Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tydzień 2 - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. ; e)"

Transkrypt

1 Tydzień - Logika. Każde z poniższych zdań wyraź w postaci p = q. Wskaż założenie i tezę twierdzenia. A. W trójkącie prostokątnym suma kwadratów przyprostokątnych jest równa kwadratowi przeciwprostokątnej. B. Dla wykładnika naturalnego n 3 równanie n + y n = z n nie ma rozwiązań w liczbach całkowitych dodatnich. C. Każda liczba parzysta większa od jest sumą dwu liczb pierwszych.. Rozważmy zdanie: Jeżeli dzieli jakąś liczbę, to także 3 dzieli tę liczbę. a) Pokaż, ze wynikanie odwrotne nie jest prawdziwe. b) Czy podzielność przez jest warunkiem koniecznym podzielności przez 3? c) Czy podzielność przez 3 jest warunkiem koniecznym podzielności przez? d) Czy podzielność przez jest warunkiem dostatecznym podzielności przez 3? e) Podaj warunek konieczny i dostateczny podzielności przez Rozważmy zdania: p - dostałem co najmniej czwórkę, q - dostałem mniej niz trójkę, r - nie dostałem jedynki. Przyjmując, że nie ma ocen połówkowych wyraź możliwie prosto zdania: a) negację r; b) negację p; c) koniunkcję q i r; d) alternatywę p oraz q; e) negację alternatywy zdań p oraz q; f) koniunkcję negacji p i negacji q. 4. Jedna strona każdej z kart pokazuje kolor (czerwony albo niebieski), druga figurę (kółko albo trójkąt). Na stole leżą cztery karty: pierwsza z nich jest niebieska, druga czerwona, trzecia ma kółko, czwarta trójkąt. Placek twierdzi, że karty niebieskie mają na odwrocie kółko. Które karty trzeba odwrócić, aby sprawdzić, czy ma rację. 5. Załóżmy, że gdy Jacek chrapie, to Agatka śni. Czy wynika stąd, że: a) Gdy Jacek nie chrapie, to Agatka nie śni. b) Gdy Agatka śni, to Jacek chrapie. c) Gdy Agatka nie śni, to Jacek nie chrapie. d) Jacek nie chrapie lub Agatka śni. 6. Które z poniższych równoważności są prawdziwe? a) n jest wielokrotnością 5 5 jest dzielnikiem n; b) a < b b > a c) A jest o % szybszy od B B jest o % wolniejszy od A. 7. George Bernard Shaw twierdził, że przekłady są jak kochanki wierne nie są piękne, piękne nie są wierne. Czy z twierdzenia tego wynika, że: A. Przekład wierny nie jest piękny. B. Jeśli przekład nie jest piękny, to jest wierny. C. Jeśli przekład jest piękny, to nie jest wierny. D. Jeśli przekład nie jest wierny, to jest piękny. E. Żaden przekład nie może być zarazem wierny i piękny. 8. Panu N. odmówiono sprzedaży alkoholu powołując się na przepis, że osobom niepełnoletnim bądź nietrzeźwym alkoholu nie sprzedaje się. Czy wynika stąd, że pan N: a) był niepełnoletni; b) był nietrzeźwy; c) był niepełnoletni i nietrzeźwy; d) był niepełnoletni lub nietrzeźwy; e) jeśli był trzeźwy, to niepełnoletni f) jeśli był niepełnoletni, to trzeźwy. 9. Udowodnij, że istnieją liczby niewymierne a, b takie, że a b wymierna. Wsk.: Rozważ a = b =. Jeżeli a b jest wymierna, to koniec dowodu. A jeśli niewymierna?. Dokończ poniższy dowód niewprost: Załóżmy, że liczb pierwszych jest skończenie wiele. Niech p, p,..., p k będą wszystkimi liczbami pierwszymi. Rozważmy liczbę N = p p... p k +. Wówczas... Jakie twierdzenie udowodniłeś?

2 Tydzień - Kilka bardzo prostych funkcje. Logarytm i funkcja wykładnicza. Naszkicuj wykresy funkcji: a) y = sgn ; b) y = ; c) y = ; d) y = ; e) y = ; f) y = sgn.. Naszkicuj wykresy funkcji potęgowej y = α dla α =,, 3,,, / oraz /. 3. Zapisz w postaci pojedynczej potęgi dwójki: a) /64; b ; c) ; d) ( )/; e) ( ) 3 ( 3 ) f) ( 3 ) 4 ; g) 34 ; h) ( ). 4. Podaj wartości logarytmów: a) log 4; b) log 4 ; c) log ; d) log4 8; e) log 8 4; f) log Wyraź poniższe wyrażenia za pomocą pojedynczego logarytmu: a) log ; b) log log 5; c) log 3 ; d) log 3 log ; e) log ln. 6. Wyraź y jako funkcję zmiennej, jeżeli log y = 3 log. 7. Naszkicuj wykresy funkcji: a) y = ; b) y = log( + ); c) y = log ; d) y = ; e) y =. 8. Znajdź funkcję odwrotną do funkcji: a) y = ; b) y = ; c) y =, ; d)* y = +,. 9. Badania pokazują, że w dużych zbiorach danych złożonych z przypadkowych liczb, liczby zaczynające się cyfrą k stanowią około log ( + ) k wszystkich danych. a) Oszacuj, jaka część danych zaczyna się cyfrą, jaka cyfrą. b) Sprawdź, że ( log + ) ( + log + ) ( log + ) =. 9. Wykaż, że log jest liczbą niewymierną.. Za pomocą odpowiedniego logarytmu podaj wzór na liczbę cyfr liczby n. Ile cyfr ma w zapisie dziesiętnym liczba?

3 Tydzień 3 - Funkcje trygonometryczne i cyklometryczne. Podaj wartości funkcji trygonometrycznych: a) tg π 3 ; b) sin π 3 ; c) cos 5 3 π; d) sin 5 4 π; e) cos 4 3 π; f) ctg π 3.. Naszkicuj wykres funkcji: a) y = sin ; b) y = cos( + π/4); c) y = cos ; d) y = sin + sin e) y = sin + 3 cos. 3. Określ typ parzystości (parzysta, nieparzysta, ani taka ani taka) funkcji: a) y = sin + sin 3; b) y = sin cos c) y = cos + cos + cos 3 ; d) y = sin + sin ; e) y = k + cos ; f) y = sin( + π/4) + cos( + π/4). 4. Korzystając z okresowości, parzystości bądź nieparzystości i wzorów redukcyjnych oblicz: a) sin 5 3 π b) cos 4 π; c) tg 3 π; d) sin ( 7 4 π) ; e) cos 7 6 π; f) sin π 5 + sin 8π Wykaż tożsamości: a) + tg = cos ; b) (cos + sin ) + (cos sin ) = ; c) cos + cos = ; d) sin cos sin 3 + sin = ; e) sin cos = ; f) cos 3 3 cos + cos 3 = Oblicz wartości czterech podstawowych funkcji trygonometrycznych kąta sin Wyraź sin 3α za pomocą sin α. Udowodnij, że sin jest liczbą niewymierną. 8. Oblicz wartości funkcji cyklometrycznych a) arctg ; b) arcsin( /); c) arctg( 3) d) arcsin( /). 9. Ile różnych wartości przyjmuje wyrażenie sin +sin +sin sin k, gdy k przyjmuje wartości,,,...?. Pokaż, że jeśli t = tg(/), to cos = t t, sin = + t + t.. Oblicz: sin π 7 + sin 4π 7 + sin 6π 7 + sin 8π π + sin 7 7 Uogólnik wynik. Rozważ podobne zadanie dla cosinusów. + sin π 7.. Udowodnij, że dla dodatnich zachodzi równość arctg + arctg(/) = π. Jak wygląda analogiczna równość dla ujemnych? 3. Naszkicuj wykresy funkcji: a) y = tg(arctg ); b) y = arctg(tg ) c)* y = cos(arcsin ). 4. Krzywą, którą można otrzymać przesuwając odpowiednio wykres funkcji y = a sin(b + c) dla ustalonych parametrów a, b, c, nazywamy sinusoidą. Wykaż, że każda z poniższych krzywych jest sinusoidą: a) y = cos ; b) y = sin c) y = sin cos d) y = sin + cos ; e) y = (sin + cos ) ; f)* sin 4 + cos 4. 5.* Jednym z pierwiastków równania = jest cos. Znajdź dwa pozostałe.

4 . Oblicz granice ciągów: Tydzień 4 - Granica ciągu a) a n = (n + 3)(n + ); b) b n = n + n 3 + n + ; c) c n = 3n + 4 n 5 n ; d) d n = n ; n e) e n = n + n; f) f n = n + n n g) g n = sin n n ; h)* h n = n n + 3 n.. Znajdź granice niewłaściwe, o ile istnieją. a) a n = (n + )/(n + ); b) b n = n n 3 ; c) c n = 3 n n ; d) d n = 3 n ( ) n. 3. Jeżeli dla dodatnich funkcji f, g f(n) lim n g(n) = a, gdzie < a <, to mówimy, że f, g są tego samego rzędu; jeżeli a = mówimy, że są asymptotycznie równe. a) Pokaż, że n jest rzędu n. b) Dla jakiego a ( n k) jest asymptotycznie równe an k? 4. Jaką częścią sumy liczb naturalnych z przedziału [, n] jest suma liczb nieparzystych z tegoż przedziału? Znajdź granicę tego ilorazu. 5. Oblicz granice ciągów: a n = ( ( ) + n) n; b) bn = n n; n+ c) cn = ( ) n+ n; n d) dn = ( ) n n. 6. Wyjaśnij, wskazując odpowiednie przykłady, dlaczego następujące wyrażenia sa nieoznaczone: a) ; b) / ; c). 7. Naszkicuj wykres funkcji a) f() = lim n n ; ( b) f() = lim n). n Uważaj na dziedzinę! 8. Niech P n oznacza pole n-kąta foremnego wpisanego w okrąg o promieniu, L n obwód tego wielokąta. a) Znajdź granice obu ciągów, b) Wywnioskuj stąd granicę ciągu a n = n sin(π/n). 9. Rozważmy ciąg a =, a n+ = a n + a n. a) Wiedząc, że ciąg ten jest zbieżny, znajdź jego granicę. Oblicz kilka początkowych wyrazów i porównaj z wynikiem dokładnym. b) Podaj analogiczny ciąg o granicy: a) 3; b) 3.. Jakie jest prawdopodobieństwo, że pośród 83 osób przynajmniej jedna obchodzi urodziny w tym samym dniu, co Ty? Rachunki możesz wykonać w pamięci..* Udowodnij, że lim n n n =.

5 . Oblicz granice funkcji: a) lim 3 ;. Oblicz granice funkcji: b) lim ; sin sin a) lim ; b) lim sin ; Tydzień 5 - Granica funkcji c) lim + cos e c) lim ; d) lim e ; sin ; d) lim. e) lim ln( ). 3. Znajdź obie granice jednostronne (właściwe bądź niewłaściwe) we wskazanym punkcie: a) y = 4. Znajdź asymptoty funkcji: w punkcie ; b) y = sgn a) y = 3 ; b) y = ( 4) c) y = w punkcie zero; +. c) y = w punkcie zero. 5. Niech S(h) oznacza powierzchnię całkowitą stożka o ustalonej podstawie r i wysokości h. Znajdź granicę S(h) za pomocą: a) rozumowania geometrycznego; b) obliczeń. 6. Niech S(h) oznacza pole powierzchni tej części Ziemi, jaka widoczna jest z wysokości h. Znajdź lim S(h), przyjmując, że Ziemia jest kulą o promieniu R. h 7. Obliczając odpowiednią granicę pokaż, że dla a > a + r a + r a. Korzystając z tego wzoru pokaż, że: a) 9/6; b) 5 3/8; c) 99/7. 8. Przy stałym tempie wzrostu p% przez okres podwojenia rozumiemy czas, po jakim dana wielkość się podwaja. a) Znajdź okres podwojenia odpowiadający przyrostowi p%. b) Uzasadnij, że okres ten wyraża się przybliżonym wzorem 7/p. c) Czy średni przyrost naturalny w ciągu ostatnich lat był wyższy od promila czy niższy?

6 Tydzień 6 - Ciągłość. Wskaz punkty nieciągłości i określ ich rodzaj:, gdy ; cos gdy > ; a) y = b) y = w p.p.; <; c) y =, gdy ; w p.p.;. Korzystając z twierdzenie Bolzano o wartościach pośrednich dla funkcji ciągłych uzasadnij, że równanie: a) = ma dokładnie jeden pierwiastek; b) sin = 3 ma dodatni pierwiastek; c) e = + + ma dodatni pierwiastek. 3. Za pomocą połowienia przedziału znajdź przybliżoną wartość: a) jedynego pierwiastka równania: 3 + = 3; b) wszystkich pierwiastków 4 = Gdzie w poniższych rachunkach korzystamy z ciągłości? Jakiej funkcji i w jakim punkcie? ( lim n ln + ) ( = lim n n ln + n ( = ln lim + n n) n = ln e =. n n) 5. Czy funkcję y = sin(/) można dookreślić w punkcie zero tak, aby była ciągła na całej prostej? A funkcję y = sin(/)? 6. Korzystając z twierdzenia Bolzano wykaż, że każdy wielomian nieparzystego stopnia ma przynajmniej pierwiastek. 7. Za pomocą funkcji sufit lub podłoga określ funkcję, która będzie ciągła we wszystkich punktach z wyjątkiem punktów o współrzędnych będących: a) liczbami całkowitymi parzystymi; b) liczbami całkowitymi nieparzystymi. 8. Zbadaj, w jakich punktach jest ciągła funkcja {, gdy wymierna; a) y = w p.p.

7 Tydzień 7 - Pojęcie pochodnej i równanie stycznej. Korzystając z definicji oblicz pochodne: a) y = + ; b) y = ; c) y = e.. Korzystając ze wzoru na pochodną funkcji potęgowej i liniowości oblicz pochodne funkcji: a) y = ( ) ; b) y = ; c) y = ; d) y = ; e) y = ( + ) ( + 3. Oblicz: a) f () dla funkcji y = ( + ) 3 ; b) f () dla funkcji y = Znajdź równanie stycznej do wykresu funkcji: ) ( ). a) y = e w punkcie (, f()); b) y = ln w punkcie e, f(e)); c) y = + w punkcie (, f()). 5. Znajdź kąt pomiędzy styczną do wykresu funkcji y = poprowadzonej w punkcie (, ) a dodatnią półosią osi O. Analogicznie dla stycznej w punkcie (, ). 6. Jaki związek zachodzi pomiędzy f () a f ( ) w przypadku funkcji: a) parzystej; b) nieparzystej? Zastanów się nad analogicznym pytaniem dla pochodnych wyższego rzędu. 7. Które z poniższych zdań są prawdziwe: A. Każda funkcja ciągła jest różniczkowalna. B. Każda funkcja różniczkowalna jest ciągła. C. Jeżeli funkcja nie jest ciągła, to nie jest różniczowalna. D. Jeżeli funkcja nie jest różniczkowalna, to nie jest ciągła. E. Istnieje funkcja ciągła, która nie jest różniczkowalna. 8. Oblicz pochodne niewłaściwe w punkcie funkcji: a) y =, = : b) y =, = ; c) y = arcsin, =. Jaką informację o wykresie odpowiedniej funkcji możesz stąd wywnioskować? 9. Wskaż punkty, w których funkcja nie jest różniczkowalna (o ile takie istnieją). W punktach nieróżniczkowalności oblicz wartości obu pochodnych jednostronnych. a) y = + ; b) y = + y = 3 + ; d) y =.. Pokaż, że funkcja f() = sin(/) dla, f() = nie jest różniczkowalna w punkcie zero. Czy ma w tym punkcie pochodne jednostronne? A niewłaściwe?. Wyprowadź wzór na tangens sumy. Korzystając z definicji pochodnej wyprowadź wzór na pochodną tangensa.. Wyraż za pomocą pochodnej związek pomiędzy polem koła a obwodem okręgu oraz pomiędzy powierzchnią kuli a jej objętością. Zakładając, ze podobny związek zachodzi także w wyższych wymiarach znajdź powierzchnię kuli czterowymiarowej, wiedząc, że jej objętość wynosi π /. 3. Wykaż, że jeśli funkcja różniczkowalna f spełnia warunki f(a + b) = f(a)f(b) oraz f () =, to f = f. W przyszłości pokażemy, że jedyną taką funkcją jest y = e. 4. Pokaż, że styczna poprowadzona do wykresu funkcji y = f() w punkcie P = (a, f(a)) przecina oś O w punkcie o współrzędnej -owej a = a f(a) f (a). a) Zapisz ten wzór dla funkcji y = 3. b) Rozważmy ciąg określony warunkami =, n+ = n. Oblicz kilka początkowych jego wyrazów i odgadnij jego granicę.

8 Tydzień 8 - Obliczanie pochodnych. Oblicz pochodną korzystając z podstawowych wzorów: a) y = 4 + ; b) y = ; c) y = e ; d) y = ln e) y = sin cos ; f) y = ; ln g) y = ; sin h) y = ; i) y = sin ; + sin j) y = + cos.. Korzystając ze wzorów na pochodne eksponenty e oraz logarytmu naturalnego oraz wzoru na pochodna funkcji złożonej wyprowadź wzory na pochodną: a) y = a ; b) y = log a, gdzie a dodatnie różne od. 3. Oblicz pochodną korzystając ze wzoru na pochodną funkcji złożonej: a) y = e ; b) y = sin 4; c) y = ln( + + ); d) y = (sin + cos ) 3 ; e) y = sin(cos ); f) y = + ; g) y = ln sin ; h) y = sin( sin(3 sin 4)). 4. Znajdź równanie stycznej do wykresu funkcji a) y = + + w punkcie (, f( )); b) y = e e w punkcie (, f()); + c) y = ln( + ) w punkcie (, f()); d) y = tg w punkcie (π/4, f(π/4)). 5. Znajdź równanie stycznej do wykresu funkcji y = ln równoległej do osi O. 6. Sprawdź, że (sin ) = sin. Wywnioskuj stąd pochodną cos. 7. Oblicz pochodną korzystając ze wzoru na pochodną funkcji odwrotnej: a) y = ; b) y = arctg ; c) y = arcsin. 8. Znajdź równanie stycznej do wykresu funkcji y = w punkcie (( )/, ( )/) dwiema metodami: a) geometrycznie; b) algebraicznie. 9. Znajdź równanie stycznej do wykresu y = tg w punkcie (π/4, ). Wywnioskuj z niego równanie stycznej do wykresu y = arctg w punkcie: a) (, π/4); b) (, π/4).. Oblicz cztery pierwsze pochodne w punkcie zero: a) funkcji y = sin ; b) funkcji y = ln( + ). W obu przypadkach podaj ogólne wzory na n-tą pochodną w zerze.. W jakim punkcie styczna do wykresu funkcji y = jest równoległa do: a) osi O; b) prostej y = ; c) osi Oy?. Wyprowadź wzór na pochodną y = + nie korzystając ze wzoru na pochodną funkcji złożonej. 3. Korzystając ze wzoru na pochodną y = n dla wykładników naturalnych oraz wzoru na pochodną funkcji odwrotnej znajdź pochodną y = n. Wywnioskuj stąd wzór na pochodną y = α dla wymiernych wykładników. 4. Załóżmy, że f jest różniczkowalna. Korzystając z definicji wyprowadź wzór na pochodną funkcji: a) y = f( ); b) y = f(e ).

9 Tydzień - Monotoniczność, ekstrema i wypukłość. Uzasadnij, że funkcja y = jest rosnąca.. Naszkicuj wykres wielomianu: a) y = ; b) y = Znajdź ekstrema podanych funkcji i określ ich rodzaj: a) ( + ) 3 ; b) y = ; c) y = ; d) y = ln e) y = e. 4. Znajdź ekstrema i przedziały monotoniczności: a) y = + ; b) y = 4 ; c) y = + ln ; d)y = Naszkicuj wykres funkcji: a) y = + ; b) y = + ; c) y = e ; d) y = Znajdź największą i najmniejszą wartość funkcji: a) y = na przedziale [, 3]; b) y = ln na przedziale [, 4]; c) y = + na przedziale [, 4]. 7. Znajdź zbiór wartości i liczbę rozwiązań równania f() = m dla funkcji: a) y = ; b) y = Niech V (r) oznacza objętość walca o podstawie r wpisanego w kulę jednostkową. a) Naszkicuj wykres funkcji V (r). b) Znajdź największą wartość i zbiór jej wartości. 9. Podaj przykład funkcji wszędzie dodatniej: a) rosnącej i wypukłej; b) rosnącej i wklęsłej c) malejącej i wypukłej d) malejącej i wklęsłej.. Znajdź przedziały wypukłości i punkty przegięcia funkcji: a) y = ln ; b) y = e.. Korzystając z wypukłości odpowiednich funkcji uzasadnij nierówność: a) e + ; b) ln( + ) : c) sin < dla dodatnich. Zilustruj nierówność szkicując fragmenty wykresów obu porównywanych funkcji.. Nie korzystając z kalkulatora rozstrzygnij, która z liczb jest większa: e π czy π e? 3. Pokaż, że dla funkcji różniczkowalnej f zachodzi równość f () = [ln f()] f(). Naszkicuj wykres funkcji y =. 4. Znajdź wszystkie możliwe odległości punktu paraboli y = od początku układu współrzędnych. 5.* Wykaż, że funkcja jest rosnąca.

10 Tydzień - Aproksymacje, wzór Taylora i reguła de l Hospitala. Korzystając z różniczki oblicz przybliżoną wartość: a) 3, 9: b) ln, ; c) sin 3; d) tg. Porównaj z wartościami dokładnymi.. Z twierdzenia Lagrange a wynika, że przy odpowiednich założeniach f() = f(a) + f (c)( a). Znajdź c o którym tu mowa w przypadku funkcji: a) f() =, oraz a =, = ; b) f() = ln oraz a =, = e. 3. Zapisz cztery kolejne przybliżenia taylorowskie dla f() = : a) wokół a = ; b) wokół a =. 4. Oblicz przybliżoną wartość e sumując pięć początkowych składników rozwinięcia Maclaurina dla e. Oszacuj błąd przyblizenia. 5. Korzystając ze wzoru Taylora uzasadnij przyblizenie sin 3 3! + 5 5!. Oszacuj błąd przybliżenie przy założeniu, że < π/. 6. Korzystając z reguły de l Hospitala oblicz granice: ln a) lim e) lim + ln ; arctg sin ln b) lim ; c) lim ( ln f) lim sin ) ; g) lim / ; 7. Naszkicuj wykres funkcji: a) y = ln ; b) y = ln. n ; d) lim e ; h) lim ( + sin ) /. 8. Korzystając z tw. Lagrange a wykaż, że jeśli f = f, to f() = Ce. 9. Uzasadnij, że błąd aproksymacji f() f(a) + f (a)( a) jest równy co najwyżej iloczynowi połowy maksimum drugiej pochodnej na przedziale [a, ] (bądź [, a]) i kwadratu jego długości. Podaj analogiczne oszacowanie błędu aproksymacji f() f(a) + f (a)( a) + f (a)/)( a).. Znajdź: a) trzy pierwsze wyrazy rozwinięcia Maclaurina dla y = + ; b rozwinięcie Maclaurina dla funkcji y = ln( + ).. Odgadnij asymptoty funkcji y = ln( + e ) i sprawdź swoje przypuszczenia za pomocą obliczeń. Czy wykres przecina którąkolwiek z asymptot?

11 Tydzień - Całka oznaczona, wzór Newtona-Leibniza i techniki całkowania. Oblicz podaną całkę przybliżając ją za pomocą sumy prostokątów: a) ; b). Wsk.: b) zachodzi równość n = (n(n + )(n + )/6.. Korzystając z geometrycznej interpretacji całki oznaczonej oblicz całki: 4 4 a) ; b) ( + ) ; c) ; d). 3. Korzystając ze wzoru Newtona-Leibniza oblicz: a) n ; b) π sin ; c) 4. Oblicz przybliżoną wartość całki ; d), e. dzieląc przedział na 4 równe odcinki i biorąc wartości: a) w lewych końcach przedziału; b) w środkach przedziału. Porównaj z wartością dokładną otrzymaną za pomocą wzoru Newtona-Leibniza. 5. Korzystając z całkowania przez podstawienie znajdź całki: a) ( + ) 7 ; b) e + e c) 4 d) e e) ln ; f) e ; g) + e h) 6. Korzystając z całkowania przez części znajdź całki: a) sin ; b) e ; c) ln ; d) sin ; +. arctg ; e) e ; f) e sin. 7. Korzystając ze wzoru Newtona-Leibniza oblicz: a) e ; b) + c) e ln. 8. Nie korzystając ze wzoru Newtona-Leibniza oblicz 9. Oblicz a) lim n ( n n + + n n π sin. ) ( n n + n ; b) lim n n + + n ). n. Aproksymując pole pod wykresem y = / za pomocą prostokątów wykaż, że suma różni się od ln n o mniej niż.. Oblicz π n sin bezpośrednio z definicji, korzystając ze wzoru na sumę sin α + sin α sin nα = sin nα sin α (n+)α sin.

12 Tydzień 3 - Techniki całkowania - cd.. Oblicz poniższe całki nieoznaczone: a) + : b) ( + ) 3 c) + 4 ; d) ( + ) 3.. Rozłóż na ułamki proste i znajdź całkę nieoznaczoną: a) ( ) ; b) 4 ; c) ( + ) ( + )( + ) : d) ; ( + 3) ( + ) e) + 4 ; f) ; g) ; h) 4 + ; i) + + ; j) ; k) ; l) Oblicz całkę: a) ; b) Oblicz całki z funkcji trygonometrycznych: a) tg ; b) cos ; c) sin 3 ; d) e) sin 3 sin ; f) sin cos 5 ; g) cos cos 4 ; h) 5. Pamiętając, że (tg ) = + tg oblicz tg. cos 4 ; sin. 6. Znajdź całkę nieoznaczoną za pomocą podstawienia = sin t. Korzystając z tej całki pokaż, że pole koła + y jest równe π. 7. Wyprowadź zależność n cos = n sin m n sin. 8. Funkcje hiperboliczne definiujemy wzorami cosh = (e + e )/, sinh = (e e )/. a) Podaj przykłady analogii (tożsamości, pochodne, całki) pomiędzy funkcjami hiperbolicznymi a trygonometrycznymi. b) Czy funkcje hiperboliczne są ograniczone? okresowe? 9. Korzystając z podstawienia = cosh t oblicz całkę +.

13 Tydzień 4 - Zastosowania całek oznaczonych. Oblicz pole obszaru ograniczonego krzywymi: a) y =, + y = ; b) y =, y = ; c) y =, y =, y =, = ; d) =, y = arcsin, y = π/; e) y =, = y ; f) y = 4, y =.. Znajdź średnią wartość funkcji na wskazanym przedziale: a) na [, a]; b) sin na [, π]; c) cos na [, π]; d) ln na [, e]. 3. Oblicz pole figury obszaru ograniczonego elipsą 4 + y =. 4. Oblicz objętość i powierzchnię bryły utworzonej przez obrót łuku sinusoidy y = sin, π wokół osi O. 5. Korzystając ze wzorów na objętość i pole powierzchni bryły utworzonej przez obrót wokół osi Oy oblicz objętość i pole powierzchni bryły powstałej w wyniku obrotu wokół tej osi: a) odcinka y =, a; b) odcinka paraboli y =, a. Jak rozwiązać b) korzystając z wzorów na obrót wokół osi O? 6. Korzystając ze wzoru na długość łuku: a) długość łuku y =, ; b) oblicz długość łuku krzywej łańcuchowej y = (e + e )/, ; c) sprawdź, że obwód okręgu + y = jest równy π. Uwaga: W zadaniu c) pojawia się całka niewłaściwa (wykraczająca na niektórych kierunkach poza program), ale nie ma to wpływu na obliczenia. 7. Wyprowadź znane wzory na objętość i pole powierzchni kuli o promieniu R. 8. Trąbką Torricellego nazywamy powierzchnię powstałą przez obrót krzywej y = /, wokół osi O. a) Pokaż, że powierzchnia trąbki jest nieskończona, a jej objętość skończona. b) Wypełniając tę trąbkę farbą pomalujemy nieskończoną wewnętrzna powierzchnię za pomocą skończonej ilości farby. Wyjaśnij ten paradoks. Uwaga: W zadaniu tym operujemy tzw. całką niewłaściwą. Dość łatwo jest takiej całce nadać ścisły sens bądź znaleźć definicję w literaturze/internecie. 9. Oblicz powierzchnię torusa utworzonego przez obrót okręgu + (y R) = r (R > r) wokół osi O. Sprawdź, że powierzchnia ta jest równa iloczynowi obwodu okręgu tego okręgu przez drogę, jaka przebywa jego środek.. Oblicz powierzchnię czaszy wyciętej ze sfery + y + z = płaszczyzną z = a, gdzie < a <. Sprawdź, że jest ona równa powierzchni jej rzutu prostokątnego na powierzchnie walca stycznego do tej sfery.

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

Pochodne wyższych rzędów definicja i przykłady

Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW

Analiza matematyczna - pochodna funkcji 5.8 POCHODNE WYŻSZYCH RZĘDÓW 5.8 POCHODNE WYŻSZYCH RZĘDÓW Drugą pochodną nazywamy pochodną funkcji pochodnej f () i zapisujemy f () = [f ()] W ten sposób możemy też obliczać pochodne n-tego rzędu. Obliczmy wszystkie pochodne wielomianu

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C, Całki nieoznaczone Adam Gregosiewicz 7 maja 00 Własności a) Jeżeli F () = f(), to f()d = F () + C, dla dowolnej stałej C R. b) Jeżeli a R, to af()d = a f()d. c) Jeżeli f i g są funkcjami całkowalnymi,

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Wykłady z matematyki - Pochodna funkcji i jej zastosowania

Wykłady z matematyki - Pochodna funkcji i jej zastosowania Wykłady z matematyki - Pochodna funkcji i jej zastosowania Rok akademicki 2016/17 UTP Bydgoszcz Definicja pochodnej Przy założeniu, że funkcja jest określona w otoczeniu punktu f (x x 0 jeśli istnieje

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Analiza matematyczna 1 zadania z odpowiedziami

Analiza matematyczna 1 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Elementy logiki, zbiory, funkcje Funkcje trygonometryczne 3 3 Ciągi 4 4 Granice funkcji, ciągłość 5 5 Rachunek różniczkowy

Bardziej szczegółowo

MATEMATYKA Katalog wymagań programowych

MATEMATYKA Katalog wymagań programowych MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA I TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Ćwiczenia 4 / 5 rachunek różniczkowy

Ćwiczenia 4 / 5 rachunek różniczkowy Matematyka dla Ciekawych Świata, 2012/2013 13 listopada 2012 Ćwiczenia 4 / 5 rachunek różniczkowy 0. Kangur powraca Przypomnij sobie, że nasz kangur porusza się z prędkością 4 km/h. Zamodeluj ruch kangura

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste

Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 90 nr programu DKOS /07 I. Liczby rzeczywiste Klasa pierwsza: I TE 1, I TE 2, 1 TG, 1 TH, I TRA, 1TI Poziom podstawowy 3 godz. x 30 tyg.= 0 nr programu DKOS-5002-7/07 I. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne. 1 Wykonalność

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas

WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

IV etap edukacyjny Cele kształcenia wymagania ogólne

IV etap edukacyjny Cele kształcenia wymagania ogólne IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu

Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/ Trygonometria

Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/ Trygonometria Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/2016 1. Trygonometria 1. wie, co to jest miara łukowa kąta; 2. zamienia stopnie na radiany i radiany na stopnie; 3.

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x

f(x + x) f(x) . x Pochodne ważniejszych funkcji elementarnych (c) = 0 (x α ) = αx α 1, gdzie α R \ Z (sin x) = cos x (cos x) = sin x Iloraz różnicowy Niech x 0 R i niech funkcja y = fx) będzie określona w pewnym otoczeniu punktu x 0. Niech x oznacza przyrost argumentu x może być ujemny!). Wtedy przyrost wartości funkcji wynosi: y =

Bardziej szczegółowo