Przetwarzanie sygnałów biomedycznych
|
|
- Helena Stankiewicz
- 9 lat temu
- Przeglądów:
Transkrypt
1 Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja homomorficzna
2 Filtracja homomorficzna Filtracja liniowa zakłada, ż filtrowan sygnały zostały dodan do sibi: y(t = x(t +n(t, filtracja liniowa pozwala na liminację nipożądanych składowych Sygnały mogą być związan w inny sposób niż zsumowani, np.: y(t=x(tn(t iloczyn albo y(t=x(t*n(t splot Widmo sygnału y(t ni jst w tych przypadkach sumą widm sygnałów x(t i n(t. Filtracja liniowa ni przynisi pożądanych skutków. Filtracja homomorficzna Spostrzżni Logarytm widmowj gęstości mocy sygnału zawirającgo cho ma składową okrsową odpowiadająca tmu chu - w TF logarytmu widmowj gęstości mocy powinno występować maksimum odpowiadając opóźniniu cha. s ygn al 5 log modulu TF
3 Filtracja homomorficzna Logarytm widmowj gęstości mocy sygnału zawirającgo cho ma składową okrsową odpowiadająca tmu chu - w TF logarytmu widmowj gęstości mocy powinno występować maksimum odpowiadając opóźniniu cha. 4 log modulu TF TF log m odulu TF 7 TF log m odulu TF Filtracja homomorficzna względm splotu Układ ralizujący oprację filtracji homomorficznj względm splotu oprator D oznacza skwncję opracji TF i logarytmowania, D - skwncję opracji funkcji wykładniczj i odwrotnj TF
4 Filtracja homomorficzna względm mnożnia Układ ralizujący oprację filtracji homomorficznj względm mnożnia zawira blok logarytmu, filtracji liniowj oraz blok antylogarytmu Dfinicj cpstrum sygnału f(t TF log m odulu TF 7 cpstrum rzczywist τ C( τ = log( G( ω dω = F[log( G( ω] albo + j ωτ d C( τ = log( G( ω ω gdzi albo + C( τ = log( G( ω π τ dω = F [log( G( ω] G + ( ω F( ω = T T t = f ( t dt
5 Cpstrum rzczywist - właściwości Logarytm widma mocy funkcja rzczywista parzysta, a więc prost i odwrotn przkształcni Fourira daj tn sam wynik. Druga dfincja cpstrum daj pirwiastk cpstrum uzyskango w myśl pirwszj dfinicji. Trzcia dfinicja cpstrum formalni zbliżona do funkcji autokorlacji. Cpstrum rzczywist ni zachowuj informacji o fazi sygnału! Dfinicj cpstrum sygnału f(t cpstrum zspolon + τ C( τ = log( F( ω dω = F [log( F ( ω ] π gdzi + t = f ( t dt F( ω Dla f(t rzczywistj log(f(ω jst wilkością parzystą sprzężoną, wobc czgo odwrotna TF tj wilkości jst rzczywista. Cpstrum zspolon zachowuj informację o fazi sygnału.
6 Zastosowania filtracji homomorficznj Eliminacja pogłosu (cha Okrślani właściwości toru i pobudznia na podstawi sygnały wyjściowgo (ton krtaniowy i tor głosowy Zastosowania filtracji homomorficznj Usuwani pogłosu (cha sygnał s(t x( t = s( t + M a s( t k t k k= sygnał z pogłosm czyli x(t=s(t*p(t - splot M p( t = δ ( t + a δ ( t k t k k = sygnał z pojdynczym chm opóźnionym o t: p( t = δ ( t + aδ ( t t x( t = s( t + a s( t t
7 Zastosowania filtracji homomorficznj Usuwani pogłosu (cha sygnał z pojdynczym chm opóźnionym o t: p( t = δ ( t + aδ ( t t x( t = s( t + a s( t t TF sygnału x(n (S(ω=F[s(t] t X ( ω = S ( ω( + a Logarytm kwadratu modułu TF (cpstrum rzczywist log( ( log( ( ( j ω X ω = S ω + a t Zastosowania filtracji homomorficznj Usuwani pogłosu (cha Logarytm (cpstrum rzczywist ω ω t log( X ( = log( S ( + log ( + a Składnik niokrsowy związany z s(t log( S( ω t składnik okrsowy z okrsm π/t log ( + a Logarytm modułu kwadratu widma x(t zawira składową związaną z intrsującym nas sygnałm wolnym od cha, oraz składową okrsową, wynikającą z obcności pogłosu. Składową pogłosową można odfiltrować mtodami filtracji liniowj, o il jj widmo ni pokrywa się z widmm log( S
8 Zastosowania filtracji homomorficznj Usuwani pogłosu (cha (sygnał z czasm dyskrtnym sygnał s(n sygnał z pogłosm x(n: <n <n <...<n k przypadk sygnału z pojdynczym chm: x( n = s( n + M a s( n k n k k= p( n = δ ( n + a δ ( n M k n k k= p( n = δ ( n + aδ ( n n x( n = s( n + as( n n Zastosowania filtracji homomorficznj Usuwani pogłosu (cha (sygnał z czasm dyskrtnym przypadk sygnału z pojdynczym chm: x( n = s( n + as( n n TF sygnału x(n (S( j ω =F[s(t] - cpstrum zspolon n X ( = S ( ( + a logarytm n log( X ( = log( S( + log( + a S( moż być rzczywist i dodatni,np. sygnał cosinusoidalny n składnik okrsowy z okrsm π/n log( + a Logarytm widma zawira składową związaną z intrsującym nas sygnałm wolnym od cha, oraz składową okrsową, wynikającą z obcności pogłosu. Składową pogłosową można odfiltrować mtodami filtracji liniowj, o il jj widmo ni pokrywa się z widmm log(s.
9 .5 s ygnal plus cha p( n = δ ( n + a δ ( n k n k k= x n = s( n + a s( n n + a s( n n = x( n* p( ( n modul TF s ygnalu z chami 3 X ( = S( P( modul TF sygnalu z chami X ( = S( P( log modulu TF s ygnalu z chami -5 - log X ( = log S( + log P(
10 log modulu TF s ygnalu z chami -5 log X ( = log S ( + log P( x 4 TF log modulu TF s ygna lu z chami 5 5 Moduł TF logarytmu modułu TF zawira składową związaną z intrsującym nas sygnałm wolnym od cha, oraz składową okrsową, wynikającą z obcności pogłosu. Składową pogłosową można odfiltrować mtodami filtracji liniowj, o il jj widmo ni pokrywa się z widmm log(s. x 4 TF log modulu TF sygna lu z c hami log X ( = log S ( + log P( x 4 TF log modulu TF sygna lu z chami Moduł TF logarytmu modułu TF zawira składową związaną z intrsującym nas sygnałm wolnym od cha, oraz składową okrsową, wynikającą z obcności pogłosu. Składową pogłosową można odfiltrować mtodami filtracji liniowj, o il jj widmo ni pokrywa się z widmm log(s TF log modulu TF s ygna lu z cha mi
11 log modulu TF s ygnalu z chami log modulu TF s ygnalu po filtracji ch modul TF sygnalu z chami 3 X ( = S( P( modul TF s ygnalu po filtracji ch 5 S (
12 .5 s ygnal plus cha Sygnał przd filtracją homomorficzną s ygn al po filtracji ch Rzultat ciągu opracji jst skutkim wykorzystnia cpstrum rzczywistgo. Wykorzystani modułu TF spowodowało utratę informacji o fazi sygnału. Jst ona zrowa - przbig jst symtryczny względm początku (końca przdziału. s ygnal plus cha Rzultat ciągu opracji jst skutkim wykorzystnia cpstrum rzczywistgo. Wykorzystani modułu TF spowodowało utratę informacji o fazi sygnału. Jst ona zrowa - przbig jst symtryczny względm początku (końca przdziału. Po korkcji fazy - jak obok s ygnal po filtracji ch i korkcji fazy Korkcja fazy daj wynik jak obok: sygnał przd filtracją sygnał po filtracji i korkcji s ygnaly przd i po filtracji ch i korkcji fazy
13 Analiza homomorficzna (cpstralna sygnału mowy Sygnał mowy Sygnał mowy jst splotm pobudznia (tonu krtaniowgo g(t i odpowidzi impulsowj toru głosowgo h(t. Ton krtaniowy ciąg impulsów o pwnj częstotliwości. W clu uzyskania informacji o torz głosowym (właściwościach częstotliwościowych i pobudzniu zastosowani filtracji homomorficznj względm splotu. Analiza homomorficzna (cpstralna sygnału mowy Sytuacja jst podobna jak w przypadku cha splot pobudznia i odpowidzi toru. Logarytm widma sygnału mowy powinin zawirać składową okrsową związaną z pobudznim i składową związaną z torm głosowym. ω ω t log( X ( = log( S( + log ( + a
14 Analiza homomorficzna (cpstralna sygnału mowy Tor głosowy ton krtaniowy Analiza homomorficzna (cpstralna sygnału mowy
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek
1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka
2009 ZARZĄDZANIE. LUTY 2009
Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w
Filtracja. Krzysztof Patan
Filtracja Krzysztof Patan Wprowadzenie Działanie systemu polega na przetwarzaniu sygnału wejściowego x(t) na sygnał wyjściowy y(t) Równoważnie, system przetwarza widmo sygnału wejściowego X(jω) na widmo
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych
Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej
Teoria Synałów Inżynieria Obliczeniowa II rok 208/9 Wykład 0 Wykorzystanie transformacji Fouriera w analizie korelacyjnej Na początek krótkie przypomnienie podstawowych definicji: Funkcja autokorelacji
Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa
Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii
TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych
TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych
PRZETWARZANIE SYGNAŁÓW
PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Biometryczna Identyfikacja Tożsamości
c Adam Czajka, IAiIS PW, wersja: 6 grudnia 2015, 1/39 Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr zimowy 2015/16 c Adam Czajka, IAiIS PW, wersja:
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t
4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
Biometryczna Identyfikacja Tożsamości
Biometryczna Identyfikacja Tożsamości Wykład 9: Rozpoznawanie mówiącego Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2015 c Adam Czajka, IAiIS
MMF ćwiczenia nr 1 - Równania różnicowe
MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Algorytmy detekcji częstotliwości podstawowej
Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sgnałów biomedcznch Człowiek- najlepsza inwestcja Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wkład XIII Dstrbucje czasowo częstotliwościowe
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens
INSYU AUOMAYKI i ROBOYKI WYDZIAŁ MECHARONIKI - laboratorium Ćwiczni PA6 Badani działania rgulatora PID zaimplmntowango w strowniu S7-00 firmy Simns Instrucja laboratoryjna Opracowani : dr inż. Danuta Holjo
Wykład 2: Szeregi Fouriera
Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
CHARAKTERYSTYKA OBCIĄŻENIOWA
Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i
Przetwarzanie sygnałów
Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości
Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana
Uniwrsytt Jgilloński, Collgium Mdicum, Ktdr Chmii rgnicznj Strochmi Izomri konformcyjn obrót wokół wiązni pojdynczgo tn projkcj Nwmn konformcj: nprzminlgł nprzciwlgł kąt torsyjny w ukłdzi cztrch tomów
lim lim 4) lim lim lim lim lim x 3 e e lim lim x lim lim 2 lim lim lim Zadanie 1 Wyznacz dziedziny następujących funkcji: log x x 6x
Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7) 8) 9) 5 5 7 7 7 6 0) 6 ) ) 9) 0)
Akustyka mowy wprowadzenie. Opracował: dr inż. Piotr Suchomski
Akustyka mowy wprowadzenie Opracował: dr inż. Piotr Suchomski Kontakt Katedra Systemów Multimedialnych Wydział ETI dr inż. Piotr M. Suchomski, pok. EA 730 e-mail: pietka@sound.eti.pg.gda.pl tel. 23-01
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
4) lim. lim. lim. lim. lim. x 3. e e. lim. lim x. lim. lim. lim. lim 2. lim. lim. lim. Zadanie 1 Wyznacz dziedziny następujących funkcji: log x.
Zastosowania matmatyki w konomii Tmat : Funkcj jdnj zminnj Zadani Wyznacz dzidziny następujących funkcji: ) f ) f 5) log 6 ) f ) f 7 Zadani Oblicz granic funkcji: log f 5 6) f 7 8 ) ) ) 8 7 ) 5) 6) 7)
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
Podstawy Transmisji Przewodowej Wykład 1
Podstawy Transmisji Przewodowej Wykład 1 Grzegorz Stępniak Instytut Telekomunikacji, PW 24 lutego 2012 Instytut Telekomunikacji, PW 1 / 26 1 Informacje praktyczne 2 Wstęp do transmisji przewodowej 3 Multipleksacja
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
Uogólnione wektory własne
Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Właściwości sygnałów i splot. Krzysztof Patan
Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ
ANALIZA KORELACYJNA I FILTRACJA SYGNAŁÓW
POLIECHNIKA BIAŁOSOCKA KAEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy diagnostyki technicznej Kod przedmiotu: KS05454 Ćwiczenie Nr ANALIZA KORELACYJNA I FILRACJA
ZASTOSOWANIA POCHODNEJ
ZASTOSOWANIA POCODNEJ Ruła d l'ospitala. Nich, - różniczkowa w pwnym sąsidztwi punktu oraz lub istnij skończona lub niwłaściwa ranica wtdy Uwaa. Powyższ twirdzni jst równiż prawdziw dla ranic jdnostronnych
Identyfikacja osób na podstawie zdjęć twarzy
Idntyfikacja osób na podstawi zdjęć twarzy d r i n ż. Ja c k Na r u n i c m gr i n ż. Ma r k Kowa l s k i C i k a w p r o j k t y W y d z i a ł E l k t r o n i k i i T c h n i k I n f o r m a c y j n y
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Przetwarzanie sygnałów w telekomunikacji
Przetwarzanie sygnałów w telekomunikacji Prowadzący: Przemysław Dymarski, Inst. Telekomunikacji PW, gm. Elektroniki, pok. 461 dymarski@tele.pw.edu.pl Wykład: Wstęp: transmisja analogowa i cyfrowa, modulacja
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,
Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Michał Brzozowski Wykład 40 h Makrokonomia zaawansowana Część I: Ekonomia Montarna Dyżur: onidziałki.30 2.45, p. 409 E-mail: brzozowski@wn.uw.du.pl http://coin.wn.uw.du.pl/brzozowski lan wykładu. Czym
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Reguła de L Hospitala. Reguła de L Hospitala - odpowiedzi. Różniczka funkcji. Różniczka funkcji - odpowiedzi. Styczna i normalna
REGUŁA DE L HOSPITALA Rguła d L Hospitala Oblicz granicę: a lim b lim + f lim ln+ k lim l lim p u lim z lim + ln ln c lim g lim ln h lim ln sin q lim + v lim lim arc ctg π ln sin lnln sin d lim lim i lim
ELEKTRONIKA. dla Mechaników
ELEKTRONIKA dla Mechaników dr inż. Waldemar Jendernalik Politechnika Gdańska Wydział ETI Katedra Systemów Mikroelektronicznych p. 309, waldi@ue.eti.pg.gda.pl www.ue.eti.pg.gda.pl/~waldi Po co to Wam? Elektronika
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Przebieg sygnału w czasie Y(fL
12.3. y y to układy elektroniczne, które przetwarzają energię źródła przebiegu stałego na energię przebiegu zmiennego wyjściowego (impulsowego lub okresowego). W zależności od kształtu wytwarzanego przebiegu
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
CZAZ GT BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY. DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2
CZAZ GT CYFROWY ZESPÓŁ AUTOMATYKI ZABEZPIECZENIOWEJ GENERATORA / BLOKU GENERATOR -TRANSFORMATOR BIBLIOTEKA FUNKCJI PRZEKAŹNIKI, LOGIKA, POMIARY DODATKOWE ELEMENTY FUNKCJONALNE DSP v.2 Modyfikacje funkcjonalne
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Przeksztacenie Laplace a. Krzysztof Patan
Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:
TEORIA WYTWARZANIA DŹWIĘKÓW
1 TEORIA WYTWARZANIA DŹWIĘKÓW MOWY, FORMANTY, MODELOWANIE WYTWARZANIA DŹWIĘKÓW MOWY. mgr inż. Kuba Łopatka PLAN WYKŁADU 1. Teoria wytwarzania dźwięków mowy Ogólna teoria wytwarzania dźwięków mowy Ton krtaniowy
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI
GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz
1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,
Ś ź ć ź ć Ź ć ź ć Ą ć ć ć Ą ć ź ć ź ć Ś ć ć ć ć Ą Ą ć ć ć ć ć ć Ś ć Ź ć ć Ą ć ó ń ć ć ó ć ó ń ć ć ć ó ó ń ć ó Śń ó ó ć ó ó ó ó ć ó ń ó ó ó ó Ą ć ź ó ó ó ń ó ó ń ó ó ó ź ó ó ó ó Ść ć Ą ź ć ć ć ć Ś Ą ć ć
MODULACJE ANALOGOWE. Funkcja modulująca zależna od sygnału modulującego: m(t) = m(t) e
Nośna: MODULACJE ANALOGOWE c(t) = Y 0 cos(ωt + ϕ 0 ) Sygnał analityczny sygnału zmodulowanego y(t): z y (t) = m(t)z c (t), z c (t) = Y 0 e jωt Funkcja modulująca zależna od sygnału modulującego: j arg
Transmitancje układów ciągłych
Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego
Modelowanie wybranych. urządzeń mechatronicznych
Modelowanie wybranych elementów torów pomiarowych urządzeń mechatronicznych Pomiary - element sterowania napędem mechatronicznym Układ napędowy - Zintegrowane czujniki Zewnetrzne sygnały sterujące Sprzężenia
Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A
Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do
Analiza danych jakościowych
Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier
Analiza szeregów czasowych: 3. Filtr Wienera
Analiza szeregów czasowych: 3. Filtr Wienera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Filtr Wienera ( filtr optymalny ) Przypuśćmy, że pewien układ (fizyczny, biologiczny,
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
Systemy przetwarzania sygnałów
Sstem przetwarzania sgnałów x(t) (t)? x(t) Sstem przetwarzania sgnałów (t) Sstem przetwarzania sgnałów sgnał ciągł x(t) (t)=h(x(t)) Sstem czasu ciągłego (t) np. megafon - wzmacniacz analogow sgnał dskretn
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Ubezpieczenie w razie poważnego zachorowania. Maj 2012
LifProtct Ubzpiczni w razi poważngo zachorowania. Maj 2012 Nasz plan ubzpiczniowy dotyczący poważnych zachorowań stanowi najbardzij komplksową ochronę tgo typu dostępną w Irlandii. Podniśliśmy jakość polisy
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Ł Ź Ą Ż Ż Ź Ł Ż Ć Ć Ż Ż ć Ź Ż Ż Ż Ć Ż Ć ź ć Ż ż ż Ż Ż ć Ż ż Ż Ż Ż ć Ż ż ć Ć ź Ą Ż Ż ż ć Ź Ż ż Ą Ą Ż ć Ź ź Ż ź ć Ą ć ć ż ż ź ź ć ć ż ż ż ź ć ć Ą ż Ą ż ż Ż Ż Ż ć ż Ż ć ż Ł Ż Ą Ż ź ż ć Ż Ż Ż Ć Ź Ź Ż Ą ć
MECHANIKA 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły
Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH
1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
Technika regulacji automatycznej
Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego