POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY WIELKOŚCI NIEELEKTRYCZNYCH"

Transkrypt

1 POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3

2 Prawo autorskie Niniejsze materiały podlegają ochronie zgodnie z Ustawą o prawie autorskim i prawach pokrewnych (Dz.U nr 24 poz. 83 z późniejszymi zmianami). Materiał te udostępniam do celów dydaktycznych jako materiały pomocnicze do wykładu z przedmiotu Pomiary Wielkości Nieelektrycznych prowadzonego dla studentów Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej. Mogą z nich również korzystać inne osoby zainteresowane tą tematyką. Do tego celu materiały te można bez ograniczeń przeglądać, drukować i kopiować wyłącznie w całości. Wykorzystywanie tych materiałów bez zgody autora w inny sposób i do innych celów niż te, do których zostały udostępnione, jest zabronione. W szczególności niedopuszczalne jest: usuwanie nazwiska autora, edytowanie treści, kopiowanie fragmentów i wykorzystywanie w całości lub w części do własnych publikacji. Eligiusz Pawłowski PWN, tydzień 3 dr inż. Eligiusz Pawłowski 2

3 Uwagi dydaktyczne Niniejsza prezentacja stanowi tylko i wyłącznie materiały pomocnicze do wykładu z przedmiotu Pomiary Wielkości Nieelektrycznych prowadzonego dla studentów Wydziału Elektrotechniki i Informatyki Politechniki Lubelskiej. Udostępnienie studentom tej prezentacji nie zwalnia ich z konieczności sporządzania własnych notatek z wykładów ani też nie zastępuje samodzielnego studiowania obowiązujących podręczników. Tym samym zawartość niniejszej prezentacji w szczególności nie może być traktowana jako zakres materiału obowiązujący na kolokwium. Na kolkwium obowiązujący jest zakres materiału faktycznie wyłożony podczas wykładu oraz zawarty w odpowiadających mu fragmentach podręczników podanych w wykazie literatury do wykładu. Eligiusz Pawłowski PWN, tydzień 3 dr inż. Eligiusz Pawłowski 3

4 Tematyka wykładu Wymagania dynamiczne stawiane czujnikom Przetworniki inercyjne pierwszego rzędu Charakterystyki czasowe Charakterystyki częstotliwościowe Przetworniki drugiego rzędu oscylacyjne Przetworniki inercyjne drugiego rzędu PWN, tydzień 3 dr inż. Eligiusz Pawłowski 4

5 Wymagania dynamiczne stawiane czujnikom 1.Szybkie osiąganie stanu ustalonego, krótki czas trwania stanu przejściowego 2.Płaska charakterystyka amplitudowo-częstotliwościowa, małe zniekształcenia amplitudowe 3.Liniowa charakterystyka fazowo-częstotliwościowa, małe zniekształcenia fazowe 4.Szerokie pasmo przenoszenia, wysoka częstotliwość graniczna 5.Małe błędy dynamiczne PWN, tydzień 3 dr inż. Eligiusz Pawłowski 5

6 Elementy określające dynamikę czujników Właściwości dynamiczne czujników zależą od zachodzących w nim przemian energetycznych, o przebiegu których decydują trzy rodzaje elementów: 1.Elementy rozpraszające energię (dysypacyjne): rezystancja w obwodach elektrycznych, tarcie mechaniczne, lepkość płynów, 2.Elementy akumulujące energię potencjalną (w stanie statycznym): kondensatory, sprężyny, zbiorniki ciśnieniowe, masa w polu grawitacyjnym, 3.Elementy akumulujące energię kinetyczną (w stanie dynamicznym): cewki indukcyjne, masa znajdująca się w ruchu. PWN, tydzień 3 dr inż. Eligiusz Pawłowski 6

7 Przetwornik inercyjny pierwszego rzędu - ogólnie Przetwornik inercyjny pierwszego rzędu składa się z dwóch elementów: 1.Elementu rozpraszającego energię, 2.Elementu akumulującego energię (potencjalną lub kinetyczną). Rezystor rozprasza energię Kondensator magazynuje energię (potencjalną) Przykład przetwornika 1-rzędu, układ RC PWN, tydzień 3 dr inż. Eligiusz Pawłowski 7

8 Przetwornik inercyjny pierwszego rzędu - termometr 1 R th = S α Obudowa termometru charakteryzuje się pewną rezystancją termiczna R th zależną od powierzchni S i współczynnika przejmowania ciepła α C = m th c p Ciecz termometryczna charakteryzuje się pewną pojemnością cieplną C th zależną od masy m i ciepła właściwego c p PWN, tydzień 3 dr inż. Eligiusz Pawłowski 8

9 PWN, tydzień 3 dr inż. Eligiusz Pawłowski 9 Równanie różniczkowe opisujące stan dynamiczny Ogólna postać równania różniczkowego opisującego stan dynamiczny przetwornika : = = = m j j j j n i i i i dt x d B dt y d A W stanie statycznym wszystkie pochodne są równe zeru: W układach rzeczywistych zawsze n m x B y A = x A B y = 1 1 = = j j i i i i dt x d dt y d

10 Równanie przetwornika inercyjnego pierwszego rzędu Ogólna postać równania różniczkowego pierwszego rzędu : dy A1 + A y = dt ( t) B x( t) Postać równania wygodna dla analizy matematycznej Dzielimy obustronnie przez A i wprowadzamy oznaczenia: Współczynnik przetwarzania statycznego k: Stała czasowa T: A 1 = T A B = A k Postać równania posiadająca interpretację fizyczną Po podstawieniu otrzymamy: dy T + y = dt ( t) k x( t) PWN, tydzień 3 dr inż. Eligiusz Pawłowski 1

11 Stan statyczny przetwornika inercyjnego pierwszego rzędu Równanie przetwarzania w stanie dynamicznym: dy T + y = dt ( t) k x( t) W stanie statycznym pochodna po czasie jest równa zeru: dy dt = Otrzymujemy równanie opisujące stan statyczny: y ( t) = k x( t) PWN, tydzień 3 dr inż. Eligiusz Pawłowski 11

12 Odpowiedź jednostkowa przetwornika pierwszego rzędu Równanie przetwarzania w stanie dynamicznym: dy T + y = dt ( t) k x( t) Sygnał wejściowy w postaci skoku jednostkowego: ( t) = ( t) x 1 Odpowiedź na skok jednostkowy przetwornika inercyjnego pierwszego rzędu: y 1 ( t) k e = T t PWN, tydzień 3 dr inż. Eligiusz Pawłowski 12

13 Przetwornik inercyjny pierwszego rzędu przykład RC du dt C U 1 = RI + UC = R C + U C du dt 2 RC + U 2 = U 1 I dq = Q = U CC dt dy T + y = dt ( t) k x( t) T = RC k = 1 Przykład elektryczny przetwornika inercyjnego pierwszego rzędu PWN, tydzień 3 dr inż. Eligiusz Pawłowski 13

14 Przetwornik inercyjny pierwszego rzędu Stała czasowa Charakterystyki czasowe, odpowiedź na skok jednostkowy y 1 ( t) k e = T t PWN, tydzień 3 dr inż. Eligiusz Pawłowski 14

15 Stała czasowa przetwornika inercyjnego pierwszego rzędu Stała czasowa Stan ustalony jest osiągany po kilku stałych czasowych T y 1 ( t) k e = T t Początkowa szybkość narastania sygnału Stan ustalony byłby osiągnięty po stałej czasowej T, gdyby szybkość narastania sygnału była cały czas taka sama jak w chwili początkowej. Po jednej stałej czasowej sygnał osiąga tylko 63% stanu ustalonego! PWN, tydzień 3 dr inż. Eligiusz Pawłowski 15

16 Wpływ stałej czasowej na postać odpowiedzi skokowej Mniejsza stała czasowa oznacza wcześniejsze osiągnięcie stanu ustalonego y 1 ( t) k e = T t Zawsze po jednej stałej czasowej sygnał osiąga tylko 63% stanu ustalonego! Większa stała czasowa oznacza wolniejsze narastanie sygnału PWN, tydzień 3 dr inż. Eligiusz Pawłowski 16

17 Czas ustalania T u odpowiedzi skokowej czujnika Stan ustalony y 1 ( t) k e = T t Dopuszczalny błąd ε PWN, tydzień 3 dr inż. Eligiusz Pawłowski 17

18 Czasy ustalania T u odpowiedzi skokowej czujnika Dopuszczalny błąd ε Przeciętnie przyjmuje się stan ustalony po stałych czasowych T (5% i 1% błędu) Producenci czujników często podają czas połówkowy T,5 (5% błędu) PWN, tydzień 3 dr inż. Eligiusz Pawłowski 18

19 Parametry czasowe odpowiedzi skokowej czujnika Stała czasowa y 1 ( t) k e = T t Stan ustalony Czas połówkowy PWN, tydzień 3 dr inż. Eligiusz Pawłowski 19

20 Przykład przetwornika inercyjnego pierwszego rzędu Czas odpowiedzi zależy od konstrukcji czujnika PWN, tydzień 3 dr inż. Eligiusz Pawłowski 2

21 Odpowiedź na sygnał harmoniczny Charakterystyki czasowe, odpowiedź na sygnał harmoniczny Mniejsza amplituda Przesunięcie fazowe PWN, tydzień 3 dr inż. Eligiusz Pawłowski 21

22 Charakterystyki częstotliwościowe pierwszego rzędu Malejąca amplituda Częstotliwość graniczna ω gr = 1 T Charakterystyki częstotliwościowe amplitudowa i fazowa Przesunięcie fazowe PWN, tydzień 3 dr inż. Eligiusz Pawłowski 22

23 Charakterystyka amplitudowa unormowana Częstotliwość graniczna Pulsacja zredukowana 3dB Malejąca amplituda 2dB/dek. Wniosek: Przetwornik inercyjny pierwszego rzędu ma charakterystykę filtru dolnoprzepustowego. PWN, tydzień 3 dr inż. Eligiusz Pawłowski 23

24 PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA Charakterystyka filtru dolnoprzepustowego PWN, tydzień 3 dr inż. Eligiusz Pawłowski 24 PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA - PRZERWA

25 Przetwornik drugiego rzędu - ogólnie Przetwornik drugiego rzędu składa się z trzech elementów: 1.Elementu rozpraszającego energię, 2.Elementu akumulującego energię potencjalną, 3.Elementu akumulującego energię kinetyczną. Rezystor rozprasza energię Cewka magazynuje energię kinetyczną Kondensator magazynuje energię potencjalną Przykład przetwornika 2-rzędu, układ RLC PWN, tydzień 3 dr inż. Eligiusz Pawłowski 25

26 Równanie różniczkowe drugiego rzędu Ogólna postać równania różniczkowego drugiego rzędu : 2 d y dy A2 + A1 + A y = 2 dt dt ( t) B x( t) Dzielimy obustronnie przez A i wprowadzamy oznaczenia: Współczynnik przetwarzania statycznego k: Pulsacja rezonansowa ω : Współczynnik tłumienia b: 2 A B = A A A 1 A k = ω 2 A 2 = b PWN, tydzień 3 dr inż. Eligiusz Pawłowski 26

27 Równanie przetwornika drugiego rzędu Otrzymujemy równanie różniczkowe przetwornika drugiego rzędu : 1 ω 2 2 d y 2 dt 2b + ω dy dt + y ( t) = k x( t) W stanie statycznym pochodne po czasie są równe zeru: dy dt = 2 d y 2 dt = Otrzymujemy równanie opisujące stan statyczny: y ( t) = k x( t) PWN, tydzień 3 dr inż. Eligiusz Pawłowski 27

28 Odpowiedź jednostkowa przetwornika drugiego rzędu Równanie przetwarzania w stanie dynamicznym: 1 ω 2 2 d y 2 dt 2b + ω dy dt + y ( t) = k x( t) Sygnał wejściowy w postaci skoku jednostkowego: ( t) = ( t) x 1 Odpowiedź na skok jednostkowy przetwornika drugiego rzędu: 1. dla b= ma charakter oscylacyjny nietłumiony, 2. dla <b<1 ma charakter oscylacyjny tłumiony, 3. dla b=1 ma charakter tłumiony aperiodyczny krytyczny, 4. dla b>1 ma charakter tłumiony aperiodyczny. PWN, tydzień 3 dr inż. Eligiusz Pawłowski 28

29 Odpowiedź przetwornika drugiego rzędu dla b= Odpowiedź na skok jednostkowy przetwornika drugiego rzędu dla b= ma charakter oscylacyjny nietłumiony: ( t) = k( 1 cosω t) y Ruch oscylacyjny nietłumiony PWN, tydzień 3 dr inż. Eligiusz Pawłowski 29

30 Odpowiedź przetwornika drugiego rzędu dla <b<1 Odpowiedź na skok jednostkowy przetwornika drugiego rzędu 2. dla <b<1 ma charakter oscylacyjny tłumiony: y ( t) = k( 1 a( t) sin( ω t +ψ )) obwiednia niższa pulsacja a ( t) = e bω t 1 b 2 ω = ω 1 b 2 przesunięcie fazowe ψ = arctg 1 b b Ruch oscylacyjny tłumiony PWN, tydzień 3 dr inż. Eligiusz Pawłowski 3 2

31 Odpowiedź przetwornika drugiego rzędu dla b=1 Odpowiedź na skok jednostkowy przetwornika drugiego rzędu 2. dla b=1 ma charakter tłumiony aperiodyczny krytyczny : ( t) = k 1 ( 1+ ω t) ( ω t e ) y Funkcja nieokresowa, ruch aperiodyczny Ruch aperiodyczny krytyczny PWN, tydzień 3 dr inż. Eligiusz Pawłowski 31

32 PWN, tydzień 3 dr inż. Eligiusz Pawłowski 32 Odpowiedź przetwornika drugiego rzędu dla b>1 Odpowiedź na skok jednostkowy przetwornika drugiego rzędu 2. dla b>1 ma charakter tłumiony aperiodyczny: ( ) + = b b arctg b t sh b e k t y t b ω ω Ruch aperiodyczny Funkcja nieokresowa, ruch aperiodyczny

33 Częstotliwość rezonansowa Charakterystyki częstotliwościowe drugiego rzędu Malejąca amplituda Charakterystyki częstotliwościowe amplitudowa i fazowa Liniowa ch-ka fazowa PWN, tydzień 3 dr inż. Eligiusz Pawłowski 33

34 Charakterystyki częstotliwościowe drugiego rzędu Malejąca amplituda Częstotliwość rezonansowa Liniowa ch-ka fazowa Charakterystyki częstotliwościowe amplitudowa i fazowa, liniowa skala na osiach! PWN, tydzień 3 dr inż. Eligiusz Pawłowski 34

35 Charakterystyki częstotliwościowe drugiego rzędu Częstotliwość graniczna Częstotliwość rezonansowa -3dB -4dB/dek Charakterystyki częstotliwościowe amplitudowa i fazowa, logarytmiczna skala na osiach! PWN, tydzień 3 dr inż. Eligiusz Pawłowski 35

36 Przykład przetwornika oscylacyjnego drugiego rzędu Charakterystyka amplitudowa Charakterystyka fazowa PWN, tydzień 3 dr inż. Eligiusz Pawłowski 36

37 Przetwornik inercyjny drugiego rzędu (RC) Przetwornik drugiego rzędu może być również połączeniem dwóch członów inercyjnych pierwszego rzędu, tzn: 1.Dwóch elementów rozpraszających energię, 2.Dwóch elementów akumulujących energię tego samego rodzaju (potencjalną, lub kinetyczną). Rezystory rozpraszają energię Kondensatory magazynują energię potencjalną Przykład przetwornika 2-rzędu, układ RC PWN, tydzień 3 dr inż. Eligiusz Pawłowski 37

38 Przetwornik inercyjny drugiego rzędu Stała czasowa Charakterystyki czasowe, odpowiedź na skok jednostkowy Opóźnienie czasowe PWN, tydzień 3 dr inż. Eligiusz Pawłowski 38

39 Przetwornik inercyjny drugiego rzędu opóźnienie czasowe PWN, tydzień 3 dr inż. Eligiusz Pawłowski 39

40 Przesunięcie fazowe Przykład przetwornika inercyjnego drugiego rzędu Opóźnienie czasowe Stała czasowa PWN, tydzień 3 dr inż. Eligiusz Pawłowski 4

41 Podsumowanie 1.Właściwości dynamiczne czujnika wynikają z elementów rozpraszających energię i magazynujących energię 2.Zachowanie się czujnika w stanie dynamicznym opisuje się równaniem różniczkowym. 3.Dynamiczne właściwości członu inercyjnego pierwszego rzędu są określone przez jego stałą czasową. 4. Dynamiczne właściwości członu drugiego rzędu są określone przez stopień tłumienia i częstotliwość drgań własnych. PWN, tydzień 3 dr inż. Eligiusz Pawłowski 41

42 DZIĘKUJĘ ZA UWAGĘ PWN, tydzień 3 dr inż. Eligiusz Pawłowski 42

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 10 Prawo autorskie Niniejsze

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITE Semestr zimowy Wykład nr 8 Prawo autorskie Niniejsze

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 11, wykład nr 18 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS - ITwE Semestr letni Wykład nr 6 Prawo autorskie Niniejsze

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych.

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 10. Pomiary w warunkach dynamicznych. Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH Laboratorium Podstaw Metrologii BADANIE DYNAMICZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH. CEL ĆWICZENIA Celem ćwiczenia jest: przybliżenie zagadnień dotyczących pomiarów wielkości zmiennych w czasie,

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITE Semestr zimowy Wykład nr 7 Prawo autorskie Niniejsze

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11

POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11 POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11 Ćwiczenie nr 2. POMIARY PARAMETRÓW DYNAMICZNYCH CZUJNIKÓW 1. Cel ćwiczenia:

Bardziej szczegółowo

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska

Instytut Inżynierii Biomedycznej i Pomiarowej. Wydział Podstawowych Problemów Techniki. Politechnika Wrocławska Instytut Inżynierii Biomedycznej i Pomiarowej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Laboratorium Pomiarów Wielkości Nieelektrycznych Pomiary w warunkach dynamicznych Badanie właściwości

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METOLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 13, wykład nr 0 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Procedura modelowania matematycznego

Procedura modelowania matematycznego Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki. Materiały pomocnicze do

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITE Semestr zimowy Wykład nr 6 Prawo autorskie Niniejsze

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Modelowanie wybranych. urządzeń mechatronicznych

Modelowanie wybranych. urządzeń mechatronicznych Modelowanie wybranych elementów torów pomiarowych urządzeń mechatronicznych Pomiary - element sterowania napędem mechatronicznym Układ napędowy - Zintegrowane czujniki Zewnetrzne sygnały sterujące Sprzężenia

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 część 1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone

LABORATORIUM OBWODÓW I SYGNAŁÓW. Stany nieustalone Politechnika Warszawska Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie nr 4 Stany nieustalone opracował: dr inż. Wojciech Kazubski

Bardziej szczegółowo

RÓWNANIE RÓśNICZKOWE LINIOWE

RÓWNANIE RÓśNICZKOWE LINIOWE Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 8, wykład nr 15 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2015 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Dr inż. Adam Klimowicz konsultacje: wtorek, 9:15 12:00 czwartek, 9:15 10:00 pok. 132 aklim@wi.pb.edu.pl Literatura Łakomy M. Zabrodzki J. : Liniowe układy scalone

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (3)

Inżynieria Systemów Dynamicznych (3) Inżynieria Systemów Dynamicznych (3) Charakterystyki podstawowych członów dynamicznych Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili?

Bardziej szczegółowo

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 3 - charakterystyki częstotliwościowe, podstawowe człony dynamiczne Instytut Automatyki i Robotyki Warszawa, 2017 cz.1: Charakterystyki częstotliwościowe Wstęp Charakterystyki częstotliwościowe

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne

Liniowe układy scalone. Filtry aktywne w oparciu o wzmacniacze operacyjne Liniowe układy scalone Filtry aktywne w oparciu o wzmacniacze operacyjne Wiadomości ogólne (1) Zadanie filtrów aktywnych przepuszczanie sygnałów znajdujących się w pewnym zakresie częstotliwości pasmo

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

Liniowe układy scalone

Liniowe układy scalone Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Ćwiczenie 2 STANY NIEUSTALONE W OBWODACH RC, RL I RLC

Ćwiczenie 2 STANY NIEUSTALONE W OBWODACH RC, RL I RLC aktualizacja 5..04 Ćwiczenie Katedra Systemów Przetwarzania Sygnałów Prawa autorskie zastrzeżone: Katedra Systemów Przetwarzania Sygnałów PWr STANY NIUSTAON W OBWODAH, I elem ćwiczenia jest: - obserwacja

Bardziej szczegółowo

Statyczne charakterystyki czujników

Statyczne charakterystyki czujników Statyczne charakterytyki czujników Określają działanie czujnika w normalnych warunkach otoczenia przy bardzo powolnych zmianach wielkości wejściowej. Itotne zagadnienia: kalibracji hiterezy powtarzalności

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:

b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej: 1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony

Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch

Bardziej szczegółowo

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A

Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Laboratorum 2 Badanie filtru dolnoprzepustowego P O P R A W A Marcin Polkowski (251328) 15 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia 2 3 Pomiary - układ RC

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH

4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH 4. OPIS MATEMATYCZNY PODSTAWOWYCH ELEMENTÓW LINIOWYCH 4.1. PODSTAWOWE ELEMENTY LINIOWE 4.1.1. Uwagi ogólne Układ dynamiczny daje się zwykle podzielić na elementy, z których każdy można rozpatrywać niezależnie

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 2 Prawo autorskie Niniejsze

Bardziej szczegółowo

KOMPUTEROWE SYSTEMY POMIAROWE

KOMPUTEROWE SYSTEMY POMIAROWE KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITE Semestr letni Wykład nr 3 Prawo autorskie Niniejsze

Bardziej szczegółowo

III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH

III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH III. DOŚWIADCZALNE OKREŚLANIE WŁAŚCIWOŚCI UKŁADÓW POMIAROWYCH I REGULACYJNYCH Tak zwana identyfikacja charakteru i właściwości obiektu regulacji, a zwykle i całego układu pomiarowo-regulacyjnego, jest

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

Projekt zadanie 2. Stany nieustalone w obwodach elektrycznych. Analiza stanów nieustalonych metodą klasyczną

Projekt zadanie 2. Stany nieustalone w obwodach elektrycznych. Analiza stanów nieustalonych metodą klasyczną Projekt zadanie 2. Proszę zaprojektować dowolny filtr składający się z nie więcej niż sześciu elementów pasywnych i co najwyżej dwóch elementów aktywnych, który będzie miał częstotliwość graniczną równą:

Bardziej szczegółowo