Przykładowe zadania z teorii liczb

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przykładowe zadania z teorii liczb"

Transkrypt

1 Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę r. a = 346 = 85 b + r, 0 < r < b. Stąd 36 r b = 8 +, 85 Liczba b musi być liczbą całkowitą dodatnią, zaś reszta r musi być dodatnia mniejsza od 85. Wynika stąd, że 36 r = 0. Otrzymujemy zatem b = 8, r = 36.. Pokazać, że n 5 n, gdzie n jest liczb naturalną, jest podzielne przez 30. n 5 n = (n ) n (n + ) (n + ) = (n ) n (n + ) [(n 4) + 5] = = (n ) (n ) n (n + ) (n + ) + 5 (n ) n (n + ). Każdy ze składników otrzymanej sumy jest podzielny przez 30, gdyż iloczyn k następujących po sobie liczb naturalnych jest podzielny przez k!. Istotnie, n n n n n k + C k n k ( )( )...( ) = = 3... k jest liczbą całkowitą i dlatego rozważana wcześniej suma jest podzielna przez 30, a to oznacza, że 30 dzieli n 5 n. 3. Pokazać, że mn (m 4 n 4 ), gdzie m i n są liczbami naturalnymi, dzieli się przez 30. Zauważmy, że mn (m 4 n 4 ) = n (m 5 - m) m(n 5 n), a jak było pokazane w przykładzie, m 5 m dzieli się przez 30.

2 4. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nowa liczbę, cztery razy większą od poprzedniej. Znaleźć liczbę a. Niech szukaną liczbą będzie 0 x + 5. Przestawiając cyfrę 5 na miejsce pierwsze, otrzymujemy liczbę x. Z warunków zadania wynika, że x = 4 (0 x + 5). Stąd x = 80. Zatem szukaną liczbą jest Znaleźć sumę n wyrazów ciągu S n = (S n jest sumą n składników). S n = = n 0 n+ n+ = n 9 = + + n = + n Znaleźć wszystkie liczby całkowite x 3 takie, że x 3 dzieli x 3. n = n ( n) Połóżmy x 3 = t. Wtedy x = t + 3, x 3 3 = (t +3) 3 3. Jeśli x -3 dzieli x 3-3 wtedy i tylko wtedy gdy t dzieli (t + 3) 3 3. Ale (t + 3) 3 3 = t 3 9 t + 7 t 4. Zatem t dzieli (t + 3) 3 3 wtedy i tylko wtedy gdy t dzieli 4, a więc t jest jedną z liczb ±, ±, ±3, ±4, ±6, ±8, ±, ±4. Stąd dla x = t + 3 otrzymujemy: -, -9, -5, -3, -, 0,,, 4, 5, 6, 7, 9,, 5, 7. 9 ( ) ( ) 7. Pokazać, że dla liczby naturalnej n, liczby n 5 oraz n mają takie same cyfry jedności. W przykładzie zostało pokazane, że liczba n 5 n jest podzielna przez 30. Skoro jest podzielna przez 30, to jest też podzielna przez 0. Zatem liczby n 5 oraz n muszą mieć takie same cyfry jedności.

3 8. Wykazać, że kwadrat każdej liczby całkowitej nieparzystej jest postaci 8 k +, gdzie k jest dowolną liczbą całkowitą. Dowolną liczbę całkowitą można zapisać w postaci: 4q + 0, 4q +, 4 q +, 4 q + 3, gdzie q jest liczba całkowitą. Liczby nieparzyste mają postać 4q + lub 4q + 3. Policzmy kwadraty liczb nieparzystych: (4q + ) = 8 (q + q) + = 8 k + (4q + 3) = 8 (q + 3q + ) + = 8 k +, gdzie k = q + q, a k = q + 3q Dowieść, że dla naturalnych n, n dzieli (n + ) n. n n n n n n ( + n) = + n + n n Dla n = twierdzenie jest oczywiście prawdziwe. Załóżmy, że n > i policzmy n-tą potęgę liczby n +. Zauważmy, że wszystkie składniki w powyższej sumie, poczynając od trzeciego, zawierają n w potędze większej lub równej, a drugim składnikiem jest n. Zatem jeśli od rozważanej sumy odejmiemy, to różnica będzie podzielna przez n. Algorytm Euklidesa. Równania diofantyczne. Największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Stosując algorytm Euklidesa znaleźć największy wspólny dzielnik liczb 483 i Zastosujmy algorytm Euklidesa 483 = (483, 6409) = 6409 = = (6409, 4369) = 4369 = = (4369, 040)= 040 = = (040, 89) = 89 = 7 7 = ( 89, 7) = 7.

4 . Znaleźć parę liczb całkowitych (x o, y o ) spełniających związek 483 x o y o = 7. W przykładzie 0, przy pomocy algorytmu Euklidesa został policzony największy wspólny dzielnik liczb 483 oraz Dzielnik ten jest równy 7 i jest podzielnikiem wyrazu wolnego, który tu jest również równy 7. Zatem poszukiwane liczby x o i y o istnieją. Wykorzystajmy algorytm Euklidesa do znalezienia liczb x o, y o. Liczmy kolejno 7 = = = ( ) = = = = ( ) = = = = - ( ) = Zatem x o = -, y o =47. = Rozwiązać w liczbach całkowitych następujące równanie (* ) 483 x y = 68. Jeśli równanie a x + b y = c, gdzie a, b, c są liczbami całkowitymi, jest rozwiązalne w liczbach całkowitych, to posiada ono nieskończenie wiele rozwiązań. Jeśli jednym z nich jest para liczb całkowitych (x o, y o ), to wszystkie rozwiązania dane są wzorami x = x o + b t, y = y o - a t, gdzie a = a ( a, b), b = b ( a, b). a t jest dowolną liczbą całkowitą. Rozważane równanie posiada rozwiązanie w liczbach całkowitych, gdyż największy wspólny dzielnik (483, 6409) jest równy 7, a więc jest podzielnikiem liczby 68. W przykładzie zostało pokazane, że

5 483 ( -) = 7. Pomnóżmy obie strony tej równości przez 4. Otrzymujemy wówczas 483 (- 4) (47 4) = 68. Stąd x o = -88, y o = 588. Zatem wszystkie rozwiązania równania (*) dane są wzorami gdzie t jest dowolną liczbą całkowitą. x = t, y = t, Równania nieoznaczone możemy rozwiązywać również innymi metodami. Niekoniecznie musimy się posługiwać przy ich rozwiązywaniu algorytmem Euklidesa. 4. Rozwiązać w liczbach całkowitych następujące równanie nieoznaczone 7 x 8 y = 44. Równanie posiada rozwiązanie, gdyż liczby 7 i 8 są względnie pierwsze. Ich największy wspólny dzielnik jest równy, a więc jest podzielnikiem liczby 44. Wyznaczmy x: x = y 7 Podstawmy za y kolejno y = 0,,,..., 5. Dla y = 5 otrzymujemy x =, a zatem x = + 8 t, y = t, gdzie t jest dowolną liczbą całkowitą. 5. Rozwiązać w liczbach całkowitych równanie 4 x + 8 y = 39. Równanie nie posiada rozwiązania w liczbach całkowitych, gdyż największy wspólny dzielnik (4, 8) = 4, a liczba 4 nie jest podzielnikiem liczby 39.

6 6. Rozwiązać w liczbach całkowitych równanie 7 x + 39 y = 83. Liczby 7 oraz 39 są względnie pierwsze, zatem nasze równanie posiada rozwiązanie w liczbach całkowitych. Wyliczmy x: x = ( 3 ) y 5 5y 5 y = 4 y + = 4 y Liczba x jest liczbą całkowitą wtedy i tylko wtedy, gdy y = 3 7 t, gdzie t jest liczbą całkowitą. Rozwiązania równania mają zatem postać: gdzie t jest dowolną liczbą całkowitą x = t, y = 3 7 t, 7. Rozwiązać w liczbach naturalnych następujące równanie 7 x 3 y = 44. Liczby 7 i 3 są względnie pierwsze, zatem poszukiwanie rozwiązań w liczbach naturalnych ma sens. Wyliczmy x y y x = = 6 + y Skoro x ma być liczbą naturalną, to y = t, 7 gdzie t jest liczbą całkowitą. Stąd musi być x = 0 3 t, y = 7 t, x > 0 i y > 0. Rozwiązując układ nierówności otrzymujemy rozwiązania: 0 3 t > 0, 7 t > 0, x = 0 3 t, y = 7 t, gdzie t jest liczbą całkowitą niedodatnią. 8. Rozwiązać w liczbach całkowitych równanie

7 x - y = 4. Rozwiązanie Równanie można zapisać w postaci równoważnej (x - y) (x + y) = 4. Iloczyn dwóch liczb całkowitych jest równy 4: gdy obie są równe lub obie są równe - lub jedna z nich jest równa 4, a druga lub jedna jest równa -4, a druga -. Zatem mamy 6 przypadków ) x y = i x + y =, skąd x = 4, zatem x =, a y = 0, ) x y = - i x + y = -, skąd x = -4, zatem x = -, a y = 0, 3) x y = 4 i x + y =, skąd x = 5, zatem x nie jest liczba całkowitą i takie rozwiązanie nas nie interesuje, Pozostałe przypadki również nie dają rozwiązań. W rezultacie rozwiązania wyglądają następująco: x =, y = 0 oraz x = -, y = Korzystając ze wzoru a b [ a, b] = ( a, b). Znaleźć najmniejszą wspólną wielokrotność liczb 79 i 37. Zastosujmy algorytm Euklidesa w celu znalezienia największego wspólnego dzielnika liczb 37 i 79. Zatem 37 = = = = = 93 [, 79] ( 37, 79) Największy wspólny dzielnik liczb a i b jest równy 4, a ich najmniejsza wspólna wielokrotność jest równa 496. Znaleźć liczby a i b. Istnieją liczby całkowite m i n Takie, że a = 4 m, b = 4 n, (m, n) =. Możemy przyjąć, że m < n. ponieważ 496 jest najmniejszą wspólna wielokrotnością liczb a i b, to 496 = 4m 4n. 4

8 Stąd m n = 04 = 8 3. Ponieważ (m, n) =, to m n = 04 lub m n = 8 3. a) Jeśli m =, n = 04, to a = 4 = 4, b = 4 04 = 496, b) Jeśli m = 8, n = 3, to a = 4 3 = 9, b = 4 3 = 3.. Pokazać, że (a, b) (a, c) (b, c) [a, b] [a, c] [b, c] = a b c, a, b, c są dowolnymi liczbami całkowitymi. Wystarczy skorzystać ze wzoru podanego w przykładzie 7 oraz z faktu, że mnożenie liczb całkowitych jest działaniem przemiennym i łącznym.. Znaleźć wszystkie liczby całkowite, które przy dzieleniu przez 5 dają resztę 3, a przy dzieleniu przez 6 dają resztę 5. Jakie reszty dają te liczby przy dzieleniu przez 60. Rozwiązanie Oznaczmy szukane liczby symbolem x. Zgodnie z warunkami zadania x = 5s+3 i x = 6t+5, gdzie s,t są dowolnymi liczbami całkowitymi. Z powyższych zależności wynika, że 5s 6t =. Otrzymaliśmy równanie nieoznaczone, którego rozwiązanie ma postać: s = 4 + 6k, t = 3+6t, gdzie k jest dowolną liczbą całkowitą. W takim razie x = 5(4 + 6k) + 3 = k. Jeśli k = u, to x = u. Jeśli k = u +, to x = u = u, gdzie u jest dowolną liczbą całkowitą. Zatem poszukiwane liczby całkowite przydzieleniu przez 60 dają reszty 3 albo 53. II. Liczby pierwsze, liczby złożone, liczby względnie pierwsze. Pokazać, że liczbę nie można przedstawić w postaci sumy dwóch liczb pierwszych. Rozwiązanie W przypadku, gdy = , liczba jest liczbą podzielną przez 9, a więc nie jest liczbą pierwszą. Wszystkie liczby pierwsze oprócz są liczbami nieparzystymi, a suma liczb nieparzystych jest liczba parzystą. Zatem nie można liczby przedstawić w postaci sumy dwóch liczb pierwszych.

9 . Niech c = a + 4b 4, gdzie a,b są liczbami naturalnymi różnymi od. Pokazać, że wtedy c jest liczbą złożoną. Rozwiązanie Zauważmy, że c = a 4 + 4a b + 4b - 4a b = (a + b ) - 4a b = (a + b ab) (a + b + ab). Jeśli a = b =, to c = 5, a więc nie jest liczbą pierwszą 3. Podać przykład takich czterech liczb naturalnych a, b, c, d dla których nie ma żadnej liczby naturalnej n, przy której liczby a + n, b + n, c + n, d + n byłyby parami względnie pierwsze. Takimi liczbami są na przykład a =, b =, c = 3, d = 4, bo jeśli n jest dowolną liczbą całkowitą, to a + n, c + n - dla n nieparzystego są parzyste, a więc nie są względnie pierwsze. b + n, d + n - dla n parzystych są parzyste, a więc nie są względnie pierwsze. 4. Pokazać, że dla liczb naturalnych n, liczba n jest liczba złożoną. Ponieważ n = n = (n + ) (n - n + 4), więc n , jako iloczyn dwóch liczb naturalnych jest liczbą złożoną. 5. Znaleźć liczbę pierwszą p, jeśli wiadomo, że 4p + i 6p + są liczbami pierwszymi. Wszystkie liczby naturalne większe od można przedstawić w postaci 5 n, 5 n ±, 5 n ±, gdzie n jest dowolna liczba naturalną. Liczby postaci 5 n są pierwsze tylko dla n =. Jeśli p = 5, to 4 p + = 0, 6 p + = 5. Jak widać, znaleźliśmy liczbę pierwszą spełniającą warunki zadania. Wykażemy teraz, że nie istnieją inne liczby pierwsze te warunki spełniające. Rzeczywiście, jeśli p = 5 n ±, to 4 p + = 5 (0 n ± 8 n + ), a więc jest liczbą złożoną, jeśli p = 5 n ±, to

10 6 p + = 5 (30 n ± 4 n +) i też jest liczba złożoną. 6. Niech a i b będą liczbami naturalnymi. Udowodnić, że jeżeli 40 a = 5 b, to a + b jest liczba złożoną. Rozwiązanie Zauważmy, że a + b = 3 (4b 3a). III. Kongruencje. Czy ( mod 5) Liczba nie przystaje do liczby 983 modulo 5, gdyż liczba 5 nie dzieli liczby Wykazać, że + 4 5n+ 5n+ 6 0 (mod3). Zauważmy, że 5 5n+ ( mod3 ), ( ) mod3, 4 5 5n+ ( mod3 ), 4 4 ( mod3). Zatem + 4 5n+ 5n+ 6 ( mod3). Co jest równoważne temu, że + 4 5n+ 5n+ 6 0 ( mod3). 3. Jaka jest cyfra jedności liczby 000?

11 Zauważmy, że 5 mod0, Z przechodniości kongruencji dostajemy ( ) ( mod0), ( mod0). Otrzymaną kongruencję podnieśmy stronami do potęgi 5. Wówczas 50 ( mod0) ( mod0). Powtórnie korzystając z przechodniości rozważanej relacji, otrzymujemy 50 ( mod0). Podnosząc powyższą kongruencję stronami do potęgi 4, dostajemy ( mod0). Z kolei 56 6 (mod 0). Zatem ( mod0). Z otrzymanej równości wynika, że cyfra jedności liczby 000 jest równa Niech p będzie liczbą pierwszą. Liczby a i b niech będą liczbami całkowitymi takimi, że a b (mod p). Wtedy p dzieli a + b lub p dzieli a b. Jeśli a b (mod p), a b (mod p). ze wzorów uproszczonego mnożenia i definicji relacji przystawania modulo p wynika, że liczba pierwsza p dzieli iloczyn (a b) (a + b). Zatem liczba pierwsza p dzieli a b lub a + b. 5. Wykazać, że liczba naturalna A dzieli się przez wtedy i tylko wtedy gdy różnica pomiędzy sumą jej cyfr znajdujących się na miejscach parzystych i suma jej cyfr znajdujących się na miejscach nieparzystych dzieli się przez. Niech kolejnymi cyframi liczby A w układzie dziesiętnym będą a, a,..., a n. Wówczas A = a 0 n + a 0 n a n 0 + a n.

12 Rozważmy wielomian f(x) = a x n + a x n a n x + a n. Oczywiście, A = f(0). Stąd wobec kongruencji 0 - (mod ), otrzymujemy f(0) - (mod ). Stąd a + a a A (mod ). 6. Wyznaczyć wszystkie pierwiastki kongruencji x 3 x + (mod 5). Nasza kongruencja może mieć co najwyżej 5 pierwiastków. Aby je wszystkie znaleźć wystarczy sprawdzić które spośród liczb zbioru { 0,,, 3, 4 } są pierwiastkami naszej kongruencji. Liczby 0, 3, 4 pierwiastkami naszej kongruencji nie są. Natomiast liczby, spełniają kongruencję. Wszystkie rozwiązania naszej kongruencji w liczbach całkowitych mają postać gdzie t jest dowolna liczbą całkowitą. 7. Rozwiązać kongruencję x = + 5t, x = + 5t, x - x + 0 (mod ). Kongruencja nie jest spełniona, gdyż x (x ) + jest liczba nieparzystą, a więc niepodzielną przez. 8. Rozwiązać kongruencję x (x + ) (x + ) (x + 3) (mod 4). Kongruencja jest tożsamościowa, gdyż x, x +, x +, x + 3 są to kolejne cztery liczby naturalne. 9. Wyznaczyć resztę z dzielenia liczby przez 7.

13 Zauważmy, że 995 = Dalej 997 (mod 7), a więc 997 4(mod 7). Z powyższego wynika, że reszta przy dzieleniu naszej liczby przez 7 wynosi Pokazać, że 3 (mod 33). Rozwiązanie 3 = 34, 33 = 340 = 5 68, 5 - (mod ), stąd Z kolei 5 (mod 3). Zatem 3- (mod ) (a). 3- (mod 3) (b). Z równości (a) i (b) oraz z własności kongruencji wynika, że. Policzyć 6 43 (mod 5). 3- (mod 3). Z twierdzenia Eulera wynika, że 6 0 (mod5). Z własności kongruencji mamy 6 40 (mod5). Ponieważ 6 3 (mod5), to 6 43 (mod5).. Czy istnieje liczba całkowita x spełniająca układ równań x 3(mod5), x 6(mod8), x (mod7), x 3(mod)? Liczby 5, 8, 7, są parami względnie pierwsze. Zatem na mocy chińskiego twierdzenia resztach taka liczba x istnieje. o Funkcja Eulera φ(x). Policzyć: φ(55), φ(5), φ(375). Policzmy φ(55). 55 = 5. Ponieważ i 5 i są różnymi liczbami pierwszymi, zatem na mocy własności funkcji Eulera, otrzymujemy φ(55) = 4 0 = 40. Policzmy φ(5). 5 = 5 3. Zatem φ(5) = 5 4 = 00. Policzmy φ(375).

14 375 = Zatem φ(375) = ( - 3 ) ( - 5 ) = 00.. Znaleźć liczbę naturalną a, jeśli φ(a )= 3600 oraz a = 3 α 5 β 7 γ. a = 3 α 5 β 7 γ, zatem φ(a) = 3 α - 5 β γ - 6 = 4 3 α 5 β - 7 γ -. Ale 3600 = , więc 4 3 α 5 β - 7 γ - = Stąd α =, β = 3, γ = i w konsekwencji a = = Znaleźć liczbę naturalną a jeśli, φ(a) = 40, a = p q, gdzie p, q są różnymi liczbami pierwszymi, oraz p q = 6. Z warunków zadania wynika, że φ(a) = φ(p q) = (p - ) (q ) = 40. Otrzymujemy zatem układ równań (p - ) (q ) = 40, p q = 6. Rozwiązując ten układ otrzymujemy p =, q = 5. Szukaną liczbą jest więc Rozwiązać równanie φ(x) = 3 - x, gdzie x jest liczba naturalną. Funkcja Eulera przyjmuje wartości w zbiorze liczb naturalnych, x jest liczbą podzielną przez 3. Zatem x ma postać x = 3 a k, gdzie liczby a i k są liczbami naturalnymi oraz (3, k) =. Z własności funkcji Eulera wynika, że φ(3 a k) = 3 a- φ(k). Więc z warunku zadania mamy 3 a- φ(k) = 3-3 a k. Skąd wynika, że φ(k) = k. Ponieważ tylko liczba spełnia równość φ(k) = k, więc x = 3 a, gdzie a jest dowolną liczbą naturalną.

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Liczby całkowite. Zadania do pierwszych dwóch lekcji

Liczby całkowite. Zadania do pierwszych dwóch lekcji Matematyka w klasie IE Zadania do zajęć w Marynce Jesień 2012 Liczby całkowite prof. W. Gajda Zagadka Pomyśl sobie jakąś dużą liczbę całkowitą. Dodaj do niej tę samą liczbę. Do uzyskanej sumy dodaj jeszcze

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Jeśli lubisz matematykę

Jeśli lubisz matematykę Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Kongruencje pierwsze kroki

Kongruencje pierwsze kroki Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Pierwiastki pierwotne, logarytmy dyskretne

Pierwiastki pierwotne, logarytmy dyskretne Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

MADE IN CHINA czyli SYSTEM RESZTOWY

MADE IN CHINA czyli SYSTEM RESZTOWY MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15

Jarosław Wróblewski Matematyka Elementarna, lato 2014/15 Ćwiczenia 5/6, 10, 17.03.2015 (obie grupy) 33. Połączyć podane warunki w grupy warunków równoważnych dla dowolnej liczby naturalnej n. a) liczba n jest nieparzysta b) liczba n jest względnie pierwsza z

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach.

Kongruencje. Beata Łojan. Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach. Kongruencje Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej Spis

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Pierścień wielomianów jednej zmiennej

Pierścień wielomianów jednej zmiennej Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów

Bardziej szczegółowo

Joanna Kluczenko 1. Spotkania z matematyka

Joanna Kluczenko 1. Spotkania z matematyka Do czego moga się przydać reszty z dzielenia? Joanna Kluczenko 1 Spotkania z matematyka Outline 1 Co to sa 2 3 moje urodziny? 4 5 Jak tworzona jest liczba kontrolna w kodach towarów w sklepie? 6 7 TWIERDZENIE

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.

Zegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup. Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21

Bardziej szczegółowo

Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum

Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum 1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL. Podstawy matematyki szkolnej

RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL. Podstawy matematyki szkolnej RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL Podstawy matematyki szkolnej WAŁBRZYCH 01 Spis treści 1 Wstęp Równania stopnia drugiego.1 Teoria i przykłady............................. Podstawowe wzory skróconego

Bardziej szczegółowo

Zadania z elementarnej teorii liczb Andrzej Nowicki

Zadania z elementarnej teorii liczb Andrzej Nowicki Zadania z elementarnej teorii liczb Andrzej Nowicki UMK, Toruń 2012 1. Wykazać, że liczba 2222 5555 + 5555 2222 jest podzielna przez 7. 2. Wykazać, że liczba 222222 555555 + 555555 222222 jest podzielna

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych

Rozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania

Bardziej szczegółowo

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych

Teoria liczb. Zajmuje się własnościami liczb, wszystkim całkowitych Teoria liczb Zajmuje się własnościami liczb, przede wszystkim całkowitych Niepraktyczna? - kryptografia Dzielenie liczb całkowitych z resztą Niech b>0, wtedy dla każdej liczby całkowitej a istnieją jednoznacznie

Bardziej szczegółowo

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

WIELOMIANY SUPER TRUDNE

WIELOMIANY SUPER TRUDNE IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach

Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy

Bardziej szczegółowo

Wielomiany. Kurs matematyki w oratorium autorami materiałów są: dr Barbara Wolnik i Witold Bołt. 17 marca 2006

Wielomiany. Kurs matematyki w oratorium autorami materiałów są: dr Barbara Wolnik i Witold Bołt. 17 marca 2006 Wielomiany Kurs matematyki w oratorium autorami materiałów są: dr Barbara Wolnik i Witold Bołt 17 marca 2006 Spis treści 1 Podstawowe pojęcia 1 2 Wykresy i własności 2 2.1 Wielomian trzeciego stopnia....................

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

Dane są wielomiany, i. Znajdź wielomian. Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem.

Dane są wielomiany, i. Znajdź wielomian. Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem. Zadanie 1 Dane są wielomiany, i Znajdź wielomian To łatwe Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem Zadanie 2 Podziel (z resztą) wielomian przez wielomian Przykro

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb

Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb Rozdział 7 Elementy teorii liczb 7.1 Podstawowe własności liczb Zakres teorii liczb to zbiór liczb całkowitych. Tak więc nie będziemy wychodzić poza ten zbiór, a jeśli się pojawi pojęcie,,liczba, oznaczać

Bardziej szczegółowo

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

Propozycje rozwiązań zadań z matematyki - matura rozszerzona Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo