Analiza Matematyczna MAEW101

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza Matematyczna MAEW101"

Transkrypt

1 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 006 Opracowanie: dr hab. Agnieszka Jurlewicz

2 Lista. Zadanie. Korzystając z twierdzeń o arytmetyce granic oraz o granicach niewłaściwych ciągów obliczyć podane granice (a) n n 3 + n + n 3n 3 (n 0 + ) 3 (b) n (n 3 + ) 0 n n3 + 3 n5 + + (d) n ( n + 4n + n + n) (e) n ( 4 n n) ( 3 5 n + n + 3 (f) n 5 n 4 n (g) n 3 8 n+ + 3 n + ) 5 (h) n (n 4 3n 3 n ) ( ) n + n (i) n n (j) n (n + )! n! + Zadanie. Korzystając z twierdzeń o trzech i o dwóch ciągach znaleźć podane granice n (a) n n + 3 n 5 n + 4 n (b) n n n n + n ( ) 3 n n n3 + n (d) n n + ( ) n 3n + (e) n (sin n! )n (f) n n Zadanie.3 Korzystając z definicji liczby e obliczyć podane granice ( 5n + (a) n 5n + ( ) 3n n (b) n 3n + n ( n n + ) 5n ) n

3 3 Lista. Zadanie. Korzystając z twierdzeń o arytmetyce granic oraz o granicach niewłaściwych funkcji obliczyć podane granice (a) x x 5x + 4 x(x 5) (b) x x + 3 x + x x 3 x 4 3 x 4 (d) x 64 x 8 (e) + x x x (f) x 6 (g) x x 6 tg x + x π tg x + 5 (h) x ( x + x) (i) x (4x4 3x 3 + x x + ) ( (j) x ) x (k) x 3x + x + x + Zadanie. Korzystając z twierdzeń o trzech i o dwóch funkcjach uzasadnić podane równości: + sin x (a) = 0 (d) x = 0 x x x (b) x + sin x x x + cos x = ( ) x cos = 0 + x (e) x x + x (f) = ( ( )) 3 cos x x = 3 Zadanie.3 Korzystając z granic podstawowych wyrażeń nieoznaczonych obliczyć podane granice funkcji (a) sin (3x) x (b) e 3x sin(x) (d) + x 4 x ln( + x ) x 3 x (e) ( + sin x) /(3x) Zadanie.4 Obliczając granice jednostronne zbadać, czy istnieją podane granice funkcji (a) x x 4 x (b) x 3 Zadanie.5 Uzasadnić, że podane granice nie istnieją (a) x e x cos x (b) + sin ( ) x x x 3 x 3

4 4 Lista 3. Zadanie 3. Znaleźć asymptoty pionowe i ukośne podanych funkcji (a) f(x) = x3 + x x 4 (b) f(x) = sin x x π f(x) = x 3 9 x Zadanie 3. Zbadać ciągłość podanej funkcji we wskazanym punkcie, przy czym w przypadku nieciągłości określić jej rodzaj: ( x cos dla x < 0 x) (a) f(x) = 0 dla x = 0 ( ) x sin x dla x > 0 x 0 = 0 (b) f(x) = x 0 = x x dla x (0, ) (, ) 3 dla x = e x + f(x) = e x + dla x 0 e dla x = 0, x 0 = 0 x + x dla x 0 (d) f(x) = x 0 dla x = 0 x 0 = 0 Zadanie 3.3 Dobrać parametry a, b R tak, aby podana funkcja była ciągła w obu wskazanych punktach: dla x 0 (a) f(x) = a x + b dla 0 < x <, x = 0 oraz w x = 3 dla x (b) f(x) = { x + ax + b dla x < x x 4 dla x, x = oraz w x = Zadanie 3.4 Korzystając z twierdzenia Darboux uzasadnić, że podane równanie ma jednoznaczne rozwiązanie we wskazanym przedziale. W punkcie wyznaczyć to rozwiązanie z dokładnością 0,5. (a) x 3 + 6x = 0, (0, ) (b) = sin x + x, 3 x + x = 3, (0, ) ( 0, π )

5 5 Lista 4. Zadanie 4. Korzystając z definicji zbadać, czy istnieje pochodna właściwa lub niewłaściwa podanej funkcji we wskazanym punkcie (a) f(x) = x sin x, x 0 = 0 (b) f(x) = { x dla x x dla x >,, x 0 = f(x) = 3 5 x, x 0 = 0 (d) f(x) = sin x, x 0 = 0 Zadanie 4. Korzystając z reguł różniczkowania obliczyć pochodne podanych funkcji (a) f(x) = (x 3 + x ) e x (b) f(x) = sin x x f(x) = 3 arc sin(x ) (d) f(x) = arctgx 3 x (e) f(x) = ( + 4 x) tg( x) (f) f(x) = sin x 3 cos x (g) f(x) = x tg x (h) f(x) = x x Zadanie 4.3 Korzystając z twierdzenia o pochodnej funkcji odwrotnej obliczyć (a) (f ) (e + ) dla f(x) = x + ln x (b) (f ) (4) dla f(x) = x x Zadanie 4.4 Obliczyć f (x), f (x), f (x) dla podanej funkcji f(x) (a) f(x) = x 3 x (b) f(x) = x sin x f(x) = ex x (d) f(x) = sin 3 x + cos 3 x Zadanie 4.5 Napisać równanie stycznej do wykresu podanej funkcji we wskazanym punkcie (a) f(x) = x +, (3, f(3)) (b) f(x) = x + x, (, f( )) f(x) = arctg(x ), (0, f(0))

6 6 Lista 5. Zadanie 5. Korzystając z różniczki funkcji obliczyć przybliżoną wartość podanego wyrażenia (a) 3, 98 (b) e 0,04 ln Zadanie 5. Stosując wzór Maclaurina obliczyć przybliżoną wartość podanego wyrażenia z zadaną dokładnością (a) e z dokł. 0 3 (b) ln(, ) z dokł. 0 4 sin(0, ) z dokł. 0 5 Zadanie 5.3 Korzystając z reguły de l Hospitala obliczyć podane granice (a) x ln( x + ) x (b) x arctgx x x ln x + (d) ( ) x ctg x (e) (cos x) x Zadanie 5.4 Uzasadnić podaną tożsamość (a) arctgx + arcctgx = π dla x R ( ) x (b) arc sin = arctgx dla x (, ) + x

7 7 Lista 6. Zadanie 6. Znaleźć przedziały monotoniczności podanej funkcji (a) f(x) = x 3 30x + 5x (b) f(x) = xe 3x x3 f(x) = 3 x (d) f(x) = x ln x Zadanie 6. Znaleźć wszystkie ekstrema lokalne podanej funkcji (a) f(x) = x 3 4x (b) f(x) = (x 5)e x f(x) = x ln x (d) f(x) = x x 4 (e) f(x) = x 5x 6 Zadanie 6.3 Znaleźć wartości najmniejszą i największą podanej funkcji na wskazanym przedziale (a) f(x) = x 3 5x + 36x, [;, 5] (b) f(x) = 9 x, [ 4, ] Zadanie 6.4 Określić przedziały wypukłości i wklęsłości oraz punkty przegięcia podanej funkcji (a) f(x) = ln( + x ) (b) f(x) = f(x) = sin x + 8 sin(x) x Zadanie 6.5 (zadanie domowe) Zbadać przebieg zmienności podanej funkcji i naszkicować jej wykres (a) f(x) = x ln x x (b) f(x) = x f(x) = e x x (d) f(x) = x x (e) f(x) = 3 4 x 4 x

8 8 Lista 7. Zadanie 7. Obliczyć podane całki nieoznaczone (a) (b) x 4 x + dx x x dx x (d) x 5 x 0 x dx cos(x) cos x sin x dx Zadanie 7. Korzystając z twierdzenia o całkowaniu przez części obliczyć całki nieoznaczone (a) (b) x sin x dx x arctg x dx (d) ln(x + )dx e x sin x dx Zadanie 7.3 Stosując odpowiednie podstawienia obliczyć podane całki nieoznaczone (a) (b) (5 3x) 0 dx cos x x x dx 5 5x 3 + dx (d) (e) cos x + sin x dx dx 4x

9 9 Odpowiedzi i wskazówki: Lista nr :. (a) 3 ; (b) ; 0; (d) ; (e) 0; (f) 35 ; (g) ; (h) ; (i) 0; (j). (a) 3; (b) ; ; (d) ; (e) ; (f) (a) e 3 ; (b) 3 e ; e ; Lista nr :. (a) ; (b) 0; 3; (d) ; (e) ; (f) ; (g) ; (h) 0; (i) ; (j) ; (k) (a) 9; (b) 3; 0; (d) ; (e) e/3 3 x 4.4 (a) nie istnieje, x + x (b) nie istnieje, x 3 + nie istnieje, x 3+ x x 3 x 4 = 4, x =, =, x 3 x = 4; x 3 = 0; x x 3 = ;.5 Wskazówka: (a) x n = nπ, x n = π + nπ; (b) x n = (nπ), x n = ( π + nπ) Lista nr 3: 3. (a) asymptoty pionowe obustronne x = i x =, asymptota ukośna y = x + w i ; (b) asymptota pozioma y = 0 w i ; asymptota pionowa prawostronna x = 3 3. (a) ciągła; (b) f(x) = 4 3 = f(), luka ; f(x) = = f(x), skok ; x + (d) f(x) =, nieciągłość II rodzaju, przy czym f(x) = 0 = f(0), ciągła lewostronnie (a) a =, b = ; (b) a = 0, b = przybliżone rozwiązanie to 0, 65

10 0 Lista nr 4: 4. (a) f (0) = 0; (b) nie istnieje; f (0) = ; (d) nie istnieje 4. (a) f (x) = (x 3 + x + 3x ) e x, x 0; (b) f (x) = (x4 + 4) cos x 4x 3 sin x ; x 3 (x 4 + 4) f (x) = ( ) 3 (arc sin(x )) 3 x, < x < ; (d) f (x) = 3 x x 4 + x ln 3 arctgx ; (e) f (x) = 3 4 x 4 tg( x) + ( + 4 x)( + tg ( ( ) π x)) x, x > 0, x + nπ ; (f) f (x) = (ln + ln 3) sin x cos x sin x 3 cos x ; ( (g) f (x) = e tg x ln x ( + tg x) ln x + tg x ), x > 0, x π x + nπ; (h) f (x) = e x ln x ( ln x), x > 0 x 4.3 (a) e e + ; (b) 3( + ln 3) 4.4 (a) f (x) = 3x + x, f (x) = 6x 4 x 3, f (x) = 6 + x 4 ; (b) f (x) = sin x + x cos x, f (x) = cos x x sin x, f (x) = 3 sin x x cos x; f (x) = (x )ex x, f (x) = (x x + )e x x 3, f (x) = (6x 3x x 3 6)e x x 4 ; (d) f (x) = 3 sin(x)(sin x cos x), f (x) = 3 ( cos(x)(sin x cos x)+sin(x)(cos x+sin x)), f (x) = 3 ( 5 sin(x)(sin x cos x) + 4 cos(x)(cos x + sin x)) 4.5 (a) y 3 = 4 ln 3 Lista nr 5: (x 3); (b) y 3 5. (a) 0, 505; (b), 04; 0, (a) 53 0, 368, f(x) = 44 ex, n = 7; (b) ,, f(x) = sin x, n = 5; (a) ln ; (b) 0; 0; (d) 0; (e) = 9 (x ); y = 0 0, 0953, f(x) = ln( + x), n = 4;

11 Lista nr 6: 6. (a) malejąca na (5, 5), rosnąca na (, 5) i na (5, ); (b) malejąca na (, 3 ), rosnąca na ( ), 3 ; Df : x 3, malejąca na (, 3) i na (3, ), rosnąca na ( 3, 3), na ( 3, 3) i na ( 3, 3); (d) D f : x > 0, x, malejąca na (0, ) i na (, e), rosnąca na (e, ) 6. (a) maksimum lokalne właściwe w x 0 = 0, f(0) = 0; minimum lokalne właściwe w x 0 = 8, 3 f ( ) 8 3 = 56 ; (b) minimum lokalne właściwe w x 7 0 = 4, f (4) = e 4 ; minimum lokalne właściwe w x 0 =, f ( ) e e = ; (d) maksima lokalne właściwe w x e 0 = i w x 0 =, f( ) = f() = ; (e) maksimum lokalne właściwe w x 0 = 5, f ( ) 5 = 49 ; minima 4 lokalne właściwe w x 0 = i x 0 = 6, f( ) = f(6) = (a) wartość najmniejsza 3 (w punkcie x = ), największa 8 (w x = ); (b) wartość najmniejsza 8 (w punkcie x = 0), największa (w x = 3) 6.4 (a) wypukła na (, ), wklęsła na (, ) i na (, ), p.p. (, ln ), (, ln ); (b) wypukła na (, ), wklęsła na (, ) i na (, ), brak p.p.; wypukła na (π + kπ, π + kπ), wklęsła na (kπ, π + kπ), p.p. (kπ, 0), gdzie k Z 6.5 odpowiedzi w skrypcie Analiza Matematyczna, Przykłady i zadania, do zadania nr 6.5 Lista nr 7: 7. (a) 3 x3 +x+arctgx+c; (b) x3 x+ 6x 6 x x+c; 5 x + x +C; (d) sin x cos x+c 7 7 ln 5 ln 7. (a) x sin x + ( x ) cos x + C; (b) x x arctg( x) x + ln x + + C; (x + ) ln(x + ) x + C; (d) 5 ex ( sin x cos x) + C 7.3 (a) 33 (3x 5) + C (podstawienie y = 5 3x); (b) sin( x) + C (podstawienie y = x); 8 (5x3 + ) 5 5x C (podstawienie y = 5x 3 + ); (d) + sin x + C (podstawienie y = + sin x); (e) arc sin(x) + C (podstawienie y = x)

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Analiza Matematyczna 1 (2014/2015)

Analiza Matematyczna 1 (2014/2015) Analiza Matematyczna 4/5) MAP43, 9, 4, 43, 345, 357 Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Listazdań obejmujecałymateriałkursuijestpodzielonana4jednostekodpowiadającychkolejnym wykładom

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Kurs matematyki dla chemików

Kurs matematyki dla chemików Kurs matematyki dla chemików nr 136 Joanna Ger Kurs matematyki dla chemików Wydanie piąte poprawione Wydawnictwo Uniwersytetu Śląskiego Katowice 2012 Redaktor serii: Matematyka Tomawsz Dłotko Recenzenci

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

W pracy opisano fragment badań prowadzonych wśród studentów. Celem badań było poszukiwanie odpowiedzi na następujące pytania badawcze:

W pracy opisano fragment badań prowadzonych wśród studentów. Celem badań było poszukiwanie odpowiedzi na następujące pytania badawcze: ÇÄÁ ½ ½ ÒÒ Ð ÍÒ Ú Ö Ø Ø È Ó Ö ÓÚ Ò ËØÙ Ø Ñ Å Ø Ñ Ø È ÖØ Ò ÒØ Î ¾¼½ µ Ò Ò Ð Þ ÖÝ ÙÒ Ù Ó ÖÝÛ Ò Ñ Û ÒÓ ÙÒ ØÖ Øº The article presents remarks regarding analysis of drawings and the use of the data contained

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i .

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i . POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i. To książka dla wszystkich maturzystów, zdających nową maturę z matematyki na poziomie podstawowym i rozszerzonym. Jasne

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 3.

PLAN WYNIKOWY (zakres rozszerzony) klasa 3. PLAN WYNIKOWY (zakres rozszerzony) klasa. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina Kurczaba,

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera

Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

MATEMATYKA CYKL 3 GODZINNY

MATEMATYKA CYKL 3 GODZINNY MATURA EUROPEJSKA 010 MATEMATYKA CYKL 3 GODZINNY DATA 4 czerwca 010 CZAS TRWANIA EGZAMINU : 3 godziny (180 minut) DOZWOLONE POMOCE Europejski zestaw wzorów Kalkulator (bez grafiki, bez programowania) UWAGI:

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

1. WSTĘP. www.mathsoft.com, www.mathcad.com

1. WSTĘP. www.mathsoft.com, www.mathcad.com MATHCAD-W strona. WSTĘP MATHCAD to uniwersalny program do obliczeń matematycznych o bardzo dużych możliwościach. Jest łatwy do opanowania, nie wymaga nauki języka programowania a więc jest idealny dla

Bardziej szczegółowo

PORTFOLIO Próbki tekstu składanego systemem L A TEX

PORTFOLIO Próbki tekstu składanego systemem L A TEX PORTFOLIO Próbki tekstu składanego systemem L A TEX Autor: Spis treści Wstęp. Wprowadzenie...................................... Warunki korzystania z usługi............................ Przykładowe próbki

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek: 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego MATEMATYKA Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego Internetowy kurs dla kandydatów na Politechnikę Łódzką Repetytorium dla studentów I roku Politechniki Łódzkiej Skrypt niniejszy zawiera wiadomości

Bardziej szczegółowo

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru

Bardziej szczegółowo

Wprowadzenie do programu MATHCAD

Wprowadzenie do programu MATHCAD Wprowadzenie do programu MATHCAD Zaletami programu MathCad, w porównaniu do innych programów służących do obliczeń matematycznych, takich jak Matlab, Mathematica, są proste i intuicyjne zasady pracy z

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZÓŁ OGÓLNOSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 amienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 2.

PLAN WYNIKOWY (zakres rozszerzony) klasa 2. PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza maemayczna Lisa zadań Opracowanie: dr Marian Gewer, doc. Zbigniew Skoczylas Lisa. Korzysając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: d) + ; b) arccg; e) +) ; c) 4+3

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza matematyczna Lista zadań Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Lista Korzystając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: + ; (b) + ; (c) sin; (d) arcctg;

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy

Projekt pt. Wyższe kwalifikacje lepszy start zawodowy Projekt pt. Wyższe kwalifikacje lepszy start zawodowy realizowany przez Zespół Szkół Ponadgimnazjalnych im. Jana Kochanowskiego w Garbatce-Letnisku w ramach Programu Operacyjnego Kapitał Ludzki Priorytet

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

XXXVII KORESPONDENCYJNY KURS Z MATEMATYKI

XXXVII KORESPONDENCYJNY KURS Z MATEMATYKI XXXVII KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1- poziom podstawowy październik 007r. 1. Pan Kowalski wpłacił pewną sumę na lokatę oprocentowaną w wysokości 8% w skali roku, przy czym odsetki

Bardziej szczegółowo

TEST KOŃCOWY Z MATEMATYKI

TEST KOŃCOWY Z MATEMATYKI I Liceum Ogólnokształcące w Słupsku TEST KOŃCOWY Z MATEMATYKI DLA UCZNIÓW LICEUM Słupsk, marzec 1998 r WSTĘP Test jest jedną z form kontroli osiągnięć ucznia, zwiększającą obiektywność jego oceny Testy

Bardziej szczegółowo

Spis treści : ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ... 2 ANALIZA MATEMATYCZNA 1... 7 ANALIZA MATEMATYCZNA 2... 12 Bezpieczeństwo pracy i ergonomia...

Spis treści : ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ... 2 ANALIZA MATEMATYCZNA 1... 7 ANALIZA MATEMATYCZNA 2... 12 Bezpieczeństwo pracy i ergonomia... Spis treści : ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ... ANALIZA MATEMATYCZNA 1... 7 ANALIZA MATEMATYCZNA... 1 Bezpieczeństwo pracy i ergonomia... 17 Bezpieczeństwo techniczne... Chemia ogólna... 7 Chemia techniczna

Bardziej szczegółowo

Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni

Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Matematyka od podstaw do matury czyli Everest w zasięgu Twojej dłoni Drogi Czytelniku W tej książce pragnę nauczyć Cię matematyki. W prosty i przyjazny sposób wytłumaczę Ci teorię i przećwiczymy ją na

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Podstawowe komendy i możliwości system składu drukarskiego L A TEX

Podstawowe komendy i możliwości system składu drukarskiego L A TEX Podstawowe komendy i możliwości system składu drukarskiego L A TEX Paweł Woźny Rafał Nowak Wrocław, 7 października 2007 Spis treści Rozdział 2. Podrozdział..................................... 2.. Podpodrozdział...............................

Bardziej szczegółowo

MATEMATYKA KLASA I. I. MODUŁ Praca klasowa nr 1

MATEMATYKA KLASA I. I. MODUŁ Praca klasowa nr 1 MATEMATYKA KLASA I I. MODUŁ Praca klasowa nr 1 1. RozróŜniać figury geometryczne 2. Nazwać figury geometryczne 3. Rozpoznać kąty: ostre, proste i rozwarte 4. Wskazać proste równoległe 5. Wskazać proste

Bardziej szczegółowo

1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36.

1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36. Zestaw zadań na ocenę dopuszczającą z matematyki po klasie - ZSP w Żelechowie Opracowała A. Lasocka. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad. Oblicz: + - + - + e + 0 Zad. Oblicz: 9 + 0 : 9

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy i rozszerzony do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu

Bardziej szczegółowo

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1

Bardziej szczegółowo

Temat lekcji: Przekształcania wykresów funkcji trygonometrycznych.

Temat lekcji: Przekształcania wykresów funkcji trygonometrycznych. Temat lekcji: Przekształcania wykresów funkcji trygonometrycznych. Klasa: II liceum profilowane Temat lekcji poprzedniej: Wykresy funkcji trygonometrycznych Czas trwania: 2 godziny lekcyjne Co uczeń powinien

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa Wymagania z matematyki, poziom rozszerzony nowa podstawa programowa Nauczyciel matematyki: mgr Izabela Stachowiak Wilk Zbiór liczb rzeczywistych i jego podzbiory odróżnia zdanie logiczne od innych wypowiedzi

Bardziej szczegółowo

Jeden obraz bywa lepszy niż 1000 słów

Jeden obraz bywa lepszy niż 1000 słów Stowarzyszenie na rzecz Edukacji Matematycznej Konferencja Na płaszczyźnie i w przestrzeni, Ameliówka 25-27 X 2013 1 9 + 1 9 5 9 + 1 9 5 9 2 + 1 9 5 9 3 +... = 1 4 1 9 + 1 9 5 9 + 1 9 5 9 2 + 1 9 5 9 3

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej Agnieszka Kamińska. MATeMAtyka. Plan wynikowy. Zakres podstawowy i rozszerzony

Dorota Ponczek, Karolina Wej Agnieszka Kamińska. MATeMAtyka. Plan wynikowy. Zakres podstawowy i rozszerzony Dorota onczek, arolina Wej Agnieszka amińska MATeMAtyka lan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy.

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu

Bardziej szczegółowo

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Zakres podstawowy i rozszerzony Katalog wymagań na poszczególne oceny: Zakres wiedzy

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Analiza matematyczna dla informatyków

Analiza matematyczna dla informatyków Analiza matematyczna dla informatyków Wykład dla pierwszego roku informatyki na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego skrypt wykładu w roku akademickim 2009/2010 Marcin

Bardziej szczegółowo

LICEUM OGÓLNOKSZTAŁCĄCE IV etap edukacyjny klasy I, II, III. Program nauczania Prosto do matury, kształcenie ogólne na poziomie podstawowym.

LICEUM OGÓLNOKSZTAŁCĄCE IV etap edukacyjny klasy I, II, III. Program nauczania Prosto do matury, kształcenie ogólne na poziomie podstawowym. LICEUM OGÓLNOKSZTAŁCĄCE IV etap edukacyjny klasy I, II, III Program nauczania Prosto do matury, kształcenie ogólne na poziomie podstawowym. PRZEDMIOTOWT SYSTEM OCENIANIA Z MATEMATYKI I. Cele oceniania:

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I

Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Grafika komputerowa Wykład 7 Modelowanie obiektów graficznych cz. I Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Zbiór zadań z matematyki zakres rozszerzony

Zbiór zadań z matematyki zakres rozszerzony Autorzy: R. Kusztelak J. Stańdo K. Szumigaj Zbiór zadań z matematyki zakres rozszerzony Recenzenci: T. Ratusiński J. Guncaga Książka przygotowana w ramach projektu E-matura, współfinansowanego przez Unię

Bardziej szczegółowo

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki Opis założonych osiągnięć ucznia W tabelach dla poszczególnych klas, przy treściach kształcenia podajemy przewidywane osiągnięcia uczniów w ramach zakresu rozszerzonego. Podzieliliśmy je na podstawowe

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo