Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW"

Transkrypt

1 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu y = + y = 6 y = 6 y = Obliczmy wszystkie pochodne wielomianu y = y = y = y = y IV = 4 y V =

2 5.9 WKLĘSŁOŚĆ, WYPUKŁOŚĆ, PKT. PRZEGIĘCIA Do prawidłowego sporządzenia wykresu ważne jest stwierdzenie, czy w dany przedziale funkcja jest wklęsła czy wypukła. W zależności od tego jak zachowują się w przedziale <a;b> pierwsza pochodna f () i druga pochodna f () funkcja f() może być. wypukła - rosnąca coraz szybciej " f f a, b a b. wklęsłą - rosnąca coraz wolniej f f " a, b a b. wypukła - malejąca coraz wolniej f f " a, b a b 4. wklęsłą - malejąca coraz szybciej " f f a, b a b Punkt przegięcia (p.p.) jest w punkcie wtedy, gdy druga pochodna funkcji w punkcie równa się zero ( f ( ) = ), oraz druga pochodna zmienia wokół tego punktu znak.

3 Przykład y 8 4 Zbadajmy wklęsłość i wypukłość tej funkcji oraz przegięcia. punkt y y Pierwsza pochodna nie posiada pierwiastków, więc jest zawsze dodatnia " y pierwiastkiem drugiej pochodnej jest = (- ;-,88) -,88 (-,88; +) y + y - y p.p. y= Naszkicujmy wykres dla pochodnej f () i funkcji f() + + -,88 f () - - f() 9,7 -,88

4 Przykład Popyt na pewne dobro wyrażony jest wzorem P 4 >, gdzie p cena - sprzedaż Zbadajmy funkcję utargu U Utarg jest iloczynem funkcji popytu p i sprzedaży U p Utarg krańcowy 4 U U " (8 ( ) 4 ) 6 Dla > U > U < wraz ze wzrostem popytu utarg rośnie coraz wolniej U U U 4

5 5. ASYMPTOTY Prostą o równaniu =c nazywamy asymptotą pionową krzywej o równaniu y = f(), jeżeli przynajmniej jedna z granic jednostronnych funkcji w punkcie jest niewłaściwa. Prostą o równaniu y = a + b nazywamy asymptotą ukośną krzywej o równaniu y = f(), jeżeli a f a b f a Przykład f ( ) 4 Zbadajmy asymptotę ukośną funkcji a (4 ) 4 [ 4 b ] ponieważ dla - również a = - i b =, więc prosta o równaniu y = - jest asymptotą (obustronną) funkcji. 5

6 5. REGUŁA DE LHOSPITALA Twierdzenie, które obecnie sformułujemy, zwane jest także regułą de L Hospitala. Wykorzystujemy je przy obliczaniu granic funkcji. Jeżeli jednocześnie spełnione są założenia: f f. Funkcje i są określone w pewnym sąsiedztwie g g S,,. f g lub f i g, f. istnieje granica ( właściwa lub niewłaściwa), to istnieje g również granica f i zachodzi równość g f f g g Uwagi:. Twierdzenie de L Hospitala jest także prawdziwe w przypadku granic jednostronnych i granic przy lub.. Twierdzenie de L Hospitala stosujemy bezpośrednio tylko w przypadku, gdy mamy do czynienia z symbolem nieoznaczonym typu. lub. Dla danej granicy możemy wielokrotnie stosować regułę de L Hospitala. 6

7 7 Przykład 4. H. ln H H

8 5. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Schemat ogólny badania funkcji Ogólne badanie własności funkcji i sporządzanie ich wykresów można wygodnie przeprowadzić wg następującego schematu: I. Wyznaczamy dziedzinę funkcji. II. Badamy, czy funkcja jest parzysta, nieparzysta lub okresowa. III. Znajdujemy punkty przecięcia się wykresu funkcji z osiami układu współrzędnych. IV. Obliczamy granice funkcji na krańcach dziedziny. V. Znajdujemy asymptoty funkcji. VI. Znajdujemy punkty ekstremalne funkcji oraz przedziały monotoniczności funkcji. VII. Znajdujemy punkty przecięcia funkcji oraz przedziały wklęsłości i wypukłości. VIII. Sporządzamy tabelkę Sporządzamy wykres funkcji, wykorzystując wyniki przeprowadzonych 8

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i .

POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i . POLECAMY Matematyka nowa matura - zagadnienia teoretyczne wraz z przykładami cz.i. To książka dla wszystkich maturzystów, zdających nową maturę z matematyki na poziomie podstawowym i rozszerzonym. Jasne

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO

TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO Semestr 3A, 3B, 3C TEMAT: ZASTOSOWANIE FUNKCJI LINIOWEJ W ZADANIACH Z ŻYCIA CODZIENNEGO PRZYKŁAD 1 Temperaturę w stopniach Celsjusza x przelicza się na stopnie y w skali Fahrenheita według wzoru: y = 5

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku

Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia 2013 roku Konkurs dla szkół ponadgimnazjalnych Etap szkolny 9 stycznia roku Instrukcja dla ucznia W zadaniach o numerach od do są podane cztery warianty odpowiedzi: A, B, C, D Dokładnie jeden z nich jest poprawny

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... Rozwiązania zadań. Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym

Maria Romanowska UDOWODNIJ, ŻE... Rozwiązania zadań. Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Maria Romanowska UDOWODNIJ, ŻE Rozwiązania zadań Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Miejski Ośrodek Doskonalenia Nauczycieli w Opolu Publiczne Liceum

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

W pracy opisano fragment badań prowadzonych wśród studentów. Celem badań było poszukiwanie odpowiedzi na następujące pytania badawcze:

W pracy opisano fragment badań prowadzonych wśród studentów. Celem badań było poszukiwanie odpowiedzi na następujące pytania badawcze: ÇÄÁ ½ ½ ÒÒ Ð ÍÒ Ú Ö Ø Ø È Ó Ö ÓÚ Ò ËØÙ Ø Ñ Å Ø Ñ Ø È ÖØ Ò ÒØ Î ¾¼½ µ Ò Ò Ð Þ ÖÝ ÙÒ Ù Ó ÖÝÛ Ò Ñ Û ÒÓ ÙÒ ØÖ Øº The article presents remarks regarding analysis of drawings and the use of the data contained

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI KLASA I Lb TECHNIKUM \ rok. LICZBY I DZIAŁANIA Liczby naturalne, całkowite, wymierne i niewymierne Działania na liczbach Przedziały liczbowe,działania na

Bardziej szczegółowo

Kurs matematyki dla chemików

Kurs matematyki dla chemików Kurs matematyki dla chemików nr 136 Joanna Ger Kurs matematyki dla chemików Wydanie piąte poprawione Wydawnictwo Uniwersytetu Śląskiego Katowice 2012 Redaktor serii: Matematyka Tomawsz Dłotko Recenzenci

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015

Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015 Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki Rok szkolny 2014/2015 Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1

Bardziej szczegółowo

BAZA ZADAŃ KLASA 1 TECHNIKUM

BAZA ZADAŃ KLASA 1 TECHNIKUM LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y

Bardziej szczegółowo

5. Utarg krańcowy (MR) można zapisać jako: A)

5. Utarg krańcowy (MR) można zapisać jako: A) 1. Na rynku pewnego dobra działają dwie firmy, które zachowują się zgodnie z modelem Stackelberga. Firmy ponoszą stałe koszty krańcowe równe 24. Odwrócona linia popytu na tym rynku ma postać: P = 480-0.5Q.

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń:

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń: 1. Funkcja liniowa Tematyka: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej. Własności funkcji liniowej Znaczenie współczynników we wzorze funkcji liniowej

Bardziej szczegółowo

KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH. I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji

KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH. I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji KOSZTY, PRZYCHODY I ZYSKI W RÓŻNYCH STRUKTURACH RYNKOWYCH Opracowanie: mgr inż. Dorota Bargieł-Kurowska I. Koszty całkowite, przeciętne i krańcowe. Pojęcie kosztów produkcji Producent, podejmując decyzję:

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy.

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU

MIKROEKONOMIA. Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU Wykład 3 Mikroanaliza rynku 1 MIKROANALIZA RYNKU 1. POPYT Popyt (zapotrzebowanie) - ilość towaru, jaką jest skłonny kupić nabywca po ustalonej cenie rynkowej, dysponując do tego celu odpowiednim dochodem

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO I. Kontrakt 1. Każdy uczeń jest oceniany zgodnie z zasadami PSO,WSO. 2. Ocenie podlegają wszystkie formy aktywności ucznia. 3. Ocena

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

I. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE Temat. Ilość godzin Podstawowe wiadomości o zbiorach. Opis wymagań

I. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE Temat. Ilość godzin Podstawowe wiadomości o zbiorach. Opis wymagań PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki) I. LICZBY RZECZYWISTE

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 3.

PLAN WYNIKOWY (zakres rozszerzony) klasa 3. PLAN WYNIKOWY (zakres rozszerzony) klasa. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina Kurczaba,

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki

SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki SCENARIUSZ LEKCJI OPRACOWANY w RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE i OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZÓŁ OGÓLNOSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 amienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania został skonstruowany w oparciu o następujące

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki

Przedmiotowy System Oceniania z matematyki Przedmiotowy System Oceniania z matematyki Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Liceum Ogólnokształcącego im. Janka Bytnara w Kolbuszowej. I. Kontrakt między nauczycielem

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE VI Ocenę niedostateczną (1) otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą, Wymagania na ocenę dopuszczającą (2) rozróżnia liczby pierwsze i

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):

Bardziej szczegółowo

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

Analiza wybranych zadań egzaminacyjnych i schematów ich oceniania

Analiza wybranych zadań egzaminacyjnych i schematów ich oceniania Badania międzynarodowe i wzory zagraniczne w diagnostyce edukacyjnej Jadwiga Brzdąk Okręgowa Komisja Egzaminacyjna w Jaworznie Analiza wybranych zadań egzaminacyjnych i schematów ich oceniania Egzamin

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS

0 2 odpowiadająca zajęciom o charakterze praktycznym (P) w tym liczba punktów ECTS Zał. nr 4 do ZW WYDZIAŁ ** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Kształcenie w zakresie podstawowym i rozszerzonym. cały cykl

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

MATEMATYKA CYKL 3 GODZINNY

MATEMATYKA CYKL 3 GODZINNY MATURA EUROPEJSKA 010 MATEMATYKA CYKL 3 GODZINNY DATA 4 czerwca 010 CZAS TRWANIA EGZAMINU : 3 godziny (180 minut) DOZWOLONE POMOCE Europejski zestaw wzorów Kalkulator (bez grafiki, bez programowania) UWAGI:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Popyt, podaż i wszystko co z Nimi związane. Mgr Michał Ferdzyn SWSPiZ

Popyt, podaż i wszystko co z Nimi związane. Mgr Michał Ferdzyn SWSPiZ Popyt, podaż i wszystko co z Nimi związane Mgr Michał Ferdzyn SWSPiZ POPYT to zależność pomiędzy ilością dobra, którą chcą i mogą kupić konsumenci, a ceną tego dobra. Popyt jest przedstawiany za pomocą

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA VI LICEUM OGÓLNOKSZTAŁCĄCEGO ZESPOŁU SZKÓŁ MISTRZOSTWA SPORTOWEGO W JASTRZĘBIU ZDROJU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA VI LICEUM OGÓLNOKSZTAŁCĄCEGO ZESPOŁU SZKÓŁ MISTRZOSTWA SPORTOWEGO W JASTRZĘBIU ZDROJU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA VI LICEUM OGÓLNOKSZTAŁCĄCEGO ZESPOŁU SZKÓŁ MISTRZOSTWA SPORTOWEGO W JASTRZĘBIU ZDROJU I. Kontrakt 1. Każdy uczeń jest oceniany zgodnie z zasadami PSO,WSO.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Przedmiotowy System Oceniania dla matematyki Kontrakt z uczniami: Ocena Waga

Przedmiotowy System Oceniania dla matematyki Kontrakt z uczniami: Ocena Waga Przedmiotowy System Oceniania dla matematyki Maria Wietrzykowska Kontrakt z uczniami: 1. Każdy uczeń jest oceniany zgodnie z prawe WSO i zasadami sprawiedliwości. 2. Ocenie podlega: Ocena Waga Wypowiedź

Bardziej szczegółowo

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego MATEMATYKA Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego Internetowy kurs dla kandydatów na Politechnikę Łódzką Repetytorium dla studentów I roku Politechniki Łódzkiej Skrypt niniejszy zawiera wiadomości

Bardziej szczegółowo