Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak

Wielkość: px
Rozpocząć pokaz od strony:

Download "Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak"

Transkrypt

1 Modl Ramsy a-cass a-koopmas a Dr hab. Joaa Siwińsa-Gorzla

2 Pla wyładu Wprowadzi do modlu Mody mamayz Rozwiązai modlu Wiosi Uwaga a slajdah zajdują się wyłązi głów lmy; sporo wyjaśiń js omawiayh podzas wyładu, aomias i ma ih a slajdah

3 Wprowadzi do modlu W modlu Solowa sopa oszzędośi była daa, o js pwą wadą modlu pomimo, ż w długim orsi oazuj się ałim rozsądym założim Modl RCK załada, ż sopa oszzędośi js zmią wybiraą przz gospodarswa domow w prosi opymalizaji zy sopa oszzędośi zmiia się wraz z dohodm? Gospodara js adal zamięa Dla uławiia załóżmy, ż bra js posępu hizgo, zyli A js sał Załóżmy ż sał mpo wzrosu lizby ludośi, rów L L o Pomijamy subsrypy zasu zamias x piszmy x

4 Gospodarswa domow Gospodarswa domow dosarzają a ry praę w zamia za płaę w, osumują oraz oszzędzają Horyzo gospodarswa domowgo js isońzoy Gospodarswo domow masymalizuj użyzość, gdzi o osumpja a głowę: lim lim } { u u u u d u U

5 Gospodarswo domow G.D. oszzędza i gromadzi aywa A ograizi budżow..i w ujęiu a głowę a głowę A ra wl C a w ra a Gra Pozigo piramida fiasowa js wyluzoa

6 Mody mamayz Napoyamy u a problm dyamizj opymalizaji w zasi iągłym modą do wyorzysaia js Hamiloia Musimy orślić zmi oroli ór wybiramy lub ż orolujmy i sau ór zalżą od aszgo wyboru, al my ih bzpośrdio i wybiramy Musimy zmasymalizować pwą fuję, óra zalży od obu yh zmiyh, biorą pod uwagę zahowai zmij sau Doładij

7 Mody mamayz Przy waruah :,, max d v T, rt T g

8 Hamiloia - produra Kro pirwszy osruujmy Hamiloia H v, * g, Kro drugi lizymy pohodą po zmij orolj, órą przyrówujmy do zra dh d Kro rzi lizymy pohodą po zmij sau i przyrówujmy ją do mius pohodj możia po zasi dh d Kro zwary waru raswrsalośi lim

9 Powróćmy do gospodarswa domowgo Kro pirwszy osruujmy Hamiloia: H u w r a Kro drugi lizymy pohodą po zmij orolj, órą przyrówujmy do zra dh d u Kro rzi lizymy pohodą po zmij sau i przyrówujmy ją do mius pohodj możia po zasi dh da r Kro zwary waru raswrsalośi lim a

10 Fuja użyzośi gospodarswa domowgo Załóżmy, z fuja użyzośi gospodarswa domowgo ma orą posać: Z zgo wyia: Polizmy, o rzba 1 ; u a r w H d dh r r da dh

11 Oblizia przz podzilmy r r r Podsawiamy:

12 Firmy Fuja produji js olasyza Firmy masymalizują zys Y F K, N r F K, N wl RK Wimy, ż o ozaza: df dk df dn R r MPK MPN d R w W wilośiah pr apia Y dy dk dy dn Nf Nf f Nf 1 N Nf K N f K 2 N f f

13 Ryi Ryi łązą gospodarswa domow i firmy; Soro gospodara js zamięa, o Z go wyia, ż d R ra a d f d f f f d w R * *

14 Mamy wię rozwiązai d f oraz r d R 1 1 Ciężo powidzić, o z go wyia a a pirwszy rzu oa.

15 Diagram fazowy Orślmy, idy oraz i rosą i spróbujmy arysować.. r y d y d

16 Diagram fazowy Rysu zazrpięy z wyładów dr hab. Maria Kolasy hp://wb.sgh.waw.pl/~molas/earf/ramsy.pdf

17 Diagram fazowy Sąd wimy, ż liia sabilj osumpji przi dzwo sabilgo apiału a lwo od szzyu? Z rahuów f d d f gdy d gdy d f G d zyli wilość apiału, wyzazająa liię sabilj osumpji musi być mijsza iż apiał, óry wyzaza masymalą osumpję, gdy apiał js sabily, zyli G wimy, ż

18 Diagram fazowy dyamia G

19 Wiosi Kraj osiągi sa usaloy Kidy raj zmirza do sau usalogo, o sopa oszzędośi będzi się zmiiać, o wyzaza szał śiżi siodłowj, óry z oli zalży od ϴ Wilość ρ dysoo przyszłośi wyzaza poziom apiału a głowę w sai usaloym, zyli wyzaza ż wilość oszzędośi

20 Wiosi Nisi ϴ i zalży am a wygładzaiu osumpji w zasi apiał rośi szybo, gospodara szybo zmirza do sau usalogo Wysoi ϴ zalży am a wygładzaiu osumpji w zasi osumujmy sosuowo dużo, apiał rośi wolo, gospodara wolo zmirza do sau usalogo

21 Podsumowai iuiyj Fuja produji js olasyza, zyli a przyład Y K AN 1 A 1 y y Y N gdzi K N Dla uławiia załadamy bra posępu hizgo Wiosi są bardzo podob do yh wyiająyh z modlu Solowa: Gospodara osiągi sa usaloy, w órym apiał a głowę i produja a głowę są sał

22 Podsumowai iuiyj Chmy się przoać, ja będą się szałowały oszzędośi i osumpja gospodarsw domowyh Gospodarswa domow masymalizują użyzość, wdy, gdy r..osumpja będzi rosła zyli idy wyagrodzi za oszzędzai js wyższ iż sopa dysoowa..obi ograizamy osumpję oszzędzamy, za o w przyszłośi osumujmy więj

23 Podsumowai iuiyj Gospodarswa domow oszzędzają; fudusz są wyorzysa przz przdsiębiorswa a iwsyj Przdsiębiorswa iwsują, gdyż hą osiągąć opymalą wilość apiału, oblizoą dzięi : dy dk dy d Obi sroy raują sopę proową r jao daą; js oa jda szałowaa w wyiu rówowagi pomiędzy popym a fudusz przdsiębiorswa, a ih podażą gospodarswa domow R r d

24 Podsumowai iuiyj W rzulai sopa proowa r rówa js rańowmu produowi apiału plus dprjaji, a wię r f ' d To rówai js uiwrsal będzimy go wiloroi używać

25 Podsumowai iuiyj W przypadu modlu RCK widzimy, ż poiważ f js oraz mijszy, idy rośi apiał, o isij aa wilość apiału, dla órj mpo wzrosu osumpji a głowę będzi rów zro. Jdozśi, dla ażdj wilośi apiału, isij orśloa wilość osumpji i odpowiadająym jj oszzędośiom, óra sprawi, ż apiał a głowę będzi sabily i będzi ai przyrasał, a i spadał Poiważ wszli i rozwiązaia są iopymal, o masymalizują użyzość gospodarswa domow długim orsi wybiorą właśi ę sabilą wilość osumpji i apiału sa usaloy

Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak

Model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak Model Ramsey a-cass a-koopmas a Dr hab. Joaa Siwińsa-Gorzela Pla wyładu Wprowadzeie do modelu Rozwiązaie modelu Wiosi Uwaga a slajdah zajdują się wyłązie główe elemey; zęść szzegółowyh wyjaśień jes omawiayh

Bardziej szczegółowo

W orbicie modeli neoklasyznych: model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak

W orbicie modeli neoklasyznych: model Ramsey a-cass a-koopmans a. Dr hab. Joanna Siwińska-Gorzelak W orbiie modeli eolasyzyh: model Ramsey a-cass a-koopmas a Dr hab. Joaa Siwińsa-Gorzela Pla wyładu Wprowadzeie do modelu Rozwiązaie modelu Wiosi Uwaga a slajdah zajdują się wyłązie główe elemey; zęść szzegółowyh

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Dlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta.

Dlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta. Maroeonomia II Dlaczego jedne raje są bogae a inne biedne? Model Solowa, wersja prosa. Maroeonomia II Joanna Siwińsa-Gorzela Plan wyładu Funcja producji. San usalony Deerminany poziomu PKB na pracownia

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

Uchwała nr 54/IX/2016 Komendy Chorągwi Dolnośląskiej ZHP z dnia r.

Uchwała nr 54/IX/2016 Komendy Chorągwi Dolnośląskiej ZHP z dnia r. C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 5 4 / I X / 2 0 1 6 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 5. 0 2. 0 1 6 r. w s p r a w i e p r z y j ę

Bardziej szczegółowo

Monetarne modele wzrostu

Monetarne modele wzrostu Wyład 6 Monearne odele wzros Plan wyład. Model opyalnego wzros 2. Pieniądz w ni żyeznośi (MIU) 3. Ogranizenie Cash-in-Advane (CIA) 3. CIA nałożone na onspę 3.2 CIA nałożone na apiał 4. Epiryzny związe

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.

Bardziej szczegółowo

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Wpływ rządu na gospodarkę w długim okresie.

Wpływ rządu na gospodarkę w długim okresie. Wpływ rządu na gospodarę w długim oresie. Teoria & badania empiryczne Dr hab. Joanna Siwińsa-Gorzela. Wniosi z modelu RCK W długim oresie gospodara znajdzie się w stanie ustalonym, gdyż wraz ze wzrostem

Bardziej szczegółowo

z d n i a 1 5 m a j a r.

z d n i a 1 5 m a j a r. C h o r ą g i e w D o l n o l ą s k a Z H P D e c y z j a n r 1 4 / I X / 2 0 1 5 K o m e n d a n t a C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 1 5 m a j a 2 0 1 5 r. w s p r a w i e g

Bardziej szczegółowo

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż

ś ę ę ęż Ć Ł ę ę ę ś ść ż ś ż ę ś ś ę Ż ć ć ś ę ż ś ę Ś Ą Ś ś ę ś ż ż Ż ę ż ś ę Ś ć ś ść ż ę ę Ś Ą ś ź ć ę ś ć ś ę ę ś ś Ą ść ść ę Ą ż ę ś ś ę ę ć ę ę ś ż Ś Ś ę Ś Ą ś ę ć ś ę ź ś ę ę ź ż ź ść Ż ę ż ż ść ż ż Ł Ź ż ę ś ż ż ę ę ę ę ś ś ŚĆ ę ę ż ś ś ę ś ę ę ęż Ć Ł ę ę ę ś ść

Bardziej szczegółowo

MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH

MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH Ekoomri mrił ( foli ) do wkłdu D.Miszczńsk, M.Miszczński MODEL EKONOMERYCZNY Modl js o schmcz uproszczi, pomijjąc iiso spk w clu wjśii wwęrzgo dziłi, form lub kosrukcji brdzij skomplikowgo mchizmu. (Lwrc

Bardziej szczegółowo

Ą ń Ę Ę ź Ę Ę Ę ź Ż ź Ę ń ń ć Ę ź Ż

Ą ń Ę Ę ź Ę Ę Ę ź Ż ź Ę ń ń ć Ę ź Ż Ó Ś ń Ś Ź ń Ą ń Ę Ę ź Ę Ę Ę ź Ż ź Ę ń ń ć Ę ź Ż Ę Ę Ę ź ź Ą Ą ĄĄ ń Ę Ę ń ń ń Ź Ą ń ń ń ń Ę Ą Ę ń Ę Ę Ą ń ń ń ń ź Ę Ę ź ć ń Ę ń Ę Ę Ą ń Ę Ę ń Ę Ę ć ć ń ń Ę Ę Ę Ę ć ć Ź ć ć Ę Ż Ę ń Ż Ó Ę ć ń Ę Ż Ż Ż Ż Ę

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

Andrzej Leśnicki Uogólniony szereg Fouriera 1/1 SZEREGI FOURIERA. Uogólniony szereg Fouriera. x, gdy ich iloczyn x, y 0. całkowalnego z kwadratem

Andrzej Leśnicki Uogólniony szereg Fouriera 1/1 SZEREGI FOURIERA. Uogólniony szereg Fouriera. x, gdy ich iloczyn x, y 0. całkowalnego z kwadratem ndrzj Lśnici Uoólniony szr Fourira / SZEREGI FOURIER Iloczyn salarny, y b a Uoólniony szr Fourira, y dwóch synałów zspolonych y d, Dla iloczynu salarno zachodzi symria hrmiowsa Dwa synały, y są oroonaln

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę

ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ę Ł ć ż ć ż ć ę ę ę ż ć ż ć ę ż ż ć ę ę ę ę ę ę ę ę ę ż ę ę ę Ź ę ż ę ć ż ę ę ę Ź ć Ź ę ę ż ż ć ć ę ć ę ż ć ć ę Ś ę ę ę Ź Ź ż Ś ę ć ć ę ę ę ę ę ę ż ć ż ć ę ę ę Ź ę ż ę ę ę ć ę ę ż ę ż ć ć Ść ć ę ć ć ż

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska MATEMATYKA zadaia domow dla studtów Ekoomii rok /7 Zstaw opraowała dr iż Alia Jóźwikowska PRACA DOMOWA 5/EK CIĄGI LICZBOWE Zad Zbadać mootoizość iągu o wyrazi ogólym! a a b a a! zad Wykazać ograizoość

Bardziej szczegółowo

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Problem. Jak praktycznie badać jednostajną ciągłość funkcji? EAIiIB-Iormatya - Wyład 3- dr Adam Ćmiel miel@.agh.edu.pl Ciągłość uji w puie e. Fuję : azywamy iągłą w puie jeżeli Heie Cauhy Uwaga: Put ale ie musi być putem supieia zbioru. Jeżeli jest putem izolowaym

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai

Bardziej szczegółowo

ć ć ć Ś ć Ż

ć ć ć Ś ć Ż Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

L.Kowalski Systemy obsługi SMO

L.Kowalski Systemy obsługi SMO SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż

Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż Ś Ż Ś ć ż Ś ż ź ż ż ż ć ż ć Ł ż ż Ł ż ż ż ż ż ż ż ż Ś ż ż ż ż ż ż ż ż ż ź ż ż ż ż ż ć ż ż ż ż ż ć ż ż ż ż ż ć ż ć ź ż ż ć ć ż ć ż ż ż ć ż ż ć ć ż ż ż ż ć ż ż ż ż ż ż ć ż ż ż ż ż ć ż ć ć ż ć ż ż ż ć ć ć

Bardziej szczegółowo

ń ć ń ć ń Ć ć Ć ź

ń ć ń ć ń Ć ć Ć ź ń ń ć ń ć ń Ć ć Ć ź ż ń ż ń ń ź ń ń ź ń ć ń Ł Ę Ł ć ń ń Ć ń Ć ń ć ć ż ż ń ż ż ż ń ż ż ń ń ż ń Ć Ł Ń ć Ł Ę ń ń ń ć ć ń ń ń ż ż ń ż ń ń ń ń ń Ż ń ń ń Ż ż ń ż ż ż ż ż Ć Ć ż ż ć ż ć ż Ę Ń Ż Ę ć ż ż Ż ż ć ń

Bardziej szczegółowo

Ę ć ń ń Ń Ę ń ź ć ć ć ć

Ę ć ń ń Ń Ę ń ź ć ć ć ć ć ź Ż ń Ż Ę ć ń ń Ń Ę ń ź ć ć ć ć ć Ż ć ć Ż ń ń ń ź ć ć ń ń ź ń ń ć ń ń ć ź ć ń ń ń ń ń Ć ć Ę Ś Ę Ę ć ń Ż ć ć ć ć ć Ę ć ź ć Ż ń ń ć ź ź ź ń ń ć ć ć Ż ń ź ź ń ń ń ć ć ć ć ć ć ć ć ć ć ć Ń ć ć ć ź ć ź ź Ź

Bardziej szczegółowo

Ń Ą Ń Ń Ń

Ń Ą Ń Ń Ń ŁĄ Ń Ł ć ć ć Ę Ę Ą Ą Ę Ń Ą Ń Ń Ń Ń ć Ą Ź ć Ź ć Ź ć ź ź Ł Ą Ę ć ć Ę Ć Ć Ą ć Ć Ć Ł Ć Ź Ć Ą Ą Ą Ą ĄĄ Ć Ą Ą Ą ć Ć Ł Ć Ę Ć Ć Ę Ę Ć Ć Ę Ą Ć Ć Ń Ń Ć Ę Ć Ł Ć Ł Ą Ę Ź Ć Ł Ę Ł Ł Ł Ę Ę Ł Ę Ł Ć Ć Ą Ę Ł Ą Ć Ą Ź Ą Ę

Bardziej szczegółowo

1 0 2 / m S t a n d a r d w y m a g a ñ - e g z a m i n m i s t r z o w s k i dla zawodu R A D I E S T E T A Kod z klasyfikacji zawodów i sp e cjaln o ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji

Bardziej szczegółowo

ĄĄ

ĄĄ Ń Ę Ą Ą ĄĄ Ś ĘĘ Ę Ę Ę Ś Ń Ń Ę Ę Ę Ń Ę Ą ź Ę Ś Ą ź ź Ę Ę Ń Ę Ę ź ź ź Ę Ń Ę Ą Ę ź ź Ń Ó Ó Ś Ę Ń Ń ź Ę Ą Ł ź Ą ź Ą Ę ź Ń Ą ź ź ź Ń ź ź ź ź Ą ź Ą Ę Ą ź Ą Ą Ś ź Ą Ę Ę Ę Ę Ę Ę ź Ń Ń ź Ę ź Ę Ń Ł Ł Ń Ś ź Ń Ń Ę

Bardziej szczegółowo

WYBRANE METODY SZACOWANIA STAWEK SK ADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC

WYBRANE METODY SZACOWANIA STAWEK SK ADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 27, 22 Anna Szymasa WYBRANE METODY SZACOWANIA STAWEK SKADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC Srszzni. Podsaw dziaalnoi ubzpizniowj

Bardziej szczegółowo

Í í Í Á ń ý ý Ż í í ď Í Ĺ ń Í ń Ę ń ý Ż Ż ź ń ń Ę ń ý ý í ŕ Ĺ Ĺ Í Á í Ż Í É Í Ü ö ä Ż Ż Ż Ę ń ć Ę Ż ń Ę Ż ć ń Ł Ą ń Ę í Ę Ż Ż ý Ż Ż Ą Í É đ í Ł Ę Ł ć ő ť Ę ń í ć Í Ę Ę Ł Ą Ł ć ď ć Ę Ę ń Ó Ü ü Ĺ ý Ę ä í

Bardziej szczegółowo

Ł ś ś ń ń ś

Ł ś ś ń ń ś Ę ń Ł ś ś ń ń ś ść ę ę ś ż ś ś ś ę ę ś ę ś ę ć ź ż ś ęś ż ę ś ś ś ć ź ę ę ś ś ść ć ę ę ś ś ę ę ę ę ś Ł Ł Ł Ł Ł ś ć ę ę ę ę ń Ą Ą ż ę ę Ł Ś ę Ł Ł ę ę ę ś Ą ę ę ę Ł Ł ń ń ś Ą Ń ś Ł Ó Ł ść ń ń ą ę ść ń

Bardziej szczegółowo

Ż Ź Ą Ó Ś Ó Ś Ó Ś Ż Ó Ś Ó ć Ź ć ć ń ć ć Ż Ż ĄĄ ć Ź ć Ó ć ń ń ń ń ń Ś ń Ź Ś ń ń Ó Ó ć Ó Ź ć Ż ć Ó Ż Ó Ż Ó ć Ź Ś Ś Ą Ć ń ć Ż ń Ó ć Ś Ś Ć Ś Ź ć ń ć ń Ż ń Ś Ż ń ń Ó Ó Ś Ś Ąń ń ń Ż Ż Ś ń Ą Ą Ś ć ń Ś Ó ć Ó Ż

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Kotraja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i aptory Półprzwoi omiszoway, zalżość otraji swoboy ośiów i poziomu

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

O F E R T A H o t e l Z A M E K R Y N * * * * T a m, g d z i e b łł k i t j e z i o r p r z e p l a t a s ił z s o c z y s t z i e l e n i t r a w, a r a d o s n e t r e l e p t a z m i a r o w y m s z

Bardziej szczegółowo

ń ź ź ń ń ź ć Ń ń Ż ń

ń ź ź ń ń ź ć Ń ń Ż ń Ę Ę ń ń ń ć Ń ć ć Ń ź ń ć ć ź ć ź ń ź ź ń ń ź ć Ń ń Ż ń Ł Ł ń Ę ź ź Ś Ś ź ń ń ź ń ń ń ń Ś ź Ę ź ń Ą ń ć ć ń ć ń Ą ć ź ź Ś ź Ś ń ń ń ń ń ń ć ń ń Ą ć ń Ś ń ń ź ź ź ć ć ń Ł Ę ń ć ń ń ź Ń ź ń Ś Ś Ś ć ń ć ź

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu

Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10

Stanisław Cichocki. Natalia Nehrebecka. Wykład 10 Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne

Bardziej szczegółowo

IV. RÓWNANIA RÓŻNICOWE

IV. RÓWNANIA RÓŻNICOWE V. RÓWNANA RÓŻNCOWE 4.. Wstęp Prz frowm przetwarzaiu sgałów dooujem ih dsretzaji zli próbowaia, tz. zamia sgału iągłego a iąg sgałów dsreth. Sgał iągł (t) przedstawiam jao iąg rzędh wzazah dla dsreth wartośi

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź

Bardziej szczegółowo