Liczby zespolone. x + 2 = 0.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Liczby zespolone. x + 2 = 0."

Transkrypt

1 Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą całkowitą. Rozważmy jednak równanie wielomianowe postaci x 2 = 0. Tutaj współczynniki wielomianu są w dalszym ciągu całkowite, ale pierwiastek x = 2 jest niecałkowitą liczbą wymierną. Stąd pojawiła się potrzeba rozszerzenia zbioru liczb całkowitych do zbioru liczb wymiernych. Łatwo jednak zauważyć, że istnieją wielomiany o współczynnikach wymiernych, których pierwiastki są liczbami niewymiernymi. Istotnie, równanie x 2 2 = 0 ma pierwiastek x = 2, który nie jest liczbą wymierną. Zatem pojawia się potrzeba rozszerzenia zbioru liczb wymiernych do zbioru liczb rzeczywistych. Okazuje się jednak, że zbiór liczb rzeczywistych nie spełnia jeszcze warunku mówiącego, że każdy wielomian o współczynnikach rzeczywistych ma pierwiastki rzeczywiste. Na przykład równanie x = 0, (1) jak dobrze wiadomo, nie ma pierwiastków rzeczywistych. Pojawia się więc potrzeba rozszerzenia zbioru liczb rzeczywistych do większego zbioru liczbowego (czyli takiego, w którym są określone działania dodawania i mnożenia spełniające standardowe własności takie, jak przemienność, łączność, rozdzielność), w którym byłby spełniony warunek: Każdy wielomian o współczynnikach z tego zbioru ma pierwiastki w tym zbiorze. W niniejszym wykładzie zajmiemy się konstruowaniem tego zbioru, działań na elementach tego zbioru oraz omówieniem pewnych własności tego zbioru i jego elementów. 1

2 2 Konstrukcja zbioru liczb zespolonych i działań na liczbach zespolonych Rozważmy płaszczyznę kartezjańską R 2. Każdy element (x, y) tej płaszczyzny będziemy traktować, jak liczbę. Oczywiście liczby (x, y) i (x, y ) są równe wtedy i tylko wtedy, gdy x = x i y = y. Określimy działania na tych liczbach: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 + y 2 ), (x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2 y 1 y 2, x 1 y 2 + x 2 y 1 ). Definicja 2.1. Płaszczyznę kartezjańską z określonymi wyżej działaniami nazywać będziemy zbiorem liczb zespolonych i oznaczać będziemy symbolem C. Elementy tej płaszczyzny nazywamy liczbami zespolonymi. Płaszczyznę kartezjańską traktowaną jako zbiór liczb zespolonych nazywamy płaszczyzną zespoloną i wówczas oś odciętych nazywamy osią rzeczywistą, zaś oś rzędnych osią urojoną. Zwykle na oznaczenie liczb zespolonych będziemy używać litery z. Będziemy więc pisać z = (x, y). Łatwo sprawdzić, że zarówno określone wyżej dodawanie, jak i mnożenie są działaniami przemiennym i łącznymi. Dodatkowo mnożenie jest rozdzielne względem dodawania. Przykładowo sprawdzimy to ostatnie prawo. Mamy wykazać, że zachodzi równość Istotnie, (x 1, y 1 ) [(x 2, y 2 ) + (x, y )] = (x 1, y 1 ) (x 2, y 2 ) + (x 1, y 1 ) (x, y ). L = (x 1, y 1 ) [(x 2, y 2 ) + (x, y )] = (x 1, y 1 ) (x 2 + x, y 2 + y ) = (x 1 (x 2 + x ) y 1 (y 2 + y ), x 1 (y 2 + y ) + y 1 (x 2 + x )) = (x 1 x 2 + x 1 x y 1 y 2 y 1 y, x 1 y 2 + x 1 y + y 1 x 2 + y 1 x ) = (x 1 x 2 y 1 y 2 + x 1 x y 1 y, x 1 y 2 + y 1 x 2 + x 1 y + y 1 x ) = (x 1 x 2 y 1 y 2, x 1 y 2 + y 1 x 2 ) + (x 1 x y 1 y, x 1 y + y 1 x ) = (x 1, y 1 ) (x 2, y 2 ) + (x 1, y 1 ) (x, y ) = P. Rolę zera dla liczb zespolonych odgrywa (0, 0), gdyż dla dowolnej liczby zespolonej (x, y) mamy (x, y) + (0, 0) = (x + 0, y + 0) = (x, y). Zauważmy teraz, że dla dowolnej liczby zespolonej z istnieje liczba do niej przeciwna z tzn. taka, że dodając ją do z otrzymujemy zero. Istotnie, jeżeli z = (x, y), to połóżmy z = ( x, y). Wtedy z + z = (x, y) + ( x, y) = (x x, y y) = (0, 0). Liczbę przeciwną względem z oznaczać będziemy symbolem z. 2

3 Wiedząc już co to jest liczba przeciwna względem danej, możemy w zbiorze liczb zespolonych określić działanie odejmowania: z 1 z 2 = z 1 + ( z 2 ). Podobnie, rolę jedynki dla liczb zespolonych odgrywa (1, 0), gdyż dla dowolnej liczby zespolonej (x, y) mamy (x, y) (1, 0) = (x 1 y 0, x 0 + y 1) = (x, y). Niech teraz z = (x, y) (0, 0) będzie dowolną niezerową liczbą zespoloną. Zdefiniujmy ( ) x z = x 2 + y 2, y x 2 + y 2. Dzięki założeniu niezerowości z dzielenia w ostatnim nawiasie mają sens. Liczba z jest odwrotna względem z. Istotnie, ( ) x z z = (x, y) x 2 + y 2, y x 2 + y 2 ( x 2 = x 2 + y 2 y2 x 2 + y 2, xy x 2 + y 2 + xy ) x 2 + y 2 = (1, 0). Liczbę odwrotną względem z oznaczać będziemy symbolem z 1. Wiedząc już co to jest liczba odwrotna względem z, możemy w zbiorze liczb zespolonych określić działanie dzielenia przez liczby niezerowe: z 1 z 2 = z 1 (z 2 ) 1. Mamy więc w zbiorze liczb zespolonych wszystkie cztery działania, jak w zbiorze liczb rzeczywistych. Będziemy utożsamiać liczbę zespoloną postaci (x, 0) z liczbą rzeczywistą x. Zauważmy, że utożsamienie to jest zgodne z działaniami dodawania i mnożenia, tzn. jeżeli dodamy liczby zespolone (x 1, 0) + (x 2, 0), to otrzymamy liczbę (x 1 + x 2, 0), czyli liczbę utożsamioną ze zwykłą sumą liczb rzeczywistych x 1 +x 2. Podobnie mnożąc przez siebie liczby zespolone (x 1, 0) (x 2, 0) otrzymujemy (x 1 x 2, 0), czyli liczbę utożsamianą ze zwykłym iloczynem x 1 x 2 liczb rzeczywistych. Łatwo także sprawdzić, że (x, 0) = ( x, 0) i (x, 0) 1 = ( 1 x, 0). Zatem nasze utożsamienie jest zgodne z braniem elementu przeciwnego i odwrotnego. Stąd wynika zgodność tego utożsamienia z działaniami odejmowania i dzielenia. Dzięki tym zgodnościom możemy pisać po prostu: (x, 0) = x. Definicja 2.2. Liczbę zespoloną (0, 1) nazywać będziemy jednostką urojoną. Jednostkę urojoną oznaczamy symbolem i. Zauważmy, że i 2 = (0, 1) (0, 1) = ( , ) = ( 1, 0) = 1. (2)

4 Widzimy więc, że jednostka urojona jest pierwiastkiem równania (1). Niech teraz (x, y) będzie dowolną liczbą zespoloną. Wykażemy, że Istotnie, (x, y) = x + yi. P = x + yi = (x, 0) + (y, 0) (0, 1) = (x, 0) + (0, y) = (x, y) = L. Definicja 2.. Postać x + yi liczby zespolonej nazywamy postacią kartezjańską (kanoniczną). Dla liczby zespolonej z = x + yi liczbę rzeczywistą x nazywamy częścią rzeczywistą liczby z i oznaczamy symbolem re z, zaś liczbę rzeczywistą y nazywamy częścią urojoną liczby z i oznaczamy symbolem im z. Okazuje się, że działania na postaciach kanonicznych wykonuje się w sposób naturalny pamiętając o (2): (x 1 + y 1 i) + (x 2 + y 2 i) = x 1 + x 2 + (y 1 + y 2 ) i, (x 1 + y 1 i) (x 2 + y 2 i) = x 1 x 2 +x 1 y 2 i+x 2 y 1 i+y 1 y 2 i 2 = x 1 x 2 y 1 y 2 +(x 1 y 2 + x 2 y 1 ) i. Widać więc, że wykonując działania w sposób naturalny otrzymaliśmy wyniki zgodne z definicjami. Zajmijmy się teraz dzieleniem, które jest najtrudniejszym z czterech działań. Wprowadźmy najpierw następującą definicję: Definicja 2.4. Dla liczby zespolonej z = x + yi liczbę x yi nazywamy sprzężeniem liczby z i oznaczamy symbolem z. Zachodzi następujące Stwierdzenie 2.5. Dla każdej liczby zespolonej z = x + yi mamy z z = x 2 + y 2 R. Weźmy teraz dwie dowolne liczby zespolone z 1 = x 1 +y 1 i i z 2 = x 2 +y 2 i 0. Chcemy obliczyć iloraz z1 z 2. W tym celu rozszerzymy ten ułamek przez liczbę z 2 i wykorzystując Stwierdzenie 2.5 otrzymujemy: z 1 = x 1 + y 1 i z 2 x 2 + y 2 i = (x 1 + y 1 i) (x 2 y 2 i) (x 2 ) 2 + (y 2 ) 2 = x 1x 2 + y 1 y 2 (x 2 ) 2 + (y 2 ) 2 + x 1y 2 + x 2 y 1 (x 2 ) 2 + (y 2 ) 2 i. Postać trygonometryczna Niech z = x + yi C. Definicja.1. Liczbę rzeczywistą x 2 + y 2 nazywamy modułem liczby zespolonej z i oznaczamy symbolem z. 4

5 Zauważmy, że jeżeli liczba z jest rzeczywista, to jej moduł w sensie zespolonym pokrywa się ze znanym dobrze modułem liczby rzeczywistej. Istotnie, jeśli z = (x, 0), to z = x 2 = x, gdzie po prawej stronie mamy zwykłą wartość bezwzględną liczby rzeczywistej. Wykorzystując wiedzę z geometrii analitycznej, można zauważyć, że moduł z liczby zespolonej z jest równy odległości na płaszczyźnie od punktu z do początku układu współrzędnych. Weźmy teraz dowolną niezerową liczbę zespoloną z = x + yi. Wówczas ( ) x z = x + yi = z x2 + y + y 2 x2 + y i. () 2 Zauważmy, że suma kwadratów części rzeczywistej i urojonej liczby występującej w nawiasie wynosi 1. Zatem istnieje liczba ϕ taka, że x x2 + y 2 = cos ϕ i y = sin ϕ. (4) x2 + y2 Definicja.2. Każdą liczbę ϕ spełniającą warunki (4) nazywamy argumentem liczby z = x + yi i oznaczamy symbolem arg z. Zauważmy, że argument liczby zespolonej nie jest wyznaczony jednoznacznie. Jeśli ϕ jest argumentem liczby z, to każda liczba postaci ϕ+2kπ, gdzie k Z jest także argumentem tej liczby. Jeżeli zażądamy, aby argument leżał w przedziale 0, 2π), to będzie on już wyznaczony jednoznacznie. Definicja.. Argument ϕ liczby z należący do przedziału 0; 2π) nazywamy argumentem głównym liczby z i oznaczamy symbolem Arg z. Zaznaczając liczbę z na płaszczyźnie zespolonej, łatwo jest pojęcie argumentu zinterpretować geometrycznie. Mianowicie, argument główny liczby z jest miarą kąta między dodatnią półosią rzeczywistą a promieniem wodzącym liczby z, tzn. odcinkiem łączącym początek układu współrzędnych z punktem z. Ze wzoru () mamy teraz z = z (cos ϕ + i sin ϕ). (5) Definicja.4. Postać (5) liczby zespolonej z nazywamy postacią trygonometryczną tej liczby. Zwróćmy uwagę, że liczba 0 nie ma postaci trygonometrycznej, bo nie ma argumentu. Zachodzi następujące Stwierdzenie.5. Dla liczb zespolonych z 1, z 2 mamy ( z 1 = z 2 z 1 = z 2 k Z arg z 1 arg z 2 = 2kπ ). 5

6 Okazuje się, że postać trygonometryczna liczby zespolonej pozwala na elegancką interpretację mnożenia i dzielenia liczb zespolonych. Zachodzi mianowicie następujące Twierdzenie.6. Jeżeli z 1 = z 1 (cos ϕ 1 + i sin ϕ 1 ) i z 2 = z 2 (cos ϕ 2 + i sin ϕ 2 ), to z 1 z 2 = z 1 z 2 (cos (ϕ 1 + ϕ 2 ) + i sin (ϕ 1 + ϕ 2 )) (6) oraz z 1 = z 1 z 2 z 2 (cos (ϕ 1 ϕ 2 ) + i sin (ϕ 1 ϕ 2 )). (7) Ze wzoru (6) otrzymujemy łatwo wzór na potęgę liczby zespolonej o wykładniku naturalnym. Stwierdzenie.7. Dla n N i z = z (cos ϕ + i sin ϕ) zachodzi następujący wzór z n = z n (cos nϕ + i sin nϕ). (8) W szczególności jeżeli z = 1, to otrzymujemy Twierdzenie.8 (Wzór de Moivre a). Dla n N mamy (cos ϕ + i sin ϕ) n = cos nϕ + i sin nϕ. 4 Pierwiastkowanie liczb zespolonych W zbiorze liczb zespolonych nie definiuje się porządku, tzn. Dla dwóch liczb zespolonych nie da się powiedzieć która z nich jest większa. W związku z tym nie działa w zbiorze liczb zespolonych definicja pierwiastka obowiązująca dla liczb rzeczywistych, gdyż nie ma sensu zwrot jest to liczba nieujemna spełniająca warunek. Musimy więc zdefiniować pierwiastek od nowa. Definicja 4.1. Niech k N i k 2. Dla dowolnej liczby w C pierwiastkiem stopnia k z liczby w nazywamy każdą liczbę zespoloną z spełniającą warunek z k = w. W szczególności pierwiastkami kwadratowymi z liczby 4 w sensie powyższej definicji są liczby 2 i -2 (w dziedzinie rzeczywistej tylko 2 jest pierwiastkiem kwadratowym z 4). Widać więc, że w dziedzinie zespolonej pierwiastek może przyjmować więcej niż jedną wartość. Mimo to będziemy używać na oznaczenie pierwiastka symbolu z = k w, pamiętając o niejednoznaczności tego symbolu. Zachodzi następujące: Twierdzenie 4.2. Dla każdego w 0, gdzie w = w (cos ϕ + i sin ϕ), pierwiastek stopnia k (k N i k 2) ma dokładnie k wartości i wyrażają się one wzorami: z j = k ( w cos ϕ + 2jπ + i sin ϕ + 2jπ ), (9) k k gdzie j = 0, 1,..., k 1 i pierwiastek po prawej stronie tego wzoru jest zwykłym pierwiastkiem w dziedzinie rzeczywistej. 6

7 Z twierdzenia powyższego widać, że wszystkie wartości pierwiastka k-ego stopnia z liczby w 0 leżą na okręgu o środku w początku układu oraz promieniu równym k w i dzielą ten okrąg na k równych łuków. Używając wzoru (8), łatwo sprawdzić, że liczby podane we wzorze (9) faktycznie są wartościami pierwiastka stopnia k z liczby w. Pierwiastkiem dowolnego stopnia z liczby 0 jest jedynie 0, a więc w tym przypadku jest tylko jedna wartość pierwiastka. Przykład 4.. Wyznaczymy wszystkie wartości pierwiastków stopnia trzeciego z liczby w = i. W tym celu zapiszmy najpierw liczbę w w postaci trygonometrycznej: w = cos 2 π + i sin 2 π. Z wzoru (9) otrzymujemy następujące wartości pierwiastka stopnia trzeciego: z 0 = cos 6 π + i sin 6 π = i, z 1 = cos z 2 = cos 2 π + 2π + i sin 2 π + 4π + i sin 2 π + 2π = cos 7 6 π + i sin 7 6 π = i, 2 π + 4π = cos π + i sin 6 6 π = i. 5 Wielomiany o współczynnikach zespolonych Niech n N {0}. Definicja 5.1. Wielomianem stopnia n o współczynnikach zespolonych nazywamy funkcję zmiennej zespolonej z postaci W (z) = a n z n + a n 1 z n a 1 z + a 0, (10) gdzie a 0, a 1,..., a n C, przy czym a n 0. Dodatkowo wielomianem zerowym nazywamy funkcję zadaną wzorem W (z) = 0 dla z C. Definicja 5.2. Liczbę zespoloną z 0 nazywamy pierwiastkiem wielomianu (10), gdy W (z 0 ) = 0. W dziedzinie zespolonej obowiązuje także Twierdzenie 5. (Twierdzenie Bezouta). Liczba z 0 jest pierwiastkiem wielomianu W wtedy i tylko wtedy, gdy wielomian W jest podzielny przez dwumian z z 0. W związku z tym twierdzeniem ma sens następująca definicja: Definicja 5.4. Jeżeli z 0 jest pierwiastkiem wielomianu W to jego krotnością nazywamy taką liczbę naturalną k, że wielomian W jest podzielny przez (z z 0 ) k i nie jest podzielny przez (z z 0 ) k+1. 7

8 Zachodzi następujące: Twierdzenie 5.5 (Podstawowe twierdzenie algebry). Każdy wielomian W stopnia n w dziedzinie zespolonej ma dokładnie n pierwiastków zespolonych (uwzględniając krotności) i daje się zapisać w postaci W (z) = a n (z z 1 ) (z z n ), gdzie z 1,..., z n są wszystkimi pierwiastkami wielomianu W z uwzględnieniem krotności. W szczególności każdy trójmian kwadratowy W (z) = az 2 + bz + c, gdzie a, b, c C i a 0, daje się zapisać w postaci W (z) = a (z z 1 ) (z z 2 ), przy czym z 1, z 2 są pierwiastkami tego trójmianu wyrażającymi się wzorami z j = b + δ j 2a, j = 1, 2. W powyższym wzorze symbolami δ 1, δ 2 oznaczone zostały dwie wartości pierwiastka kwadratowego z = b 2 4ac. Przykład 5.6. Rozwiążemy równanie iz 2 + (2 2i) z i 2 = 0. Obliczmy wyróżnik trójmianu stojącego po lewej stronie równania: = (2 2i) 2 4i ( 1 2) = 4 8i i = 4. Postacią trygonometryczną jest = 4 (cos π + i sin π) Stąd wartościami są ( δ 1 = 2 cos π 2 + i sin π ) ( = 2i, δ 2 = 2 cos π i sin π ) = 2i. 2 Stąd pierwiastkami danego równania są z 1 = 2 + 2i + 2i 2i = 2 + i, z 2 = 2 + 2i 2i 2i = i. 6 Funkcja wykładnicza zmiennej zespolonej Definicja 6.1. Funkcję zmiennej zespolonej f (z) = e z, gdzie dla z = x + yi, nazywamy funkcją wykładniczą zmiennej zespolonej. e z = e x (cos y + i sin y), (11) 8

9 Wykazuje się, że dla dowolnych liczb zespolonych z, z 1, z 2 zachodzą warunki: e z1 e z2 = e z1+z2, e z1 e z2 = ez1 z2, e z 0, e z+2πi = e z. Ostatni z tych warunków oznacza, że funkcja wykładnicza zmiennej zespolonej jest funkcją okresową o okresie zespolonym 2πi. Łatwo widać, że wykorzystując definicję funkcji wykładniczej, możemy wzór (5) zapisać w postaci z = z e iϕ. (12) Postać (12) liczby zespolonej z nazywamy postacią wykładniczą. 9

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Matematyka liczby zespolone. Wykład 1

Matematyka liczby zespolone. Wykład 1 Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 15.1.010r. Zarządzanie Licencjackie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f x) = arc cos x x + x 5 ) ) log x + 5. Rozwiązanie. Wymagane

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień

Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Matematyczne Metody Fizyki I

Matematyczne Metody Fizyki I Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,

Bardziej szczegółowo

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste

Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie

Bardziej szczegółowo

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna Interpolacja Marcin Orchel 1 Wstęp Mamy daną funkcję φ (x; a 0,..., a n ) zależną od n + 1 parametrów a 0,..., a n. Zadanie interpolacji funkcji φ polega na określeniu parametrów a i tak aby dla n + 1

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.)

Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.) Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = godz.) Ramowy rozkład materiału I. Podstawowe własności figur geometrycznych na płaszczyźnie, cz. 2...

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Teoria. a, jeśli a < 0.

Teoria. a, jeśli a < 0. Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d), Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej

Bardziej szczegółowo

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3

= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3 ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m.

Otrzymaliśmy w ten sposób ograniczenie na wartości parametru m. Dla jakich wartości parametru m dziedziną funkcji f ( x) = x + mx + m 1 jest zbiór liczb rzeczywistych? We wzorze funkcji f(x) pojawia się funkcja kwadratowa, jednak znajduje się ona pod pierwiastkiem.

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A

Funkcje analityczne. Wykład 3. Funkcje holomorficzne. Paweł Mleczko. Funkcje analityczne (rok akademicki 2016/2017) z = x + iy A Funkcje analityczne Wykład 3. Funkcje holomorficzne Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Funkcje zespolone zmiennej zespolonej Funkcje zespolone zmiennej zespolonej Niech A C. Funkcja

Bardziej szczegółowo

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie

Bardziej szczegółowo

WIELOMIANY I FUNKCJE WYMIERNE

WIELOMIANY I FUNKCJE WYMIERNE WIELOMIANY I FUNKCJE WYMIERNE. RozwiąŜ nierówność.. Dla jakiej wartości parametru a R wielomian W() = ++ a dzieli się bez reszty przez +?. Rozwiązać nierówność: a) 5 b) + 4. Wyznaczyć wartości parametru

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

MATeMAtyka zakres podstawowy

MATeMAtyka zakres podstawowy MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie

Bardziej szczegółowo

Twierdzenia Rolle'a i Lagrange'a

Twierdzenia Rolle'a i Lagrange'a Twierdzenia Rolle'a i Lagrange'a Zadanie 1 Wykazać, że dla dowolnych zachodzi. W przypadku nierówność (a właściwie równość) w treści zadania spełniona jest w sposób oczywisty, więc tego przypadku nie musimy

Bardziej szczegółowo