UZUPEŁNIENIA DO WYKŁADÓW D, E

Wielkość: px
Rozpocząć pokaz od strony:

Download "UZUPEŁNIENIA DO WYKŁADÓW D, E"

Transkrypt

1 . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem /2018 D. II ZASADA ERMODYNAMIKI UZUPEŁNIENIA DO WYKŁADÓW D, E D.1. Warunki stabilnośi, określająe warunek dostatezny istnienia minimum (maksimum odowiedniego otenjału termodynamiznego dla stanu równowagi w układzie złożonym z dowolnej lizby odukładów, mają istotne znazenie także do oisu układów jednofazowyh. Rozważmy roes: układ jednolity ojawienie się kilku odukładów (faz, o różniąyh się, ale śiśle sreyzowanyh wartośiah arametrów. Jeśli taki roes jest nieodwraalny, układ wyjśiowy jest fazą niestabilną, stabilność fazy z kolei jest gwarantowana rzez nieodwraalność roesu odwrotnego. Faza będzie stabilna, jeśli jakakolwiek zmiana arametrów (nazywamy to rzemianą wirtualną będzie wiązała się ze zwiększeniem (dla entroii zmniejszeniem otenjału termodynamiznego. Wirtualna zmiana dotyzy wyłąznie arametrów ekstensywnyh (odział układu zy też wyodrębnienie z niego jakośiowo nowego elementu składowego, arametry intensywne nie zależą od wielkośi układu. D.1.1. Wyrowadzenie warunków stabilnośi dla fazy zystej. Potenjały uzależnione od arametrów ekstensywnyh to S(U, i U(S,. Wybieramy U, bo różnizkowanie energii wewnętrznej jest łatwiejsze. Przeanalizujmy możliwe (wirtualne zmiany U wokół ołożenia równowagi, oznazonego indeksem 0. Rozwijamy U w szereg, ogranizają się do drugiej ohodnej. Faza będzie stabilna, jeśli wirtualna rzemiana będzie niemożliwa, tj. dla δu 0. W stanie równowagi ierwsze ohodne się zerują 0 Sójrzmy na to wyrażenia jak na wielomian 2-stonia względem δs. Pozostałe arametry są dowolne, niezależne od δs. 2 0 Kiedy wielomian ten nigdy nie będzie mniejszy od 0? a 0 równanie ma o najwyżej jeden ierwiastek rzezywisty względem δs, tj Pierwszy warunek: 0 0! # " 0 $ % & Drugi warunek: ' ( ' ( ' ( Ponieważ '(, owyższa nierówność uraszza się do (1 Dalsze rzekształenia zmierzają do zastąienia ohodnyh rzy stałej entroii, rzez funkję arametrów bezośrednio mierzalnyh (,,. Przedstawmy różnizkę zuełną S w funkji i * *! * '( *! * (2 6

2 . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem /2018 Wyrażają z kolei (,, można uzyskać różnizkę zuełną S(, * '( *, *- * '( -* '( *, (3 Dla S onst, mamy dla obu równań ds 0 i rzekształają do formy d(,sonst i d(,sonst, otrzymujemy: Z równania (2./.0 1 ' 1 i z równania (3.0.1 ' 1 # 2./ / / 1 ' 1 # Po odstawieniu do (1 i rostyh rzekształeniah (nie wierzyć na słowo i srawdzić!, otrzymujemy bardzo rostą zależność 34 & 35 6 D.2. Zadania i roblemy D.2.1. (! Korzystają ze statystyznej definiji entroii, oblizyć jej wartość dla talii kart, w której każda karta może zajmować dowolną ozyję, zbiornika z gazem, w którym N ząstezek może znajdować się z jednakowym rawdoodobieństwem w jednej z dwóh ołówek zbiornika. Porównać nieodwraalność roesów: uorządkowana nieuorządkowana talia kart i ząstezki gazu zgromadzone w jednej ołówe nazynia gaz rozmieszzony w ałym nazyniu. D.2.2. Czasami roes ewoluji, którego efektem jest stałe doskonalenie i zwiększanie stonia organizaji żywyh organizmów, odaje się jako rzykład odważająy II zasadę termodynamiki. Jaki oełniają błąd i, którzy w ten sosób kwestionują II zasadę? D.2.3. (! Wyrowadzić wyrażenie na zależność S(, onst bez korzystania z tabli Bridgmana ( W_D.9. Wskazówka. Różnizkowe ieło wystęująe we wzorze na różnizkę zuełną entroii (II zasada, od stałym iśnieniem, równa się *7. Znaleźć jej wartość korzystają z wyrazu na różnizkę zuełną H(,. D.2.4. Wyobraźmy sobie, że w jakimś wyimaginowanym świeie zależność ( w ałym zakresie temeratur, tj. od 0, dana jest w ostai!!, gdzie a > 0. Jaka byłaby w nim (tj. tym świeie granizna wartość entroii - lim rzy założeniu, że dla > 0 K rzybiera ona skońzone wartośi? ( W_D.10. E. KONSEKWENCJE ZASAD ERMODYNAMIKI Celem tego uzuełnienia jest okazanie, jak można znaleźć różne iekawe związki omiędzy arametrami na odstawie rostej matematyki, bez używania tabli Bridgmana. E.1. Jak energia wewnętrzna zależy od objętośi w stałej temeraturze? Miarą tej zależnośi jest ohodna, którą najłatwiej znaleźć rzedstawiają U jako funkję F, bo, są arametrami harakterystyznymi energii swobodnej. U F S F S 7

3 . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem /2018 Pierwsza ohodna równa się - (z różnizki zuełnej F a druga - U Równanie to nosi nazwę termodynamiznego równania stanu. Dla gazu doskonałego będziemy mieli (z relaji Maxwella. nr nr nr nr 0 A zatem energia wewnętrzna gazu doskonałego nie zależy od objętośi. Nie zależy również od iśnienia - zależy jedynie od temeratury. akie same właśiwośi ma entalia gazu doskonałego. E.2. Związek omiędzy i v. Z definiji entalii H U, otrzymujemy orzez różnizkowanie obu stron o : Zadanie srowadza się do rzedstawienia jako funkji, *!, * *,B A *,*!,, stąd szukana ohodna H >??! - w zym wykorzystano wyrażenie na ( E.1. I ostateznie, o odstawieniu do wzoru na : v E.3. Równanie adiabaty odwraalnej dla gazu doskonałego. Przemiana adiabatyzna i odwraalna jest rzemianą izoentroową (dlazego?. Równanie stanu otrzymuje się rzez ohodną ( ( S, o dla gazu doskonałego daje S nr Dalsze ałkowanie wymaga znajomośi zależnośi temeraturowej ojemnośi ielnej. Przy założeniu, że f(, o sałkowaniu otrzymujemy,! CD / EFGHIJ a o zamianie wsółrzędnyh na -:, GHIJ. D/ D 1 Ponieważ wykładnik jest większy od jednośi, w adiabaie odwraalnej iśnienie maleje ze wzrostem objętośi szybiej niż to ma miejse dla izotermiznego rozrężania gazu doskonałego. Zahowanie gazów w rzezywistyh roesah leiej oddaje wykładnik, który nieznaznie różni się od stosunku / v. Przy takiej modyfikaji, analogizna rzemiana nosi nazwę rzemiany olitroowej. 8

4 . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem /2018 E.4. Zadania i roblemy E.4.1. Udowodnić, że uzuełnianie energii wewnętrznej o możliwe zmiany energetyzne wykrazająe oza ieło i raę objętośiową ( W_E.2.3 może być zastosowane w ten sam sosób do ozostałyh otenjałów termodynamiznyh mająyh wymiar energii. E.4.2. (! Naisać równanie wynikająe z I twierdzenia Eulera dla energii wewnętrznej (U i entalii swobodnej (G jako funkji swoih naturalnyh arametrów (S,, n oraz (,, n, gdzie n jest wektorem lizby moli. Zidentyfikować ohodne o arametrah ekstensywnyh. E.4.3. (! Udowodnić, że otenjał hemizny, ierwotnie zdefiniowany jako ohodna energii wewnętrznej o lizbie moli, jest równy analogiznym ohodnym ozostałyh otenjałów termodynamiznyh ( W_E.4. Wskazówka: Zastosować I równanie Eulera do U i n. G ( E.4.2. i orównać otrzymane zależnośi, wykorzystują bezośredni związek omiędzy tymi funkjami. E.4.4. (! Na odstawie analizy znaku różnizki zuełnej entroii z wyrowadzenia rzedstawionego w W_E.5, udowodnić, że rzekazywanie energii na sosób ieła α β zahodzi dla α < β, warunkiem wykonania ray objętośiowej rzez α na β, jest α > β, dyfuzja składnika i z fazy α do β zahodzi dla K L M >K L O. E.4.5. Srawdzić, że rawdziwe są równania zaisane w kolumnie z nagłówkiem relaje Maxwella w tabeli W_E.9. E.4.6. (* Oblizyć zmianę entroii dla nastęująego roesu. Zbiornik o stałej objętośi odzielony jest rzegrodą na dwie zęśi A B onst. W zęśi A znajduje się n A moli gazu doskonałego A, w zęśi B n B moli gazu doskonałego B. Ciśnienie i temeratura w obu zęśiah zbiornika są takie same (,. Usuwamy rzegrodę i teraz zarówno A jak i B, może zajmować ałą objętość nazynia. Oblizyć zmianę entroii dla zahodząego roesu (nosi ona nazwę entroii mieszania. Powtórzyć oblizenia dla rzyadku, w którym w obu zęśiah nazynia znajduje się ten sam gaz A B. Czy otrzymany wynik nie jest dziwny? Wskazówka. Entroia jest ekstensywna, w związku z zym ałkowita zmiana entroii będzie sumą zmian dla A i B. Dla każdego gazu entroia zmieni się ze względu na zwiększenie dostęnej objętośi w warunkah izotermiznyh: A A B i B A B. Nietrudno się domyślić, że entroia wzrośnie. o samo otrzymamy dla A B, o jest jednak nonsensem, onieważ usunięie/ umieszzenie rzegrody nizego nie zmieni w układzie! Zmiana entroii musi wynosić zero. Jest to tak zwany aradoks Gibbsa. Warto się zastanowić, dlazego wzór rawidłowy dla mieszaniny, rowadzi do absurdu, jeśli zastosujemy go do zystej substanji. E.4.7. Udowodnić, że *P *Q RS oraz *U, *Q W,RS ( W_E.10 Wskazówka. Należy wyjść z bilansu energii wynikająego z I Zasady, a nastęnie wyrazić dq i dw w sosób odowiadająy założonym warunkom. Zwróić uwagę, że w ogólnym rzyadku, dw jest sumaryzną raą, a nie tylko objętośiową. E.4.8. Udowodnić, że energia wewnętrzna gazu doskonałego nie zależy od iśnienia w stałej temeraturze. Wskazówka. Można wykorzystać udowodnioną już niezależność energii wewnętrznej od objętośi. E.4.9. Udowodnić, że entalia gazu doskonałego zależy tylko od temeratury. E (! Czy niezależność energii wewnętrznej gazu doskonałego od objętośi i iśnienia wynika także z założeń molekularnyh modelu? 9

5 . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem /2018 Wskazówka: Zmiana objętośi/ iśnienia w stałej temeraturze owoduje zwiększenie/ zmniejszenie średnih odległośi omiędzy ząstezkami. Czy taka zmiana wiąże się z wykonywaniem ray i o za tym idzie zmianą energii? E Na odstawie związku omiędzy i (E.2 udowodnić, że dla gazu doskonałego rawdziwe jest równanie: HX E Na odstawie warunków stabilnośi udowodnić, że 0. Wskazówka. Pohodne wystęująe w związku omiędzy i (E.2 uzależnić od. E Wyrowadzić równanie adiabaty odwraalnej we wsółrzędnyh -. Wskazówka. Sosób ostęowania rzedstawiony jest E.3. 10

Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa

Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa Fizykoheizne odstawy inżynierii roesowej Wykład IV Proste rzeiany d: Przeiana adiabatyzna Przeiana olitroowa Przeiana adiabatyzna (izentroowa) Przeiana adiabatyzna odbywa się w układzie adiabatyzny tzn.

Bardziej szczegółowo

PLAN WYKŁADU. Ciepło właściwe Proces adiabatyczny Temperatura potencjalna II zasada termodynamiki. Procesy odwracalne i nieodwracalne 1 /35

PLAN WYKŁADU. Ciepło właściwe Proces adiabatyczny Temperatura potencjalna II zasada termodynamiki. Procesy odwracalne i nieodwracalne 1 /35 PLAN WYKŁADU Cieło właśiwe Proes adiabatyzny emeratura otenjalna II zasada termodynamiki Proesy odwraalne i nieodwraalne 1 /35 Podręzniki Salby, Chater 2, Chater 3 C&W, Chater 2 2 /35 CIEPŁO WŁAŚCIWE 3

Bardziej szczegółowo

v! są zupełnie niezależne.

v! są zupełnie niezależne. Zasada ekwiartyji energii 7-7. Zasada ekwiartyji energii ównowaga termizna układów Zerowa zasada termodynamiki Jeżeli układy A i B oraz A i są arami w równowadze termiznej, to również układy B i są w równowadze

Bardziej szczegółowo

D. II ZASADA TERMODYNAMIKI

D. II ZASADA TERMODYNAMIKI WYKŁAD D,E D. II zasada termodynamiki E. Konsekwencje zasad termodynamiki D. II ZAADA ERMODYNAMIKI D.1. ełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek rocesu w rzyrodzie.

Bardziej szczegółowo

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykohemizne odtay inżynierii roeoej Wykład III Prote rzemiany termodynamizne Prote rzemiany termodynamizne Sośród bardzo ielu możliyh rzemian termodynamiznyh zzególną rolę odgryają rzemiany ełniająe

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Kirchhoffa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Kirchhoffa ZADANIA Z HEII Efekty energetyzne reakji hemiznej - rawo Kirhhoffa. Prawo Kirhhoffa Różnizkują względem temeratury wyrażenie, ilustrująe rawo Hessa: Otrzymuje się: U= n r,i U tw,r,i n s,i U tw,s,i () d(

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Wykład Wroław University of ehnology 8-0-0 Podstawy termodynamiki 0 ermodynamika klasyzna Ois układu N ząstek na grunie mehaniki klasyznej wymaga rozwiązania N równań ruhu. d dt

Bardziej szczegółowo

Stan równowagi chemicznej

Stan równowagi chemicznej Stan równowagi hemiznej Równowaga hemizna to taki stan układu złożonego z roduktów i substratów dowolnej reakji odwraalnej, w którym szybkość owstawania roduktów jest równa szybkośi ih rozadu Odwraalność

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA ERMODYNAMIKA PROCESOWA Wykład IV Charakterystyka ośrodków termodynamiznyh Prof. Antoni Kozioł, Wydział Chemizny Politehniki Wroławskiej Charakterystyka ośrodków termodynamiznyh właśiwośi termodynamizne

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

I zasada termodynamiki

I zasada termodynamiki W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej. Wykład V Charakterystyka ośrodków termodynamicznych

Fizykochemiczne podstawy inżynierii procesowej. Wykład V Charakterystyka ośrodków termodynamicznych Fizykohemizne odstawy inżynierii roesowej Wykład V Charakterystyka ośrodków termodynamiznyh Charakterystyka ośrodków termodynamiznyh Z inżynierskiego unktu widzenia bardzo ważny jest ois ośrodka który

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Ć W I C Z E N I E N R C-3

Ć W I C Z E N I E N R C-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C-3 WYZNACZANIE STOSUNKU DLA POWIETRZA METODĄ

Bardziej szczegółowo

1. Cykl odwrotny Carnota reprezentują poniższe diagramy w zmiennych p-v ( ) i T-S

1. Cykl odwrotny Carnota reprezentują poniższe diagramy w zmiennych p-v ( ) i T-S Zad. domowe nr 5: druga zasada termodynamiki, elementy termodynamiki statystyznej, rawo Gaussa. Grua 1 II zasada termodynamiki 1. Cykl odwrotny Carnota rerezentują oniższe diagramy w zmiennyh -V (3 2 1

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

TERMODYNAMIKA OGNIWA GALWANICZNEGO

TERMODYNAMIKA OGNIWA GALWANICZNEGO Ćwiczenie nr 3 ERMODYNAMIKA OGNIWA GALWANICZNEGO I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zmian funkcji termodynamicznych dla reakcji biegnącej w ogniwie Clarka. II. Zagadnienia wrowadzające 1.

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwenia: WYZNACZANIE WYKŁADNIKA IZENTROPY κ DLA POWIETRZA Wyznazanie wykłnika

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

Mini-quiz 0 Mini-quiz 1

Mini-quiz 0 Mini-quiz 1 rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Temat:Termodynamika fotonów.

Temat:Termodynamika fotonów. Temat:Termodynamika fotonów. I Wstę Jak już sam temat sugeruje ostaram się rzedstawić 'termodynamikę' fotonów. Skąd taki omysł? Przez ewien zas hodziłem śieżki termodynamiki gazu doskonałego, lizyłem srawnośi

Bardziej szczegółowo

czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2.

czyli politropa jest w tym przypadku przemianą przy stałym ciśnieniu nazywaną izobarą. Równanie przemiany izobarycznej ma postać (2. remiany_gau_dosk Charakterystyne remiany gau doskonałego. Premiana oitroowa Premianą oitroową naywamy remianę o równaniu idem (. ub V idem (. gdie V / m. W równaniah (. i (. jest wykładnikiem oitroy. Podstawowe

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji

WYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji .Entroia definicja termodynamiczna. d d rzemiana odwracaa rzemiana nieodwracaa umaryczny zais obu tych relacji Q d el WYKŁAD _ rzykład a Obliczyć zmianę entroii, gdy 5 moli wodoru rozręŝa się odwracaie

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu.

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu. M. Chorowski Podstawy Kriogeniki, wykład 5. 3. Metody zyskiwania niskih temperatr - iąg dalszy 3.3. Wypływ swobodny ze stałej objętośi Rozważmy adiabatyzną ekspansję gaz wypływająego z nazynia o stałej

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

II zasada termodynamiki.

II zasada termodynamiki. II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna

Materiały pomocnicze do ćwiczeń z przedmiotu: Termodynamika techniczna Materiały omocnicze do ćwiczeń z rzedmiotu: Termodynamika techniczna Materiały omocnicze do rzedmiotu Termodynamika techniczna. Sis treści Sis treści... 3 Gaz jako czynnik termodynamiczny... 5. Prawa

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23

WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23 WYKŁAD 1 WPROWADZENIE DO STATYKI PŁYNÓW 1/23 RÓWNOWAGA SIŁ Siła owierzchniowa FS nds Siła objętościowa FV f dv Warunek konieczny równowagi łynu F F 0 S Całkowa ostać warunku równowagi łynu V nds f dv 0

Bardziej szczegółowo

Sposoby badania efektywności układu suszącego maszyn tissue

Sposoby badania efektywności układu suszącego maszyn tissue Sosoby badania efektywnośi układu susząego maszyn tissue Testing methods for effetiveness of tissue mahine drying system Aleksander Kleazka To have effetive aer rodution roesses on the aer mahine the measurement

Bardziej szczegółowo

ZEROWA ZASADA TERMODYNAMIKI

ZEROWA ZASADA TERMODYNAMIKI ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej ERMODYNAMIKA PROCESOWA Wykład VI Równania kubiczne i inne Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej Komunikat Wstęne terminy egzaminu z ermodynamiki rocesowej : I termin środa 15.06.016

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Ć W I C Z E N I E N R C-5

Ć W I C Z E N I E N R C-5 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII ATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ECHANIKI I CIEPŁA Ć W I C Z E N I E N R C-5 WYZNACZANIE CIEPŁA PAROWANIA WODY ETODĄ KALORYETRYCZNĄ

Bardziej szczegółowo

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej

Składowe odpowiedzi czasowej. Wyznaczanie macierzy podstawowej Składowe odpowiedzi zasowej. Wyznazanie maierzy podstawowej Analizowany układ przedstawia rys.. q (t A q 2, q 2 przepływy laminarne: h(t q 2 (t q 2 h, q 2 2 h 2 ( Przykładowe dane: A, 2, 2 2 (2 h2(t q

Bardziej szczegółowo

Jak osiągnąć 100% wydajności reakcji?

Jak osiągnąć 100% wydajności reakcji? Jak osiągnąć 100% wydajnośi reakji? Stan równowagi ois termodynamizny G 0 A A G + RT ln(q)o B B C (a) (b) wówzas G - RT ln() stała równowagi a) G

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny ieplne i II zasada termodynamiki Maszyny ieplne, łodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamizna definija II zasada termodynamiki i entropia Cykle termodynamizne.

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ...

Definicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ... Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany v zmiana stężenia zas potrzebny do zajśia dx

Bardziej szczegółowo

Uwagi do rozwiązań zadań domowych - archiwalne

Uwagi do rozwiązań zadań domowych - archiwalne Uwagi do rozwiązań zadań doowyh - arhiwalne ROK AKADEMICKI 07/08 Zad. nr 8 [08.0.8] Przeiana nie była izohorą. Wykładnik oliroy ożna było oblizyć z równania z z Zad. nr 6 [07..9] Końową eeraurę rzeiany

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład VIII Równania stanu tyu an der Waalsa Przyomnienie Na orzednim wykładzie omówiliśmy: 1. Równanie stanu gazu doskonałego.. Porawione RSGD za omocą wsółczynnika

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

REAKCJE CHEMICZNE. syntezy. analizy. wymiany AB A + B. rodzaje reakcji chemicznych reakcje: H 2 SO NaOH A + B AB 2 H 2 + O 2 = 2H 2 O

REAKCJE CHEMICZNE. syntezy. analizy. wymiany AB A + B. rodzaje reakcji chemicznych reakcje: H 2 SO NaOH A + B AB 2 H 2 + O 2 = 2H 2 O REAKCJE CHEMICZNE rodzaje reakji hemiznyh reakje: 1. syntezy. analizy 3. wymiany 4. substytuji 5. addyji 6. eliminaji 7. polimeryzaji reakja hemizna to każdy proes w wyniku którego następuje zrywanie i/lub

Bardziej szczegółowo

Definicja szybkości reakcji

Definicja szybkości reakcji Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny ieplne i II zasada termodynamiki Maszyny ieplne, łodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamizna definija II zasada termodynamiki i entropia Cykle termodynamizne.

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

n := {n} n. Istnienie liczb naturalnych gwarantują: Aksjomat zbioru pustego, Aksjomat pary nieuporządkowanej oraz Aksjomat sumy.

n := {n} n. Istnienie liczb naturalnych gwarantują: Aksjomat zbioru pustego, Aksjomat pary nieuporządkowanej oraz Aksjomat sumy. Konsekt wykładu ELiTM 6 Konstrukcje liczbowe Konstrukcja von Neumanna liczb naturalnych. Definicja 0 - liczba naturalna zero. Jeżeli n jest liczbą naturalną, to nastęną o niej jest liczba n {n} n. Istnienie

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimiady Matematycznej Gimnazjalistów Liga zadaniowa 01/01 Seria VII styczeń 01 rozwiązania zadań 1. Udowodnij, że dla dowolnej dodatniej liczby całkowitej n liczba n! jest odzielna rzez n!

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Podstawowe przemiany cieplne

Podstawowe przemiany cieplne Podstawowe rzemiay iele Przemiaa izohoryza zahodzi, gdy objętość układu ozostaje stała ( ost), zyli 0. ówaie izohory () ost rzemiaie tej ie jest wykoywaa raa, bo 0, wię zgodie z ierwszą zasadą termodyamiki,

Bardziej szczegółowo

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO SILNIK URBINOWY ANALIZA ERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnitwa PRz Po. L 34 a E-mail robersi@rz.edu.l WWW www.jaubowsirobert.sd.rz.edu.l

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Poziom podstawowy

FUNKCJA KWADRATOWA. Poziom podstawowy FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej

Bardziej szczegółowo

Chemia ogólna i nieorganiczna- dwiczenia laboratoryjne 2018/2019

Chemia ogólna i nieorganiczna- dwiczenia laboratoryjne 2018/2019 ĆWICZENIE 6 ROZTWORY BUFOROWE 1. Zakres materiału Pojęia: stężenie molowe, ph, wskaźniki ph-metryzne, teoria kwasów i zasad Brønsteda, roztwory buforowe i ih ph, pojemność buforowa, słaby/mony kwas, słaba/mona

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski

Turbinowy silnik odrzutowy obieg rzeczywisty. opracował Dr inż. Robert Jakubowski urbinowy ilni odrzutowy obieg rzezywity oraował Dr inż. Robert Jaubowi Obieg turbinowego ilnia jednorzeływowego -orównanie ilnia idealnego i ilnia rzezywitego (z uwzględnieniem trat) i 3 3 q do 4 S 4 4

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017 Teoria informacji i kodowania Ćwiczenia Sem. zimowy 06/07 Źródła z amięcią Zadanie (kolokwium z lat orzednich) Obserwujemy źródło emitujące dwie wiadomości: $ oraz. Stwierdzono, że częstotliwości wystęowania

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WILGOTNOŚCI WZGLĘDNEJ I STOPNIA ZAWILŻENIA POWIETRZA HIGROMETREM

Bardziej szczegółowo

Rozwiązanie zadania 1.

Rozwiązanie zadania 1. ozwiązaie zadaia. Zagadieie będziemy ozatywali w układzie, w któym stożek jest ieuhomy. a Poieważ zdezeie jest doskoale sężyste, a owiezhia stożka ieuhoma, atom gazu o zdezeiu będzie miał ędkość v skieowaą

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN WYZNACZANIE CHARAKTERYSTYKI SPRĘŻYNY ŚRUBOWEJ ĆWICZENIE LABORATORYJNE NR 7 Z PODSTAW KONSTRUKCJI MASZYN Oraowali: mgr

Bardziej szczegółowo

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz. ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury

Bardziej szczegółowo

Wykład 3. Prawo Pascala

Wykład 3. Prawo Pascala 018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny

Bardziej szczegółowo

Jak osiągnąć 100% wydajności reakcji?

Jak osiągnąć 100% wydajności reakcji? Jak osiągnąć 100% wydajnośi reakji? Stan równowagi ois termodynamizny G 0 A A G + RT ln(q)o B B C (a) (b) wówzas G - RT ln() stała równowagi a) G

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

II zasada termodynamiki

II zasada termodynamiki TERMODYNAMIKA: DRUGA ZAADA TERMODYNAMIKI ą rocesy zgodne z zasadą zachowania energii, tóre nigdy nie wystęują w rzyrodzie. Przyład: długois leżący na stole Druga zasada termodynamii odowiada na ytanie,

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA(1971/1972). Stopień III, zadanie teoretyczne T3

XXI OLIMPIADA FIZYCZNA(1971/1972). Stopień III, zadanie teoretyczne T3 XXI OLIMPIADA FIZYCZNA(1971/197) Stoień III, zadanie teoretyczne T3 Źródło: Olimiady fizyczne XXI i XXII, WSiP Warszawa 1975 Autor: Nazwa zadania: Działy: Słowa kluczowe: Andrzej Szymacha Obrót łytki Mechanika

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Fale rzeczywiste. dudnienia i prędkość grupowa

Fale rzeczywiste. dudnienia i prędkość grupowa Fale rzezywiste dudnienia i rędkość gruowa Czysta fala harmonizna nie istnieje. Rzezywisty imuls falowy jest skońzony w zasie i w rzestrzeni: Rzezywisty imuls falowy (iąg falowy) można rzedstawić jako

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 9 Przykład z fizyki Rozpatrzmy szeregowe połączenie dwu elementów elektronicznych: opornika i diody półprzewodnikowej.

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstawy Konstrukji Maszyn Wykład 13 Dr inŝ. Jaek Czarnigowski Połązenie wiskowe jest rodzajem ołązenia kształtowego bezośredniego rozłąznego Nie ma elementu ośredniego Połązenie odbywa się dzięki tariu

Bardziej szczegółowo

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego.

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego. owanie dynamicznych systemów biocybernetycznych Wykład nr 9 z kursu Biocybernetyki dla Inżynierii Biomedycznej rowadzonego rzez Prof. Ryszarda Tadeusiewicza Dotychczas rozważane były głownie modele biocybernetyczne

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo