Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra"

Transkrypt

1 Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła 1 8 Z równań Maxwella wynika że prędkość światła w próżni c gdzie ε przenikalność elektryczna próżni μ przenikalność magnetyczna próżni. W ośrodku o względnej przenikalności elektrycznej ε r prędkość światła jest równa c (dla dielektryków μ r = 1). Współczynnik załamania światła 1 c n c sin sin 1 r r (ε r dla częstości optycznych). 1 Przenikalność elektryczna ośrodków anizotropowych jest tensorem drugiego rzędu a n jest wielkością związaną z tym tensorem. Jeżeli niespolaryzowana wiązka światła pada na ośrodek anizotropowy to powstają dwa promienie: promień zwyczajny (leżący w płaszczyźnie padania współczynnik załamania światła dla tego promienia oznaczamy przez n ) oraz promień nadzwyczajny który leży poza płaszczyzną padania (współczynnik załamania tego promienia jest oznaczany przez n e ). Zjawisko to nazywamy dwójłomnością. Miarą dwójłomności jest wielkość n n e n nazywana dwójłomnością ośrodka. Elipsoida współczynników załamania Właściwości optyczne ośrodków można przedstawić w postaci elipsoidy: x y z 1 n n n x y z o Istnieje przynajmniej jeden kierunek dla którego przekrój elipsoidy jest okręgiem. Kierunek ten nazywamy osią optyczną. Podział kryształów ze względu na właściwości optyczne r Rys. 1 Elipsoidy współczynników załamania światła dla kryształów dwuosiowych jednoosiowych optycznie dodatnich i optycznie ujemnych oraz izotropowych

2 Kryształy należące do układu trójskośnego jednoskośnego i rombowego są kryształami optyczne dwuosiowym. Kryształy należące do układy tetragonalnego trygonalnego i heksagonalnego są optycznie jednoosiowe. Jeżeli n n e no to kryształ jest optycznie dodatni a w przeciwnym wypadku optycznie ujemny. Kryształy należące do układu kubicznego są optycznie izotropowe nie wykazują dwójłomności (wszystkie przekroje elipsoidy współczynników załamania która jest sferą są okręgami). Dwójłomność spontaniczna i wymuszona Dwójłomność spontaniczna wynika z budowy a w szczególności symetrii ośrodka. Dwójłomność spontaniczna zmienia się z temperaturą i ciśnieniem Δn(T). Dwójłomność wymuszona: naprężeniem Δn(σ) (zjawisko elastooptyczne) polem elektrycznym Δn(E) (zjawiska elektrooptyczne) jeżeli zmiany dwójłomności są liniową funkcją natężenia pola elektrycznego to zjawisko jest nazywane zjawiskiem Pockelsa jeżeli zmiany dwójłomności są proporcjonalne do kwadratu natężenia pola elektrycznego to zjawisko nosi nazwę zjawiska Kerra polem magnetycznym równoległym do kierunku propagacji fali elektromagnetycznej Δn(H) (zjawisko Faradaya) polem magnetycznym poprzecznym do kierunku propagacji fali (zjawisko Cttona Mutona). inne zjawiska (np. ciśnieniowe). Droga optyczna w próżni i ośrodku Rys.. Rysunek ilustrujący drogę optyczną fali świetnej. Równania fali elektromagnetycznej oraz różnica faz po przebyciu odległości r 1 i r w próżni: r1 r fl E1 E sint i E E sint 1 r r1 l c c c T gdzie: λ długość fali w próżni l = r r 1 droga optyczna w próżni. c Jeżeli światło rozchodzi się w ośrodku o współczynniku załamania n to n i c 1 l nl c Iloczyn nl oznacza drogę optyczną w ośrodku. Jeżeli dwie wzajemnie prostopadle spolaryzowane fale o długości λ poruszają się w ośrodku dwójłomnym o dwójłomności Δn na drodze o długości l to zmiany ich faz i różnica faz wynoszą: 1 n1l i nl i n. Promienie te po wyjściu z ośrodka interferują a wynik ich superpozycji zależy od różnicy faz. Prawo Malusa Rozpatrujemy przejście fali świetlnej przez idealny polaryzator liniowy. Polaryzator przepuszcza rzuty wektora elektrycznego na kierunek transmisji ' E E cos I E

3 więc transmisja układu idealizowanego I cos. I Rys.3. Ilustracja światła niespolaryzowanego i rysunek pomocniczy do wyprowadzenia prawa Malusa Natężenie światła I w w EM c 1 E H I 1 E x E x H y. Wektor w jest wektorem Poytinga Jeżeli na polaryzator pada wiązka światła niespolaryzowana to I E cos I 1 1 E więc I Po przejściu niespolaryzowanej wiązki światła przez polaryzator liniowy jej natężenie zmniejsza się dwukrotnie. Przejście wiązki światła przez układ polaryzator liniowy kryształ analizator. Rozpatrujemy przejście światła przez układ polaryzator liniowy kryształ dwójłomny o długości l analizator. Płaszczyzna transmisji analizatora jest prostopadła do płaszczyzny transmisji polaryzatora. I natężenie wiązki padającej I natężenie wiązki wychodzącej n1 i n współczynniki załamania światła dla promienia szybkiego i wolnego. Rys.4. Przejście światła przez układ polaryzator liniowy kryształ dwójłomny o długości l analizator. E natężenie pola elektrycznego wiązki padającej λ długość fali w próżni φ kąt między kierunkiem przepuszczania polaryzatora i osią główną przekroju indykatrysy współczynników załamania w kierunku prostopadłym do kierunku propagacji fali (kierunkiem polaryzacji promienia szybkiego).

4 Rys.5. Ilustracja orientacji wektora elektrycznego fali świetlnej podczas przejścia przez kryształ dwójłomny. Rzuty wektora E na kierunki szybkiego i wolnego promienia wynoszą: Ex E cos i E y E sin Po przejściu przez ośrodek dwójłomny promienie są przesunięte w fazie o: n l n l x y l l x oraz y i x y n x ny n Natężenia pola elektrycznego tych promieni wynoszą: ' ' t i E E sin cost Ex E cos cos y Analizator przepuszcza rzuty wektorów elektrycznych na płaszczyznę jego transmisji A. E E x E E x t i Ey E sin cos cost coscost cost ale sin cos cos E y E sin cost cost sint sin człon sint jest członem periodycznym. E E sin cos sin sint E sin sin sint. Człon E sin sin jest amplitudą fali. Natężenie wiązki wychodzącej I E sin sin I sin sin Transmisja układu I 1 l sin sin sin 1 cos sin sin n. I Pomiar transmisji układu pozwala na wyznaczenie przesunięcia fazowego oraz zmian dwójłomności. Największą amplitudę zmian uzyskujemy dla φ = π/4. Zmiany transmisji układu można wykorzystać do pomiarów zmian orientacji indykatrysy współczynników załamania. Zjawisko Pockelsa i Kerra Jeżeli zmiana dwójłomności (n) jest liniową funkcją natężenia pola elektrycznego E to mówimy o liniowym efekcie (zjawisku) elektrooptycznym lub o efekcie Pockelsa. Zjawisko Pockelsa może być obserwowane tylko w kryształach (materiałach) które nie posiadają środka symetrii. Efekt ten w sposób bardzo uproszczony można opisać następującą zależnością: n k E

5 Jeżeli zmiana dwójłomności (n) jest proporcjonalna do kwadratu natężenia pola elektrycznego mamy do czynienia z kwadratowym zjawiskiem elektrooptycznym nazwanym na cześć jego odkrywcy zjawiskiem (efektem) Kerra n k E W obu przypadkach przyłożenie pola elektrycznego może powodować zmianę współczynnika załamania ośrodka zarówno dla wiązki zwyczajnej jak i nadzwyczajnej. Efekt Kerra występuje zarówno w kryształach ze środkiem symetrii jak i kryształach niecentrosymetrycznych. W kryształach w które nie posiadają środka symetrii efekt Kerra jest znacznie słabszy od efektu Pockelsa dlatego jest często pomijany. Stałe występujące po prawej stronie powyższych równań są związane ze współczynnikami elektroptycznymi. Współczynniki elektrooptyczne tworzą tensor trzeciego rzędu (efekt liniowy) lub czwartego rzędu (efekt kwadratowy). Podłużne i poprzeczne zjawisko elektroopyczne Jeżeli kierunek rozchodzenia się wiązki światła jest równoległy do kierunku zewnętrznego pola elektrycznego mamy do czynienia z podłużnym zjawiskiem elektrooptycznym natomiast w przypadku gdy kierunek pola elektrycznego jest prostopadły do kierunku wiązki - zjawisko nazywamy poprzecznym. Rys.6. Ilustracja podłużnego i poprzecznego zjawiska elektrooptycznego. Na rys. przedstawiono wzajemną orientację kierunku rozchodzenia się wiązki światła r oraz pola elektrycznego E w podłużnym i poprzecznym efekcie elektrooptycznym. Powierzchnie zakreskowane symbolizują elektrody naniesione na kryształ. Do elektrod przykładane jest napięcie powodujące zmianę dwójłomności ośrodka w którym rozchodzi się wiązka światła. Rys.7 Taki sam układ stosowany jest do badania zjawiska Kerra lecz zamiast komórki Pockelsa w układzie umieszczona jest komórka Kerra. Zależność transmisji komórki Pockelsa od natężenia pola elektrycznego Jeżeli zmiana dwójłomności wywołana jest przez liniowe zjawisko elektrooptyczne to różnica faz między promieniem szybkim i wolnym jest sumą przesunięć fazowych wywołanych dwójłomnością spontaniczną Δn (dwójłomnością dla E ) oraz dwójłomnością wywołaną polem elektrycznym δδn l n n.

6 Zależność transmisji układu w którym umieszczona jest komórka Pockelsa od natężenia pola elektrycznego przyłożonego do kryształu otrzymamy podstawiając przesunięcie fazowe do równania na transmisję T układu I 1 1 T 1 cos 1 cos n kel /. I Różnicę faz dla E = a więc i transmisję układu możemy zmieniać zmieniając długość kryształu. W elektrooptyce często zamiast stosowane jest oznaczenie. Jeżeli dla danej długości fali dobierzemy odpowiednią długość kryształu to dla E możemy otrzymać dowolną wartość transmisji. Często dobiera się długość kryształu tak aby dla E transmisja układu była równa ½. Napięcie potrzebne do wywołania różnicy faz (również napięcie potrzebne do zmiany transmisji układu od maksymalnego przepuszczania do całkowitego wygaszania) nazywane jest napięciem półfali i oznaczane symbolem U 1/. Z równania wynika że natężenie pola elektrycznego odpowiadającego napięciu półfali E kl 1/ / Rys.8. Zależność natężenia prądu fotokomórki od napięcia przykładanego do komórki Pockelsa Korzystając z zależności E = U/d gdzie: U oznacza napięcie natomiast d jest odległością pomiędzy elektrodami naniesionymi na kryształ (rys.3) otrzymamy: U 1/ d / kl Napięcie półfali podawane jest zwyczajowo w V/cm (jest to napięcie półfali dla kryształu w którym droga optyczna jest równa 1 cm). Jeżeli korzystamy z podłużnego efektu elektrooptycznego to droga l jaką przebywa promień świetny w krysztale jest równa odległości pomiędzy elektrodami d i napięcie półfali nie zależy od wymiarów kryształu. W przypadku zjawiska poprzecznego napięcie półfali jest proporcjonalne do odległości pomiędzy elektrodami d i odwrotnie proporcjonalne do drogi l jaką przebywa przez promień świetlny. Tak więc wygodniej jest korzystać z efektu poprzecznego ponieważ wydłużając drogę optyczną i zmniejszając grubość kryształu można znacznie zmniejszyć napięcie potrzebne do sterowania wiązką świetlną. Zależność transmisji komórki Kerra od natężenia pola elektrycznego Jeżeli zjawisko elektrooptyczne związane jest ze zjawiskiem Kerra to zmiana dwójłomności jest proporcjonalna do kwadratu natężenia pola elektrycznego. Podstawiając n K E do równania na transmisję układu otrzymujemy I 1 1 T 1 cos 1 cos n KE l /. I

7 Rys.9. Dla materiałów izotropowych optyczne n. Warto zwrócić uwagę na to że w przypadku zjawiska Kerra zarówno przesunięcie fazowe jak i napięcie półfali zależy od natężenia pola elektrycznego lu KE l / K. d Na zakończenie należy zaznaczyć że optyka ośrodków anizotropowych jest zagadnieniem bardzo skomplikowanym któremu poświęcono kilka monografii. Niniejsze opracowanie ma na celu wyjaśnienie podstawowych zjawisk optycznych występujących w ośrodkach anizotropowych a prostotę opisu uzyskano kosztem ograniczenia zakresu omawianych zagadnień oraz znacznych uproszczeń. Zainteresowanych przedstawionymi tu problemami odsyłamy do podręczników lub monografii z optyki. Rys.1. Zależność natężenia wiązki światła od napięcia przykładanego do komórki Kerra Rys.11. Zależność przesunięcia fazowego od napięcia dla komórki Kerra

8 Część pomiarowa I. Zestaw przyrządów: 1. Zasilacz wysokonapięciowy.. Ława optyczna polaryzator analizator fotoogniwo dioda laserowa lub laser. 3. Mikrowoltomierz. 4. Komórki Pockelsa i Kerra. II. Przebieg pomiarów:.1. Sprawdzanie prawa Malusa Zestawić układ wg schematu (rys. 1). Polaryzator i analizator są umieszczone w obrotowych oprawach z naniesionymi podziałkami kątowymi. Wiązka światła emitowanego przez źródło przechodzi kolejno przez polaryzator i analizator po czym pada na powierzchnię fotoogniwa wskutek czego przez fotoogniwo płynie prąd. Wartość natężenia prądu proporcjonalną do strumienia świetlnego odczytuje się przy pomocy miernika. Rys. 1. Schemat układu do sprawdzania prawa Malusa. 1. Wyjąć polaryzator i analizator z układu pomiarowego.. Wyjustować układ - włączyć zasilanie diody laserowej i skierować wiązkę tak aby w całości padała do wnętrza fotoogniwa.. Obracając polaryzator znaleźć takie jego położenie przy którym miernik pokazuje maksymalną wartość natężenia prądu (dla tego położenia przyjąć: α = I = I ) 3. Przy tak ustalonej geometrii układu i nieruchomym polaryzatorze wykonać pomiary zależności natężenia prądu fotoogniwa od kąta skręcenia analizatora. Pomiary wykonać co 1 w przedziale od do 36.. Badanie zjawiska Pockelsa Zestawić układ wg schematu (rys. 13). Rys. 13. Schemat układu do badania efektu Pockelsa (Kerra). 1. Włączyć zasilanie diody laserowej (lasera). Wyjustować układ - skierować wiązkę tak aby przechodząc przez wszystkie elementy układu w całości padała do wnętrza fotoogniwa.

9 . Usuń analizator z układu pomiarowego. Określ płaszczyznę polaryzacji lasera - wyznacz takie położenie polaryzatora dla którego wartość fotoprądu będzie maksymalna (w takim położeniu kierunek polaryzacji polaryzatora jest zgodny z kierunkiem polaryzacji lasera). Zanotuj wartość kąta β pod jakim spolaryzowany jest laser. 3. Ustaw polaryzator pod kątem 45 do płaszczyzny polaryzacji lasera (obrót zgodny z ruchem wskazówek zegara). 4. Ustaw analizator prostopadle do płaszczyzny polaryzacji polaryzatora (obróć o 45 o przeciwnie do ruchu wskazówek zegara). 5. Wykonaj pomiary zależności transmisji układu (natężenia prądu fotoogniwa) od napięcia przykładanego do komórki Pockelsa w zakresie -1 V do 1 V co 5 V. Uwaga: przyłożenie napięcia powyżej 1 V grozi przebiciem kryształu i zniszczeniem komórki..3. Badanie zjawiska Kerra 1. Zestawić układ wg schematu (rys.13). W miejsce komórki Pockelsa wstawić komórkę Kerra.. Włączyć zasilanie diody laserowej. Wyjustować układ - skierować wiązkę tak aby przechodząc przez wszystkie elementy układu w całości padała do wnętrza fotoogniwa. Uwaga. Jeżeli czynności opisane w punktach 3 5 to nie ma potrzeby ich powtarzania. 3. Określ płaszczyznę polaryzacji lasera - wyznacz takie położenie polaryzatora liniowego dla którego wartość fotoprądu będzie maksymalna (w takim położeniu kierunek polaryzacji polaryzatora jest zgodny z polaryzacją lasera). Zanotuj wartość kąta β pod jakim spolaryzowany jest laser. 4. Ustawić polaryzator pod kątem 45 do płaszczyzny polaryzacji lasera (obrót zgodny z ruchem wskazówek zegara). 5. Ustawić analizator prostopadle do płaszczyzny polaryzacji polaryzatora (obróć o 45 o przeciwnie do ruchu wskazówek zegara). 6. Wykonać pomiary zależności transmisji układu (natężenia prądu fotoogniwa) od napięcia przykładanego do komórki Kerra. W zakresie do 5 V co zmieniać napięcie co około 5 V a w zakresie od 5 do 9V co V dla obu polaryzacji zasilania + i -. III. Opracowanie wyników Sprawdzanie prawa Malusa Wykonać wykres zależności natężenia prądu fotoogniwa I/I max od kąta skręcenia płaszczyzny analizatora. I max oznacza maksymalną wartość prądu fotoogniwa (odpowiadającą max transmisji układu). Na wykresie narysować zależność funkcji cos od kąta. Porównać uzyskane zależności i wyjaśnić przyczynę ewentualnego przesunięcia fazowego. 3.. Badanie zjawiska Pockelsa 1. Narysować wykres zależności natężenia prądu fotoogniwa (I I ) od napięcia przykładanego do komórki Pockelsa. I oznacza minimalne natężenie prądu fotokomórki (natężenie prądu spowodowane promieniowaniem rozproszonym docierającym do fotokomórki).. Narysować wykres zależności zmian przesunięcia fazowego od napięcia przykładanego do komórki Pockelsa. Na wykresie zaznaczyć napięcie półfali. Uwaga: Zmiana transmisji komórki od wartości minimalnej do maksymalnej i odwrotnie oznacza przesunięcie fazowe między promieniem szybkim i wolnym o π Badanie zjawiska Kerra 1. Narysować wykres zależności (I I ) od napięcia przykładanego do komórki Kerra. I oznacza minimalne natężenie prądu fotokomórki (natężenie prądu spowodowane promieniowaniem rozproszonym docierającym do fotokomórki).. Narysować wykres zależności zmian przesunięcia fazowego od napięcia przykładanego do komórki Kerra. Uwaga: Zmiana transmisji komórki od wartości minimalnej do maksymalnej i odwrotnie oznacza przesunięcie fazowe między promieniem szybkim i wolnym o π.

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów Światło Kolor Długość fali w próżni (nm) 660 610 580 550 470 410 1 Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane:

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane: n = ε χ = ε 1 Gdzie n jest współczynnikiem załamania światła, ε przenikalnością

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA

BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA BADANIE PROSTEGO I ODWROTNEGO ZJAWISKA PIEZOELEKTRYCZNEGO I JEGO ZASTOSOWANIA I. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO a). Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego

Bardziej szczegółowo

ZJAWISKO PIEZOELEKTRYCZNE.

ZJAWISKO PIEZOELEKTRYCZNE. ZJAWISKO PIEZOELEKTRYCZNE. A. BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO I. Zestaw przyrządów: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną. 2. Odważnik. 3. Miernik uniwersalny

Bardziej szczegółowo

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne

Bardziej szczegółowo

Elementy optyki relatywistycznej

Elementy optyki relatywistycznej Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ

BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ ĆWICZENIE NR 14A BADANIE PROSTEGO ZJAWISKA PIEZOELEKTRYCZNEGO POMIAR NAPRĘŻEŃ I. Zestaw pomiarowy: 1. Układ do badania prostego zjawiska piezoelektrycznego metodą statyczną 2. Odważnik 3. Miernik uniwersalny

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Ćwiczenie nr 13 POLARYZACJA ŚWIATŁA: SPRAWDZANIE PRAWA MALUSA

Ćwiczenie nr 13 POLARYZACJA ŚWIATŁA: SPRAWDZANIE PRAWA MALUSA Wprowadzenie Ćwiczenie nr 13 POLARYZACJA ŚWIATŁA: SPRAWDZANIE PRAWA MALUSA Współczesny pogląd na naturę światła kształtował się bardzo długo i jest rezultatem rozważań i badań wielu uczonych. Fundamentalne

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA Ćwiczenie O-0 SPRWDZNI PRW MLUS I. Cel ćwiczenia: wyznaczenie natężenia światła I przechodzącego przez układ dwóch polaryzatorów w funkcji kąta θ między płaszczyznami polaryzacji tych polaryzatorów: I

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Właściwości optyczne materiału opisuje się za pomocą:

Właściwości optyczne materiału opisuje się za pomocą: Właściwości optyczne materiału opisuje się za pomocą: Współczynnika absorpcji, załamania i odbicia. Wielkości ś i te są od siebie wzajemnie zależne. ż Są również związane z właściwościami dielektrycznymi

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA

Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem

Bardziej szczegółowo

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko

Bardziej szczegółowo

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 88 POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Badanie zjawiska skręcenia płaszczyzny polaryzacji światła w cieczach i kryształach optycznie czynnych. Zagadnienia: polaryzacja światła,

Bardziej szczegółowo

Wyznaczanie wartości współczynnika załamania

Wyznaczanie wartości współczynnika załamania Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:

Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy: Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Wykład 24. Oddziaływanie promieniowania elektromagnetycznego z materią. Polaryzacja światła.

Wykład 24. Oddziaływanie promieniowania elektromagnetycznego z materią. Polaryzacja światła. 1 Wykład 4 Oddziaływanie promieniowania elektromagnetycznego z materią. Polaryzacja światła. 4.1 Dyspersja światła. Dyspersją światła nazywamy zależność współczynnika załamania światła n substancji od

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fale elektromagnetyczne i ich własności. 2. Polaryzacja światła: a) światło

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 20, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 20, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 20, 07.05.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 19 - przypomnienie

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów OLITECHNIK ŁÓDZK INSTYTUT FIZYKI LBORTORIUM FIZYKI KRYSZTŁÓW STŁYCH ĆWICZENIE Nr 1 Optyczne badania kryształów Cel ćwiczenia Celem ćwiczenia jest poznanie przyrządów i metod do badań optycznych oraz cech

Bardziej szczegółowo

Krystalografia. Symetria a właściwości fizyczne kryształów

Krystalografia. Symetria a właściwości fizyczne kryształów Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

ĆWICZENIE 47 POLARYZACJA. Wstęp.

ĆWICZENIE 47 POLARYZACJA. Wstęp. ĆWICZENIE 47 POLARYZACJA Wstęp. Światło naturalne występujące w przyrodzie na ogół jest niespolaryzowane. Wynika to między innymi z mechanizmu powstawania promieniowania. Cząsteczki, atomy emitujące światło

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Wyznaczanie stałej Kerra

Wyznaczanie stałej Kerra Ćwiczenie Nr 557:. Literatura; Wyznaczanie stałej Kerra 1. Ćwiczenia laboratoryjne z fizyki. Cz praca zbiorowa po reakcją. Kruk i J. Typka. Wyawnictwo Uczelniane PS. Szczecin 007.. Problemy teoretyczne:

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek

Piotr Targowski i Bernard Ziętek Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Laserów ZEWNĘTRZNA MODULACJA ŚWIATŁA Zadanie IV Zakład Optoelektroniki Toruń

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 0. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego Wprowadzenie Światło widzialne jest

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Prawo odbicia światła. dr inż. Romuald Kędzierski

Prawo odbicia światła. dr inż. Romuald Kędzierski Prawo odbicia światła dr inż. Romuald Kędzierski Odbicie fal - przypomnienie Kąt padania: Jest to kąt pomiędzy tzw. promieniem fali padającej (wskazującym kierunek i zwrot jej propagacji), a prostą prostopadłą

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek ZEWNĘTRZNA MODULACJA ŚWIATŁA

Piotr Targowski i Bernard Ziętek ZEWNĘTRZNA MODULACJA ŚWIATŁA Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna ZEWNĘTRZNA MODULACJA ŚWIATŁA Zadanie IV Zakład Optoelektroniki Toruń

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne

Podstawy fizyki sezon 2 8. Fale elektromagnetyczne Podstawy fizyki sezon 8. Fale elektromagnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Przenoszenie

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Polaryzacja chromatyczna

Polaryzacja chromatyczna FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Ć W I C Z E N I E N R O-11

Ć W I C Z E N I E N R O-11 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-11 WYZNACZANIE STAŁEJ VERDETA I. Zagadnienia do przestudiowania

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

MODULATOR CIEKŁOKRYSTALICZNY

MODULATOR CIEKŁOKRYSTALICZNY ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera

Bardziej szczegółowo