[ ] ( x) Wzory postawowe: (w przedziałach, w których f i F są określone) Metody całkowania. arctg. dx = arcsinx+

Wielkość: px
Rozpocząć pokaz od strony:

Download "[ ] ( x) Wzory postawowe: (w przedziałach, w których f i F są określone) Metody całkowania. arctg. dx = arcsinx+"

Transkrypt

1 EAIiIB-Iformayka -Wykład 6- dr Adam Ćmiel CAŁKA NIEOZNACZONA f : R I R, gdzie I rzedział (zbiór sójy) Def Fukją ierwoą fukji f azywamy fukję F aką, że F ( I Warukiem koiezym isieia dla fukji f fukji ierwoej jes osiadaie rzez f własośi Darbou (wię f ie może mieć ieiągłośi I-go rodzaju) (Uwaga a ćwizeiah moża okazać że ohoda fukji różizkowalej a rzedziale ma własość Darbou) Warukiem wysarzająym isieia dla fukji f fukji ierwoej jes iągłość fukji f Ławo okazać, że jeżeli F jes fukją ierwoą fukji f, o F rówież jes fukją ierwoą fukji f dwie fukje ierwoe F i F fukji f mogą się różić jedyie o sałą Def Zbiór wszyskih fukji ierwoyh fukji f a rzedziale I azywamy ałką ieozazoą fukji f a ym rzedziale i ozazamy Uwaga: fukje e, si e, ie osiadają fukji ierwoyh w klasie fukji elemearyh Wzory osawowe: (w rzedziałah, w kóryh f i F są określoe) 0 α os α α l e e a a la si os os si g os g si arg f ( arsi f l ( ) Prawdziwe są akże asęująe wzory [ ] f ( ( αf ( β ) α β α Uwaga Pohoda ałki (zyli zbioru fukji ierwoyh), o zbiór ohodyh oszzególyh fukji ierwoyh- wszyskie e ohode są rówe f wie dla rosoy iszemy f Suma ałek jes rozumiaa jako algebraiza suma zbiorów Meody ałkowaia I Przez zęśi: (bezośredio z wzoru a różizkowaie ilozyu) Tw Jeżeli fukje f i g mają iągłe ohode w I, o f ( g ( f (

2 EAIiIB-Iformayka -Wykład 6- dr Adam Ćmiel Przykład f ( e g ( e e e e Wzory rekureyje (wyrowadzae z ałkowaia rzez zęśi): (R) ( ) ( ) ( ) (S) si ossi si (C) os sios os Dow (R) ( ) ( ) ( ) ( ) g ( ( ) ( ) f ( ( ) ( ) ( ) ( ) ( ) II Przez odsawieie (kosekweja wzoru a różizkowaie fukji złożoej) Tw: (o ałkowaiu rzez osawieie ϕ() ) Jeżeli: º ϕ : T X jes różizkowalym i wzajemie jedozazym (bijekywym) rzekszałeiem rzedziału T a rzedział X, º fukja f : X R ma fukję ierwoą a rzedziale X, o: f ( ϕ ( ) ) ϕ ( ) d, gdzie ϕ ( ) Dowód Fukja F(ϕ()) będąa złożeiem fukji różizkowalyh jes różizkowala a T i rawdziwy jes wzór [ F( ϕ ( ))] F ( ϕ( )) ϕ ( ) ϕ( )) ϕ ( ), skąd mamy f ( ϕ ( )) ϕ ( ) d F( ϕ( )) a rzedziale T Z założeia mamy f ( F( a rzedziale X Z założoej wzajemej jedozazośi ϕ, isieje fukja odwroa ϕ - : X T Po odsawieiu ϕ ( ) do F( ϕ ( )) orzymujemy F ( ϕ ( ϕ ( )) F(, wię f ( ϕ( )) ϕ ( ) d, rzy zym ϕ - ( Tw (o ałkowaiu rze odsawieie y h( ) Jeżeli: º h: X Y jes różizkowalym odwzorowaiem rzedziału X a Y, º fukja g: Y R ma fukję ierwoą G a Y, o: g ( h( ) h ( y) dy, gdzie y h( Dowód Podobie jak orzedio wysarzy zauważyć, że fukja G(h() jes fukją ierwoą fukji h()h ( a rzedziale X, wię g ( h( ) h ( G(h() g ( y) dy, gdzie yh(

3 EAIiIB-Iformayka -Wykład 6- dr Adam Ćmiel Oba wyrowadzoe wzory a ałkowaie rzez odsawieie, z ozoru ideyze, są jedak isoie róże Jeśli weźmiemy od uwagę, że rozważaym zagadieiem jes wyzazeie ałki fukji określoej a rzedziale X, o w ierwszym rzyadku wymagaa jes odwraalość fukji defiiująej odsawieie (zwae wsezym) a w drugim ie Drugie odsawieie (w rzód) wymaga aomias sejalej osai fukji odałkowej ( ;) si arsi Przykład π π si osd osd ; os d ( wzór C) si os arsi arsi Całkowaie fukji wymieryh Fukja wymiera o fukja f (, gdzie lizik i miaowik o wielomiay względie ierwsze Jeżeli soień wielomiau L jes miejszy od soia wielomiau M ( s(l)<s(m) ), o fukję wymierą azywamy fukją wymierą właśiwą Jeżeli s(l) s(m), o wykoują dzieleie wielomiaów orzymujemy asęująe rzedsawieie R( W( i s(r)<s(m) Aby sałkować dowolą fukję wymierą wysarzy okazać jak ałkować fukję wymierą właśiwą Wiadomo z algebry, że fukję wymierą właśiwą moża rzedsawić w osai sumy ułamków rosyh ierwszego i drugiego rodzaju A - ułamek rosy I-go rodzaju k ( a) B C, q< 0 - ułamek rosy II-go rodzaju ( A A Ak B C B C L L L k k ( a) ( a ( a) ( a) q ( Przykład Rozłożyć a ułamki rose fukję 5 ( ) ( ) Z uwagi a osać miaowika rozkład jes asęująy 5 A B ( ) ( ) ( ) C D skąd o rzemożeiu obu sro rzez (-) ( ) orzymujemy ożsamość (rówość dla każdego 5 - A(-)( ) B( )(CD)(-), sąd o uorządkowaiu orzymujemy rówoważą ożsamość 5 - (AC) (-AB-CD) (AC-D) (-ABD) Porówaie odowiedih wsółzyików rowadzi do układu,

4 EAIiIB-Iformayka -Wykład 6- dr Adam Ćmiel A C 0 A BC D 5, kórego rozwiązaiem jes A, B-, C-, D6 A CD A B D 0 Sałe A,B,C i D moża szybiej wyzazyć wsawiają do ożsamośi 5 -A(-)( ) B( )(CD)(-) miejse zerowe dwumiau - z uzyskują rose rówaie -6B, skąd ayhmias dosajemy B - Wsawiają do owyższej rówośi B - i gruują o lewej sroie wyrazy ie zawierająe iezayh sałyh orzymujemy 7 -A(-)( )(CD)(-) Widać, że wielomia o rawej sroie jes odziely rzez dwumia (-) Wobe ego wielomia o lewej sroie rówież musi być odziely rzez e dwumia, o ozaza że musi być ierwiaskiem ego wielomiau Jes o ewa forma koroli orawośi doyhzasowyh oblizeń Po wykoaiu dzieleia obu sro rzez (-) orzymujemy rówość 7-A( )(CD)(-), z kórej o odsawieiu orzymujemy A,wię A Wsawiają uzyskaą sałą do owyższej rówośi, o zgruowaiu wyrazów ie zawierająyh iezayh sałyh o lewej sroie orzymujemy (CD)(-) Zowu widać, że skoro wielomia o rawej sroie jes odziely rzez (-), o wielomia o lewej sroie rówież musi być odziely rzez (-) (ławo srawdzić, że jes ierwiaskiem wielomiau o lewej sroie) Wykoują dzieleie obu sro rzez (-) orzymujemy -6CD, skąd C- i D6 Widać, że wykoują oisae oeraje moża wyzazyć sałe A,,A k związae z zyikiem (-a) k Sałe B,,B,C,,C związae z zyikiem ( mogą być wyzazoe w e sam sosób orzez odsawieie do rówośi wielomiaowej zesoloego ierwiaska rówaia q0 i zasąieie dzieleia wielomiaów rzez dwumia -a dzieleiem rzez rójmia q Iym sosobem wyzazaia iezayh wsółzyików jes wykorzysaie faku, że rówość wielomiaów oiąga za sobą rówość ih ohodyh (kóre są wielomiaami soia o iższego iż wyjśiowe wielomiay Wraają do rozważaego wześiej rzykładu 5 -A(-)( ) B( )(CD)(-) wsawiają orzymujemy B - Różizkują obusroie owyższą ożsamość orzymujemy 0-A( ) A(-) B C(-) C(-) Oblizają warośi lewej i rawej sroy dla orzymujemy -A- wię, ak jak orzedio, A Biorą od uwagę możliwość rzedsawieia fukji wymierej właśiwej w osai sumy ułamków rosyh ierwszego i drugiego rodzaju możemy srowadzić ałkowaie fukji wymierej do ałkowaia wielomiau i ałkowaia ułamków rosyh Całkowaie ułamków rosyh Ala dlak A a A k I-rodzaju ( ) d A d k k A k a d ( a) dlak k II-rodzaju B C B B ( C ) ( ( ( B B I ( C ) I,

5 EAIiIB-Iformayka -Wykład 6- dr Adam Ćmiel I ( q d ( ) d l(, dla (, dla >, I ( ) ( q )) ( Do osaiej ałki sosujemy wzór rekureyjy (R) q q d q d ( ) Całkowaie fukji wymieryh względem siusa i osiusa R (si,os, gdzie R(u,v) jes fukją wymierą zmieyh u i v Całkę owyższej osai moża srowadzić do ałki fukji wymierej za omoą zw odsawieia uiwersalego g arg g g, ( π < <π), d si, os g g d Sąd R (si,os R, Osaia ałka jes ałką z fukji wymierej (złożeie fukji wymieryh jes fukją wymierą) Przykład si d os d g { gdzie g } l 5 g 5 d d l 5 5 W ewyh szzególyh rzyadkah oblizeia moża urośić sosują ie odsawieie: º R( si,os R(si,os os º R(si, os R(si,os si º R ( si, os R(si,os g u si (os si R( u, v) Przykład v d d os os os, d si d arg {gdzie os} os - arg os Oblizają ą ałkę odsawieiem uiwersalym o ieo dłuższyh rahukah orzymujemy 8 u { } { } g d u d d ( ) ( ) ( u ) ( u ) ( u ) ( u ) si os arg ) g Wyik e ozorie różi się od orzediego Porzez różizkowaie moża wykazać, że a dowolym rzedziale określoośi obu fukji, ih ohode są ideyze Poado, uky osobliwe (uky w kóryh g jes ieokreśloy) ojawiająe się w osaiej ałe, są osobliwośiami usuwalymi, z isieją graie fukji w yh ukah, wię moża fukję w auraly sosób rzedłużyć rzyjmują warośi rówe odowiedim graiom Całkowaie ewyh fukji iewymieryh Całki osai a b R (, ) d, gdzie R(u,v) jes fukję wymierą argumeów u, v i ad-b 0 srowadzamy do ałki fukji wymierej rzez odsawieie a b d, 5

6 EAIiIB-Iformayka -Wykład 6- dr Adam Ćmiel z kórego wyzazamy, d db a ( adb) ( a) Wobe ego wymierej d ( adb) a b db R (, ) R (, ) d Osaia ałka jes już ałką fukji a ( a) 6 Przykład ( ) ( ) d, 6 d ( ) d6( l - ), gdzie Całki osai R (, a b ), gdzie R(u,v) jes fukję wymierą argumeów u i v, srowadzamy do ałki fukji wymierej rzez jedo z iewykluzająyh się wzajemie odsawień Eulera: a b a, gdy a>0, a b, gdy >0, a b a )( ) ( ), gdy >0 ( Przykład, ( ) ( ) d ( d, ( ) ( ) ( ) ( ) ) d d d d l ( ) ( ( ) ) l l {gdzie } r s Całka dwumiea ( a b ) r, s, -wymiere Całkę dwumieą orafimy srowadzić rzez odae obok odsawieia do ałki fukji wymierej ylko w rzeh rzyadkah ałkowie, k u, gdzie k - wsóly miaowik ułamków r i s r ałkowie, s a b u, gdzie - miaowik ułamka s s r a b ałkowie, u, gdzie - miaowik ułamka s s ( u ( u ) u ( u udu du Przykład ( { u,, } ) u u u du du u u arg {gdzie } arg 6

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim ( AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/

Bardziej szczegółowo

Problem. Jak praktycznie badać jednostajną ciągłość funkcji?

Problem. Jak praktycznie badać jednostajną ciągłość funkcji? EAIiIB-Iormatya - Wyład 3- dr Adam Ćmiel miel@.agh.edu.pl Ciągłość uji w puie e. Fuję : azywamy iągłą w puie jeżeli Heie Cauhy Uwaga: Put ale ie musi być putem supieia zbioru. Jeżeli jest putem izolowaym

Bardziej szczegółowo

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora.

D:\materialy\Matematyka na GISIP I rok DOC\07 Pochodne\8A.DOC 2004-wrz-15, 17: Obliczanie granic funkcji w punkcie przy pomocy wzoru Taylora. D:\maerialy\Maemayka a GISIP I rok DOC\7 Pochode\8ADOC -wrz-5, 7: 89 Obliczaie graic fukcji w pukcie przy pomocy wzoru Taylora Wróćmy do wierdzeia Taylora (wzory (-( Tw Szczególie waża dla dalszych R rozważań

Bardziej szczegółowo

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona

Całka nieoznaczona Andrzej Musielak Str 1. Całka nieoznaczona Całka nieoznaczona Andrzej Musielak Sr Całka nieoznaczona Całkowanie o operacja odwrona do liczenia pochodnych, zn.: f()d = F () F () = f() Z definicji oraz z abeli pochodnych funkcji elemenarnych od razu

Bardziej szczegółowo

Równania liniowe rzędu drugiego stałych współczynnikach

Równania liniowe rzędu drugiego stałych współczynnikach Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że AŁKA NIEOZNAZONA f - fukj określo w rzedzile E. Fukją ierwotą fukji f w rzedzile E zywy fukję F tką, że F N. fukją ierwotą fukji f = + R jest fukj F = + o F +, Zuwży, że fukje F = + + 5 i F = + też są

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr iż. Rajmud Stasiewiz Skaa oe Pukty Oea 5 2, 51 6 3, 61 7 3,5 71 8 4, 81 9 4,5 91-5, Zwoieie z egzamiu Oea z egzamiu izba puktów z ćwizeń - 5 Waruki zaizeia 6 kookwium ok. 15 pkt. 6 kartkówka

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19

Jarosław Wróblewski Analiza Matematyczna 2, lato 2018/19 7 Wyzaczyć zbiór wszyskich warości rzeczywisych parameru p, dla kórych całka iewłaściwa jes zbieża x xe Dzieląc przedział całkowaia orzymujemy x x e x x e x x e Zbadamy, dla kórych warości parameru p całki

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

4. MODELE ZALEŻNE OD ZDARZEŃ

4. MODELE ZALEŻNE OD ZDARZEŃ 4. MODELE ZALEŻNE OD ZDARZEŃ 4.. Wrowadzeie W sysemach zależych od zdarzeń wyzwalaie określoego zachowaia się układu jes iicjowae rzez dyskree zdarzeia. Modelowaie akich syuacji ma a celu symulacyją aalizę

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy

Temat wykładu: Całka nieoznaczona. Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga kursywa komentarz * materiał nadobowiązkowy Temat wykładu: Całka nieoznazona Kody kolorów: żółty nowe pojęie pomarańzowy uwaga kursywa komentarz * materiał nadobowiązkowy A n n a R a j f u r a, M a t e m a t y k a Zagadnienia. Terminologia i oznazenia.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel Własośi zbiorów otwarth i domięth Tw. a) Suma dowolej ilośi zbiorów otwarth jest zbiorem otwartm. b) Iloz sońzoej ilośi zbiorów otwarth jest zbiorem otwartm. Dow. a) Mam rodzię zbiorów otwarth: U A s {

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy 12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,

21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b, CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony). Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Uwagi do rozwiązań zadań domowych - archiwalne

Uwagi do rozwiązań zadań domowych - archiwalne Uwagi do rozwiązań zadań doowyh - arhiwalne ROK AKADEMICKI 07/08 Zad. nr 8 [08.0.8] Przeiana nie była izohorą. Wykładnik oliroy ożna było oblizyć z równania z z Zad. nr 6 [07..9] Końową eeraurę rzeiany

Bardziej szczegółowo

DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA)

DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO, I DO SPRAWDZENIA) DOWODY NIERÓWNOŚCI HÖLDERA I MINKOWSKIEGO (DO UŻYTKU WEWNȨTRZNEGO I DO SPRAWDZENIA) R R Tematem niniejszych notatek jest zbadanie warunków istnienia normy na ewnej rzestrzeni funkcji rzeczywistych określonych

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

FILTRY ANALOGOWE Spis treści

FILTRY ANALOGOWE Spis treści FILTRY AALOGOWE Spis treśi. Modele iltrów aalogowyh. Idealy iltr doloprzepustowy 3. Rzezywiste iltry doloprzepustowe 4. Stabilość iltrów 5. Filtr Butterwortha 6. Filtr Czebyszewa 7. Filtry eliptyze 8.

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Funkcje tworz ce skrypt do zada«

Funkcje tworz ce skrypt do zada« Fukcje tworz ce skrypt do zada«mateusz Rapicki, Piotr Suwara 20 maja 2012 1 Kombiatoryka Deicja 1 (dwumia Newtoa) dla liczb caªkowitych ieujemych, k to liczba k sposobów wybraia k elemetów z -elemetowego

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Obligacja i jej cena wewnętrzna

Obligacja i jej cena wewnętrzna Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18

ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 2017/18 dr Aa Barbaszewska-Wiśiowska ZAGADNIENIA Z MATEMATYKI DLA STUDENTÓW I ROKU WIMiR Semestr zimowy 17/18 1 Elemety logiki matematyczej Zdaia i formy zdaiowe fuktory zdaiotwórcze Tautologie Wartości logicze

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe:

Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe: : R A R, A przedział A, Wykład III Graice ukcji określoa w, S \ Deiicja 3. (deiicja Caucy eo raicy ukcji) : D U,, ( ) : ot Iaczej: Uot D U K M U ot U ot K M Graice iewłaściwe: k K R D M K K R M R D De.

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Szeregi liczbowe. 15 stycznia 2012

Szeregi liczbowe. 15 stycznia 2012 Szeregi liczbowe 5 styczia 0 Szeregi o wyrazach dodatich. Waruek koieczy zbieżości szeregu Defiicja.Abyszereg a < byłzbieżyciąga musizbiegaćdo0. Jest to waruek koieczy ale ie dostateczy. Jak wiecie z wykładu(i

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania 1.1 Podstawowe definicje Def. Funkcję F nazywamy funkcją pierwotną funkcji f, określonej w przedziale otwartym P (skończonym

Bardziej szczegółowo

15. CAŁKA NIEOZNACZONA cz. I

15. CAŁKA NIEOZNACZONA cz. I 5. CAŁKA NIEOZNACZONA cz. I Fukcj pirwot fukcji f w pwym przdzial (właciwym lub iwłaciwym) azywamy tak fukcj F, którj pochoda rówa si fukcji f w tym przdzial. Zbiór wszystkich fukcji pirwotych fukcji f

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć

Bardziej szczegółowo

EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPUSY ASEROWE T t N t Dwa główe mehaizmy powoująe ziekształeie impulsów laserowyh: ) GVD-group veloity isspersio ) SMP-self phase moulatio 3 E E τ () 0 t /

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego

Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego 0 Podzi kàtów ze wzgl du mir Przyk dy kàtów 0 B B W soêi Kàt wkl s y m mir wi kszà od 80 i miejszà od 60. Kàty wyuk e to kàty, któryh mir jest wi ksz àdê rów 0 i miejsz àdê rów 80, lu rów 60. Ni ej rzedstwimy

Bardziej szczegółowo

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-)

Zauważone błędy bardzo proszę zgłaszać mailem lub na ćwiczeniach. Z góry dziękuję :-) Odpowiedzi do zadań z szeregów, cz I. Zauważoe błędy bardzo proszę zgłaszać mailem lub a ćwiczeiach. Z góry dziękuję :-. a +, wsk. skorzystać z rówości a b a b, astępie a+b wyciągąć ajwyższe potęgi z liczika

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r.

XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Komisja Egzaminacyjna dla Akuariuszy XLI Egzamin dla Akuariuszy z 8 sycznia 7 r. Część II Maemayka ubezieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 1 minu Warszawa, 9 aździernika

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel semestr zimowy, r akad 204/205 Defiicja ciągu liczbowego) Ciagiem liczbowym azywamy fukcję odwzorowuja- ca zbiór liczb aturalych w zbiór liczb rzeczywistych

Bardziej szczegółowo

"Liczby rządzą światem." Pitagoras

Liczby rządzą światem. Pitagoras "Liczby rządzą światem." Pitagoras Def. Liczbą zespoloą azywamy liczbę postaci z= x +yi, gdzie x, y є oraz i = -1. Zbiór liczb zespoloych ozaczamy przez ={ x + yi: x, y є } Ozaczeia x= Re z częśd rzeczywista

Bardziej szczegółowo

III. LICZBY ZESPOLONE

III. LICZBY ZESPOLONE Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam

Bardziej szczegółowo

Wykład 10 Wnioskowanie o proporcjach

Wykład 10 Wnioskowanie o proporcjach Wykład 0 Wioskowaie o roorcjach. Wioskowaie o ojedyczej roorcji rzedziały ufości laowaie rozmiaru róby dla daego margiesu błędu test istotości dla ojedyczej roorcji Uwaga: Będziemy aalizować roorcje odobie

Bardziej szczegółowo

Funkcje tworzące - przypomnienie

Funkcje tworzące - przypomnienie Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie

Bardziej szczegółowo

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011

Wykład 19. Matematyka 3, semestr zimowy 2011/ grudnia 2011 Wykład 9 Matematyka 3, semestr zimowy 0/0 3 grudia 0 Zajmiemy się teraz rozwiięciem fukcji holomorficzej w szereg Taylora. Przypomijmy podstawowe fakty związae z szeregami potęgowymi o wyrazach rzeczywistych.

Bardziej szczegółowo

Dyskretny proces Markowa

Dyskretny proces Markowa Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ

RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzysano: M A T E M A T Y K A Wykład dla sudenów Część Krzyszo KOŁOWROCKI, ZBIÓR ZADAŃ Z RACHUNKU CAŁKOWEGO Krzyszo PISKÓRZ Deinicja CAŁKA NIEOZNACZONA Funkcję

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW D, E

UZUPEŁNIENIA DO WYKŁADÓW D, E . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem.3 2017/2018 D. II ZASADA ERMODYNAMIKI UZUPEŁNIENIA DO WYKŁADÓW D, E D.1. Warunki stabilnośi, określająe

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

O kilku zastosowaniach grup i pierścieni grupowych

O kilku zastosowaniach grup i pierścieni grupowych O kilku zastosowaiach grup i pierściei grupowych Czesław BAGIŃSKI, Edmud R. PUCZYŁOWSKI, Białystok Warszawa Nierzadko zdarza się, że rozwiązaie elemetarie brzmiącego zadaia, wymaga iestadardowych pomysłów.

Bardziej szczegółowo

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że

dna szeregu. ; m., k N ; ó. ; u. x 2n 1 ; e. n n! jest, że KILKA ZADAŃ O SZEREGACH Zbadać zbieżość i zbieżość bezwzgle da = a, jeśli a = a!! ; a + + ; c + ; ć! ; d +/ + 3 ; e! e 3 3+ ; f ; + g 000+ ; h ; + i! ; j k ; l 5 + l + 7 0 +3 6 0 + ; +3 ; ; m 3 + 3 ; +a

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo