WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
|
|
- Katarzyna Filipiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5. Siatka dyfrakcyjna; zdolność rozdzielcza siatki 6. Spektroskopia 7. Dyfrakcja na szczelinie 8. Światło spolaryzowane i nie spolaryzowane 8. Sposoby polaryzacji liniowej: odbicie i polaryzatory 9. Ekrany ciekłokrystaliczne
2 INTERFERENCJA FAL Jeśli do punktu przestrzeni dochodzą 2 fale, to chwilowe pole elektryczne w tym punkcie będzie sumą wektorową natężeń pola pola elektrycznego obu fal E=E 1 +E 2 ekran r 1 E 1 E=E 1 +E 2 E 2 I=(E 1 +E 2 ) 2 d r 2 E prostopadłe do ekranu Jaka jest zależność natężenia fali elektromagnetycznej na ekranie od położenia punktu obserwacji?
3 INTERFERENCJA FAL: ANALIZA 1 r 1 A E 1 ekran E=E 1 +E 2 d r 2 E 2 I=(E 1 +E 2 ) 2 2 r Do A, w zależności od kąta dochodzi światło z 1 i 2 z różnymi fazami, czyli:. E1 = E0 cos(kr1 ωt) E 2 = E 0 cos(kr2 ωt) Ponieważ E=E 1 +E 2 (kr1 ωt) + (kr2 ωt) (kr1 ωt) (kr2 E = 2E0 cos cos 2 2 (r1 + r2 ) (r1 r2 ) E = 2E0 cos(k ωt)cos k = 2E0 2 2 Wzmocnienie sygnału jeśli π/λ * r =n*2π, czyli r=nλ. jednak r/d=sin() ωt) 2π cos(kr ωt)cos λ d sin( ) = nλ r 2 interfer Interferencja jest podstawowym testem na to, czy jakieś zjawisko ma charakter falowy, czy nie
4 KOHERENCJA FAL koherencja (spójność): różnica faz docierających do danego punktu fal jest stała w czasie. źródło światła spójnego: laser koherentne natęż=(e 1 +E 2 ) 2 interferencja! niekoherentne źródła fal (np. żarówki, słońce) brak prążków interferencyjnych Powód: różnica faz dla fal pochodzących z niekoherentnych źródeł zmienia się w czasie w sposób nieuporządkowany. Natężenie fali (w danym punkcie) jest sumą natężeń od poszczególnych źródeł, niekoherentne natęż=e 1 2 +E 2 2 brak interferencji! fale spójne: natężenie = (E 1 +E 2 ) 2 fale niespójne: natężenie = natężenie1+ natężenie2 =E 1 2 +E 2 2
5 N źródeł d Jaki jest wynik interferencji fal elektromagnetycznych pochodzących z wielu koherentnych źródeł? r 1 r 2 INTERFERENCJA FAL Z WIELU ŹRÓDEŁ I = I 0 2 Nkd sin sin 2, 2 kdsin sin 2 k = 2π λ Intensywność d=2*10-6 m, N=10, λ =5893A 0 λ/d 2λ/d sin 2*10 8 d=2*10-6 m, N=13400, λ =5893A Intensywność λ/d 0 2λ/d sin w wyniku interferencji fal z wielu źródeł na ekranie uzyskuje się wzmocnienia natężenia fal w pozycjach dla których d sin()=n λ. Czym więcej źródeł, tym maksima węższe, a natężenie większe
6 ZASADA HUYGENSA natężenie natężenie Obraz interferencyjny od źródeł światła i od szczelin na które pada światło jest identyczny Gdy czoło fali wnika do otworu, to każda część czoła fali zachowuje się tak, jakby była nowym źródłem fali kulistej
7 SIATKA DYFRAKCYJNA Natężenie fali 0 r 1 r 2 d λ/d 2λ/d sin Siatka dyfrakcyjna to układ szczelin o odległości d, przez który zostaje przepuszczona fala elektromagnetyczna. Wzmocnienie obrazu na ekranie zachodzi dla d sin( ) = nλ natomiast szerokość każdego maksimum wynosi λ 0 = Nd Siatki dyfrakcyjne wykorzystuje się do pomiarów dł. fali, oraz do badań struktury i natężenia linii widmowych. W tym przypadku chodzi o to, aby dało się rozróżnić dwie fale o długościach różniących się o małe λ.
8 SIATKA DYFRAKCYJNA: ZDOLNOŚĆ ROZDZIELCZA Natężenie fali ze źródła λ Aparaturowa szerokość linii Intensywność λ/d 0 2λ/d sin Natężenie fali ze źródła λ Dla jakiej długości fali λ+ λ położenie maksimum zmienia się o Natężenie fali ze źródła λ+ λ λ λ = 1 N Zdolność rozdzielcza Dwie linie dla różnych długości fali będą rozdzielone jeśli λ> λ/n
9 SPEKTROSKOPIA Ciała świecące wysyłają światło o charakterystycznej mieszaninie barw Dzieje się tak, ponieważ atom każdego pierwiastka wysyła światło o charakterystycznej mieszaninie barw widmo Światło wysyłane przez pierwiastek umożliwia jego identyfikację
10 DYFRAKCJA NA SZEROKIEJ SZCZELINIE Światło z bardzo wąskiej szczeliny (wąskiej w porównaniu z długością fali świetlnej) rozchodzi się kuliście. Jednak dla szerokiej szczeliny występuje zjawisko cienia. Co się dzieje między tymi skrajnościami?. fala A a A r Obraz na ekranie P Fazy fal z A i A interferujących w P różnią się o r=(a/2)sin() i jeżeli r=λ/2, to oba promienie z A i A wygaszają się. Tak samo jest dla każdych dwóch promieni wychodzących z punktów odległych o a/2. Każdy punkt szczeliny jest źródłem fal kulistych. względne natężenie (deg) 10 dyfrakcja Jeżeli sin()=λ/a, to dostajemy ciemny ekran. Taka sytuacja nie występuje dla żadnego mniejszego kąta, natomiast występuje dla kątów większych. Pomiędzy tymi kątami promienie z różnych części szczeliny częściowo dodają się, w rezultacie dostajemy obraz centralnego max. i maksimów sąsiednich.
11 DYFRAKCJA NA SZEROKIEJ SZCZELINIE a A 1 P Jeżeli szerokość szczeliny staje się mała, to kąt przy którym pojawia się I minimum staje się równy 90 0, a następnie w ogóle nie występuje. A 2 r l a= λ Jeżeli szerokość szczeliny rośnie, to wzmocnienie występuje tylko dla kąta=0 względne natężenie a=5λ l l a=10 λ q (deg) Jeśli przeszkody mają duże rozmiary w porównaniu z długością fali, to można powiedzieć, że promieniowanie rozchodzi się po liniach prostych i efekty falowe nie grają roli
12 POLARYZACJA Polaryzacja fali elektromagnetycznej: ustalony kierunek wektora E (a zatem i B) w przestrzeni. y E z B x Nie zawsze tak jest: Światło wytwarzane przez atomy w dwóch punktach żarówki wysyłane jest niezależnie od siebie: promieniujący przez czas 10-8 sek atom wysyła wprawdzie światło spolaryzowane, ale polaryzacja światła sąsiedniego atomu jest inna i w rezultacie dochodzące do nas światło nie jest spolaryzowane: składa się z wielu różnych polaryzacji. Polaryzacja jest zjawiskiem, które występuje tylko dla fal poprzecznych. polaryzator.
13 SPOSOBY POLARYZACJI: POLARYZATORY Promieniowanie elektromagnetyczne z niezależnych źródeł nie jest spolaryzowane. Jak taką falę można spolaryzować? polaryzator światło niespolaryzowane światło spolaryzowane
14 SPOSOBY POLARYZACJI: ODBICIE α fala spolaryzowana równol. β 90 0 fala spolaryzowana w płaszc. padania Dwie składowe wektora E padającej fali: prostopadła do płaszczyzny padania, leżąca w płaszczyźnie padania. Jeśli α+β=90, to fala odbita jest całkowicie spolaryzowana.. Kąt Brewstera Jeśli α+β=90, to n=sinα/sinβ=sinα/sin(90-α) n = tgα analizator
15 PRAWO MALUSA Fala padająca E pad pod kątem do osi polaryzatora E zatrzym E pad I = I m cos 2 Przepuszczona tylko składowa równoległa do osi polaryzatora E przep E przep =E pad cos polaryzator analizator
16 SKRĘCENIE PŁASZCZYZNY POLARYZACJI polaryzator fala zupełnie wygaszona część fali przechodzi Zwiększenie ilości płytek polaryzacyjnych nie zmienia kąta skręcenia, lecz zwiększa natężenie przepuszczonej (i skręconej) fali Możliwe jest skręcenie płaszczyzny polaryzacji fali E przep =E pad cos n (/n) analizator
17 WYŚWIETLACZE CIEKŁOKRYSTALICZNE Ciekłe kryształy to stan pośredni miedzy cieczą, a kryształem cząsteczki mogą znajdować się w zupełnie przypadkowych położeniach (jak w cieczy) są zorientowane jedne względem drugich (uporządkowanie jak w kryształach). ) Takie własności wynikają z wydłużonego kształtu molekuł przy jednocześnie małej T, dzięki czemu lokalny porządek nie jest niszczony przez fluktuacje termiczne analizator Częściowo roztopione mydło jest ciekłym kryształem Ciekłe kryształy mają unikalne własności fizyczne. y E z x E x Po przejściu przez ciekły kryształ płaszczyzna polaryzacji fali jest skręcona, lecz fala nie jest osłabiona
18 WYŚWIETLACZE CIEKŁOKRYSTALICZNE Nie spolaryzowane światło Polaryzator Płytka szklana z nacięciami Ciekłe kryształy Oś ciekłych kryształów wzdłuż nacięć Starają się ustawić równolegle do siebie Płytka szklana z nacięciami Oś ciekłych kryształów wzdłuż nacięć Analizator Kierunek osi ciekłego kryształu może być zmieniany przez zewnętrzne pole elektryczne
19 Nie spolaryzowane światło WYŚWIETLACZE CIEKŁOKRYSTALICZNE Włączenie napięcia powoduje, że osie ciekłych kryształów ustawiają się równolegle do pola elektrycznego ciekłe kryształy nie skręcają płaszczyzny polaryzacji Brak napięcia Przyłożenie napięcia światło przechodzi wyświetlacz kalkulator światło nie przechodzi
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoProblemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Bardziej szczegółowoFizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Bardziej szczegółowoOPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Bardziej szczegółowoWykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Bardziej szczegółowoWykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Bardziej szczegółowo18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Bardziej szczegółowoZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Bardziej szczegółowoĆwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Bardziej szczegółowoOPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
Bardziej szczegółowoPodstawy fizyki sezon 2 8. Fale elektromagnetyczne
Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie
Bardziej szczegółowoPrawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Bardziej szczegółowoDyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Bardziej szczegółowoOptyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13
Optyka falowa dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale elektromagnetyczne 2 1.1. Model falowy światła...........................................
Bardziej szczegółowoNatura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Bardziej szczegółowoRys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoĆwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Bardziej szczegółowofalowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoDr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Bardziej szczegółowoWykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoPodstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Bardziej szczegółowoDyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
Bardziej szczegółowoLaboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Bardziej szczegółowoWykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Bardziej szczegółowoInterferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
Bardziej szczegółowoWykład FIZYKA II. 8. Optyka falowa
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html
Bardziej szczegółowoĆwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.
Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w
Bardziej szczegółowoInterferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoPomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
Bardziej szczegółowoBadanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoWykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
Bardziej szczegółowoLABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
Bardziej szczegółowoOptyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Bardziej szczegółowoOptyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Bardziej szczegółowoPOLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Bardziej szczegółowoWyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
Bardziej szczegółowo9. Optyka Interferencja w cienkich warstwach. λ λ
9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,
Bardziej szczegółowoBADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
Bardziej szczegółowoELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne
Bardziej szczegółowoŚWIATŁO. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie, załamanie światła
ŚWIATŁO Wykład 8 Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie, załamanie światła 8.2. Elementy optyki
Bardziej szczegółowoInterferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Bardziej szczegółowoĆwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Bardziej szczegółowoInterferencja i dyfrakcja
Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość
Bardziej szczegółowoFala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
Bardziej szczegółowoBADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Bardziej szczegółowo6.4. Dyfrakcja fal mechanicznych.
6.4. Dyfrakcja fal mechanicznych. W danym ośrodku fale rozchodzą soę po liniach prostych. Gdy jednak fala trafi na jakąś przeszkodę, kierunek jej rozchodzenia się ulega na ogół zmianie. Zmienia się też
Bardziej szczegółowoWYDZIAŁ.. LABORATORIUM FIZYCZNE
WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych
Bardziej szczegółowoprzenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole
Bardziej szczegółowoĆwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Bardziej szczegółowoPolaryzatory/analizatory
Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj
Bardziej szczegółowoBADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Bardziej szczegółowoPrzedmiot: Fizyka. Światło jako fala. 2016/17, sem. letni 1
Światło jako fala 1 Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym 2 Wytwarzanie fali elektromagnetycznej o częstościach radiowych H. Hertz (1888) doświadczalne
Bardziej szczegółowoInterferencja i dyfrakcja
Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl
Bardziej szczegółowoWYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Bardziej szczegółowoSkręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
Bardziej szczegółowoKatedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowoDYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
Ćwiczenie O-9 YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali światła laserowego i szerokości
Bardziej szczegółowo28 Optyka geometryczna i falowa
MODUŁ IX Moduł IX- Optyka geometryczna i falowa 8 Optyka geometryczna i falowa 8. Wstęp Promieniowanie świetlne, o którym będziemy mówić w poniższych rozdziałach jest pewnym, niewielkim wycinkiem widma
Bardziej szczegółowoMetody Optyczne w Technice. Wykład 8 Polarymetria
Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna
Bardziej szczegółowoŚwiatło jako fala Fala elektromagnetyczna widmo promieniowania Czułość oka ludzkiego w zakresie widzialnym
Światło jako fala Fala elektromagnetyczna widmo promieniowania ν = c λ Czułość oka ludzkiego w zakresie widzialnym Wytwarzanie fali elektromagnetycznej o częstościach radiowych E(x, t) = Em sin (kx ωt)
Bardziej szczegółowoNa ostatnim wykładzie
Na ostatnim wykładzie Falę elektromagnetyczną możemy przedstawić podając jej kierunek rozchodzenia się (promień) albo czoła fali (umowne powierzchnie, na których wartość natężenia pola elektrycznego jest
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowoElementy optyki geometrycznej i optyki falowej
Elementy optyki geometrycznej i optyki falowej Wykład 8 Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. Czym jest światło? 8.1. Elementy optyki geometrycznej odbicie,
Bardziej szczegółowoPL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)
Bardziej szczegółowoRodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowoMGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.
MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.
Bardziej szczegółowo40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI
ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś
Bardziej szczegółowoĆwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
Bardziej szczegółowo2.1 Dyfrakcja i interferencja światła. 2.1.1 Dyfrakcja światła. Zasada Huygensa
Rozdział 2 Optyka falowa 2.1 Dyfrakcja i interferencja światła 2.1.1 Dyfrakcja światła. Zasada Huygensa Zgodnie z treścią poprzedniego rozdziału, światło jest falą elektromagnetyczną o długości zawartej
Bardziej szczegółowointerferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja
interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja
Bardziej szczegółowoGŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
Bardziej szczegółowoPonadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
Bardziej szczegółowoWykład 27 Dyfrakcja Fresnela i Fraunhofera
Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Bardziej szczegółowoLASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Bardziej szczegółowoFale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Bardziej szczegółowoWidmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Bardziej szczegółowoPOMIAR DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ I SPEKTROMETRU
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Irma Śledzińska 4 POMIAR DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ I SPEKTROMETRU 1. Podstawy fizyczne Fala elektromagnetyczna
Bardziej szczegółowoSPRAWDZANIE PRAWA MALUSA
Ćwiczenie O-0 SPRWDZNI PRW MLUS I. Cel ćwiczenia: wyznaczenie natężenia światła I przechodzącego przez układ dwóch polaryzatorów w funkcji kąta θ między płaszczyznami polaryzacji tych polaryzatorów: I
Bardziej szczegółowoWŁASNOŚCI FAL (c.d.)
RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie
Bardziej szczegółowoPolaryzacja chromatyczna
FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji
Bardziej szczegółowoFalowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Bardziej szczegółowoĆwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny
Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Rozważania dotyczące natury światła, doprowadziły do odkrycia i opisania wielu zjawisk związanych z jego rozchodzeniem
Bardziej szczegółowoĆWICZENIE 47 POLARYZACJA. Wstęp.
ĆWICZENIE 47 POLARYZACJA Wstęp. Światło naturalne występujące w przyrodzie na ogół jest niespolaryzowane. Wynika to między innymi z mechanizmu powstawania promieniowania. Cząsteczki, atomy emitujące światło
Bardziej szczegółowoPrawo odbicia światła. dr inż. Romuald Kędzierski
Prawo odbicia światła dr inż. Romuald Kędzierski Odbicie fal - przypomnienie Kąt padania: Jest to kąt pomiędzy tzw. promieniem fali padającej (wskazującym kierunek i zwrot jej propagacji), a prostą prostopadłą
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Bardziej szczegółowoOptyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Bardziej szczegółowoWyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Bardziej szczegółowoMODULATOR CIEKŁOKRYSTALICZNY
ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
Bardziej szczegółowo