowai cipl oż być traktowa jako
Sieci neuronowe - uczenie
Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α
ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :
PROCEDURA ANALIZY KOLIZYJNEGO STRUMIENIA POJAZDÓW SKRĘCAJACYCH W LEWO. Osobna faza i dodatkowy pas ruchu dla relacji w lewo SL jest konieczna, gdy
ROCEDURA ANALIZY KOLIZYJNEO TRUMIENIA OJAZDÓW KRĘCAJACYCH W LEWO 1) Koiczość wydziia osobj azy i dodatkowgo pasa rch da racji w o L Osoba aza i dodatkowy pas rch da racji w o L jst koicza, gdy 1 400 /h
[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1]
Algorytm RLS Recursive Least Squares Ogólna postać kryterium LS: J = i e 2 (i) = i [d(i) y(i)] 2 Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) Zmodyfikowane kryterium
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Praca dyplomowa magisterska
Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji
L A B O R A T O R I U M T E C H N I K I C Y F R O W E J
Paweł OSTASZEWSKI 55566 25.11.2002 Piotr PAWLICKI 55567 L A B O R A T O R I U M T E C H N I K I C Y F R O W E J Ćwiczeie r 2 Temat: B A D A N I E P R Z E R Z U T N I K Ó W Treść ćwiczeia: Obserwacja a
Rozkład normalny (Gaussa)
Rozład ormaly (Gaussa) Wyprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowych. Rozważmy pomiar wielości m, tóry jest zaburzay przez losowych efetów o wielości e ażdy, zarówo zaiżających ja i
Teoria struktury kapitału
Toria strutury apitału Dr Tomasz Słońsi Toria strutury apitału, Moigliani-Millr (MM), Nobl w zizini onomii Powaliny nowoczsnj torii strutury apitału zostały położon w rou 1958 w molu, tóry opirał się o
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
Metody Podejmowania Decyzji
Metody Podejmowaia Decyzji Wzrost liczby absolwetów w Politechice Wrocławsiej a ieruach o luczowym zaczeiu dla gospodari opartej a wiedzy r UDA-POKL.04.0.0-00-065/09-0 Recezet: Prof. dr hab. iż. Ja Iżyowsi
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Zajęcia nr. 2 notatki
Zajęcia r otati wietia 5 Wzory srócoego możeia W rozdziale tym podamy ila wzorów tóre ułatwiają obliczaie wielu zadań rachuowych Fat (wzory srócoego możeia) Dla dowolych liczb rzeczywistych a, b zachodzi:
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
k k M. Przybycień Rachunek Prawdopodobieństwa i Statystyka Wykład 13-2
Pojęce przedzału ufośc Przyład: Rozważmy pewe rzad proces (tz. ta tórego lczba zajść podlega rozładow Possoa). W cągu pewego czasu zaobserwowao =3 tae zdarzea. Oceć możlwy przedzał lczby zdarzeń tego typu
Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów
OBWODY SYNAŁY Wyład 3 : Podstawowe prawa, twierdzeia i reguły Teorii Obwodów 3. PODSTAWOWE PAWA TWEDZENA TEO OBWODÓW 3.. SCHEMAT DEOWY OBWOD Schematem ideowym obwodu (siecią) azywamy graficze przedstawieie
WYKŁAD 2. Rozdział 2: Drgania układu liniowego o jednym stopniu swobody. Część 1 Drgania swobodne
WYKŁD Rozdział : Drgaia układu liiowgo o jdym stopiu swobody Część Drgaia swobod.. Modl fizycz układów o jdym stopiu swobody Przypomijmy, ż drgaia swobod to drgaia, któr odbywają się bz udziału wymuszń
FILTRY FILTR. - dziedzina pracy filtru = { t, f, ω } Filtr przekształca w sposób poŝądany sygnał wejściowy w sygnał wyjściowy: Filtr: x( ) => y( ).
FILTRY Sygał wejściowy FILTR y( ) F[x( )] Sygał wyjściowy - dziedzia pracy filtru { t, f, } Filtr przekształca w sposób poŝąday sygał wejściowy w sygał wyjściowy: Filtr: x( ) > y( ). Działaie filtru moŝe
LABORATORIUM SYMSE Układy liniowe
Tomasz Czarck, Warszawa, 2017 LABORATORIUM SYMSE Układy low Dyskrt systmy low, zm względm przsuęca Wśród systmów prztwarzaa sygałów ważą rolę odgrywają systmy low, zm względm przsuęca. Dcyduj o tym ch
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia
A4: Filtry aktywne rzędu II i IV
A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową
Czes³aw Rybicki*, Jacek Blicharski* ZASTOSOWANIE METODY BILANSU MASOWEGO W EKSPLOATACJI Z Ó GAZU ZIEMNEGO W WARUNKACH DYNAMICZNYCH**
WIERTNICTWO NAFTA GAZ TOM 5 ZESZYT 008 Czs³aw Rybicki*, Jack Blicharski* ZASTOSOWANIE METODY BILANSU MASOWEGO W EKSPLOATACJI Z Ó GAZU ZIEMNEGO W WARUNKACH DYNAMICZNYCH** 1. WPROWADZENIE Eksploatacja z³o
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Józef Borkowski. Metody interpolacji widma i metoda LIDFT w estymacji parametrów sygnału wieloczęstotliwościowego
Józef Borowsi Metody iterpolacji widma i metoda LIDFT w estymacji parametrów sygału wieloczęstotliwościowego Oficya Wydawicza Politechii Wrocławsiej Wrocław 0 ecezeci yszard MAKOWSKI Tomasz ZIELIŃSKI Opracowaie
GENERALISED TRANSMISSION MODEL OF FIRST ORDER PARAMETRIC SECTION
ELEKTRYKA 212 Zeszy 3-4 (223-224) Ro LVIII Aa PIWOWAR Jausz WALCZAK Isyu Eleroechii i Iformayi Poliechia Śląsa w Gliwicach MODEL TRANSMISYJNY UOGÓLNIONEJ SEKCJI LTV PIERWSZEGO RZĘDU Sreszczeie. W aryule
Ćwiczenie 6. Realizacja i pomiary filtrów adaptacyjnych
Ćwiczeie 6 Realizacja i pomiary filtrów adaptacyjyc Cele ćwiczeia Zapozaie z działaiem prostyc filtrów adaptacyjyc. Obserwacja efektów działaia filtru predykcyjego. Porówaie algorytmów LMS i LMS. Pomiary
DOBÓR PRZEWODÓW W INSTALACJACH ELEKTRYCZNYCH mgr inż. Julian Wiatr
DOBÓR PRZEWODÓW W NSTALACJACH ELEKTRYCZNYCH mgr iż. Julia Wiatr Przewody w sieciach i istalacjach eletryczych N dobiera się a astępujące warui: a) wytrzymałość mechaiczą, b) obciążalość długotrwałą, c)
Zmiana wartości pieniądza
Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.
Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
WPŁYW ROZSZERZENIA PRÓBKI PRZY GENEROWANIU WSPÓŁCZYNNIKÓW FALKOWYCH SZEREGU NA TRAFNOŚĆ PROGNOZY
EKONOMETRIA ECONOMETRICS 4(46) 14 ISSN 157-866 Moia Hadaś-Dyduch Uiwersytet Eoomiczy w Katowicach e-mail: moia.dyduch@ue.atowice.pl WPŁYW ROZSZERZENIA PRÓBKI PRZY GENEROWANIU WSPÓŁCZYNNIKÓW FALKOWYCH SZEREGU
Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;
Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie
METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI. LABORATORIUM nr 01. dr inż. Robert Tomkowski
METODY I ZASTOSOWANIA SZTUCZNEJ INTELIGENCJI LABORATORIUM r 01 Temat: PERCEPTRON dr iż. Robert Tomkowski pok. 118 bud. C robert.tomkowski@tu.koszali.pl tel. 94 3178 251 Metody i zastosowaia sztuczej iteligecji
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Wykres linii ciśnień i linii energii (wykres Ancony)
Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia
Statystyka Inżynierska
Statystya Iżyiersa dr hab. iż. Jace Tarasiu GH, WFiIS 03 Wyład 4 RCHUNEK NIEPEWNOŚCI + KILK UŻYTECZNYCH NRZĘDZI STTYSTYCZNYCH Wyład w więszości oparty a opracowaiu prof.. Zięby http://www.fis.agh.edu.pl/~pracowia_fizycza/pomoce/opracowaiedaychpomiarowych.pdf
ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć
Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa
Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -
Zadania II etapu Konkursu Chemicznego Trzech Wydziałów PŁ teoria III Edycja Rok szkolny 2016/17 Nr startowy zawodnika A A. Zadanie 1. Nawozy (..
Zadaie. Nawozy (.. pt) a. / pt. NH + H P 4 NH 4 H P 4... NH + H P 4 (NH 4 ) HP 4. Za poprawe zapisaie rówań reacji w formie cząsteczowej b. / pt m P 50 + 0 9,8 g 5 8 4 m N 50 + 0 4,6 g 5 m 5 9,8 4 P 45,4
Błędy kwantyzacji, zakres dynamiki przetwornika A/C
Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym
1.3. Przestrzeni. Odwzorowania. Rząd macierzy. Twierdzenie Croneckera- Capellego
WYKŁD 4 3 Przestrzei Odwzorowaia Rząd acierzy Twierdzeie Croecera- Capellego 3 Przestrzeń Przestrzeń wetorowa Baza przestrzei wetorowej 78 (Przestrzeń ) Niech ozacza zbiór wszystich ciągów -eleetowych
Analiza matematyczna i algebra liniowa
Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.
OPTYMALIZACJA ROZMYTEGO FILTRU KALMANA PRZY WYKORZYSTANIU ALGORYTMÓW GENETYCZNYCH
Prace Nauowe Istytutu Maszy, Napędów i Pomiarów Eletryczych Nr 69 Politechii Wrocławsiej Nr 69 Studia i Materiały Nr 33 3 algorytm geetyczy, optymalizacja, filtr Kalmaa, uład dwumasowy Krzysztof DÓŻDŻ*
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Funkcja generująca rozkład (p-two)
Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są
Sztuczne sieci neuronowe
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja różnych rodzajów sztucznych sieci neuronowych. Biologiczny model neuronu Mózg człowieka składa się z około 10 11 komórek nerwowych,
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Transformata Z Matlab
Aademia Morsa w Gdyi Katedra Automatyi Orętowej Teoria sterowaia Trasformata Z Matlab Mirosław Tomera. WPROWADZENIE W uładach sterowaia cora cęściej stosowae są regulatory cyfrowe i stąd oiecość oreślaia
Bezpieczeństwo i niezawodność w geotechnice Kalibracja częściowych współczynników bezpieczeństwa według Eurokodu EC7-1
Bezpieczeństwo i iezawodość w geotechice Kalibracja częściowych współczyiów bezpieczeństwa według Euroodu EC7-1 Dr hab iż Włodzimierz Brząała, prof PWr Politechia Wrocławsa, Wydział Budowictwa Lądowego
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 07/08 dr iż. Sebastia
Podstawy formalizmu mechaniki kwantowej
3.10.2004 3. Podstawy formalizmu mechaii watowej 30 Rozdział 3 Podstawy formalizmu mechaii watowej W zasadzie wyład metod matematyczych fizyi (II-gi ro studiów) powiie zapewić odpowiedie przygotowaie matematycze
wiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
SIECI REKURENCYJNE SIECI HOPFIELDA
SIECI REKURENCYJNE SIECI HOPFIELDA Joanna Grabska- Chrząstowska Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SPRZĘŻENIE ZWROTNE W NEURONIE LINIOWYM sygnał
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy
PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności