Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n"

Transkrypt

1 V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n 3 4n c) c n = ( )n n d) c n = (n )!(n + )! (n!) V.3 Napisz 3 i 5 wyraz ciągu określonego rekurencyjnie: a) a =, a n+ = 3a n b) a =, a n+ = 3 (a n + ) c) a = 4, a n+ = a n d) a n = 3, a n+ = 3 n a n e) a =, a n+ = a n + ( ) n f) a =, a n+ = n n + a n. V.4* Znajdź wzór na a n dla ciągu określonego rekurencyjnie: a) a =, a n+ = a n + b) a =, a n+ = a n d) a =, a n+ = 3a n + n e) a =, a n+ = a n. c) a =, a n+ = a n + 8n V.5* Ciąg (a n ) określony jest następująco: a) a =, a n+ = a n (n + )a n +. Wyznacz a a n. b) a =, a + a na n = n(n + )a n, dla n. Wyznacz a n. V.6 Wyznacz n-ty wyraz ciagu wiedząc, że suma S n wynosi: a) S n = 3 n n b) S n = n c) S n = n n + V.7 Oblicz sumę wszystkich liczb nieparzystych od do 99. V.8 Zbadaj, czy podany ciąg jest ciągiem arytmetycznym. Jeśli tak to wyznacz jego różnicę: a) a n = 6n +, b) b n = n n + c) c n = n + d) d n = n + n + V.9 Znajdź wzór na ogólny wyraz ciagu arytmetyczngo a n wiedząc, że: a) a = 5, r = 7; b) a =, r = 5; c) a =, a 3 = 4 ; d) a 3 =, a 3 + a 5 = 4. V.0 Oblicz sumę S n ciągu arytmetycznego (a n ):

2 a) a =, r = 3, n = c) a = 0, r = 5, n = 5 b) a = 00, r =, n = 50 V. Wyznacz ciąg arytmetyczny, w którym: a) S 4 =, S 6 = 4 b) S 4 = a, S 6 = b. V. Ósmy wyraz ciągu arytmetycznego wynosi 37, zaś jedenasty wynosi 5. Oblicz wyraz dwudziesty oraz sumę wyrazów od 5 do 5. V.3 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny. Przeciwprostokątna wynosi 30 cm. Oblicz długości przyprostokątnych. V.4 W pewnym ciągu arytmetycznym a = 8, a n = 83, S n = 78. Oblicz n i różnicę r tego ciągu. V.5* Udowodnić, że jeśli liczby dodatnie a, b, c tworzą ciąg arytmetyczny, to liczby b + c, c + a, a + b także tworzą ciąg arytmetyczny. V.6* Oblicz jedenasty wyraz ciągu arytmetycznego, jeśli suma jego n początkowych wyrazów wyraża się wzorem S n = 3n + 4n. V.7* Utworzyć ciąg arytmetyczny o następujących własnościach: ) pierwszy wyraz ciągu jest równy, a ostatni 3, ) suma wszystkich wyrazów od drugiego do przedostatniego włącznie jest 4 razy większa od sumy dwóch największych z nich. V.8 Suma trzech liczb tworzących ciąg arytmetyczny wynosi. Liczby te powiększone odpowiednio o, 3 i 9 utworzą ciąg geometryczny. Znajdź te liczby. V.9 Jeśli podany ciąg jest geometryczny, to wyznacz jego iloraz: a), 3, 9, 7,... c), 4, 6, 8,,... e),,,.... b) 5, 5, 5,... d) 3, 3, 6,..., V.0 Wypisz 4 początkowe wyrazy ciągu geometrycznego, w którym a) a =, q = b) a =, q = c) a = 4, q = d) a =, q =. V. Wyznacz iloraz ciągu geometrycznego, w którym a) a =, a = 9 c) a 3 =, a 4 = 6 d) a 3 =, a 6 = 6. b) a 5 = 8, a 7 = 79 V. Wyznacz ciąg geometryczny (a n ), w którym: { a4 a a) = 4 a + a 3 = 6 b) { a 6 = 4a 4 a + a 5 = 6 V.3 Oblicz sumę S n ciągu geometrycznego (a n ), w którym:

3 a) a =, q =, n = 8 c) a = 5, q = 3, n = 5. b) a =, q =, n = 6 V.4 Pierwszy wyraz ciągu geometrycznego wynosi, a iloraz jest równy 3. Oblicz piąty i siódmy wyraz tego ciągu. V.5 Dane są a 3 = 0 9 i a 5 = 80 dla pewnego ciągu geometrycznego. Obliczyć pierwszy wyraz oraz iloraz 8 tego ciągu. V.6 W ciągu geometrycznym a = i q =. Obliczyć sumę dziesięciu początkowych wyrazów tego ciągu. V.7* Udowodnić, że suma odwrotności wszystkich wyrazów skończonego ciągu geometrycznego równa jest sumie jego wszystkich wyrazów podzielonej przez iloczyn pierwszego i ostatniego wyrazu: S = S n a a n, S = V.8* Między liczby 3 i 500 wstawić liczby x i y tak, aby ciąg (3, x, y, 500) był ciągiem geometrycznym. V.9 Dany jest ciąg geometryczny, w którym a + a 3 + a 5 =, a 3 a = 3. Znaleźć ten ciąg. V.30 Znaleźć ciąg geometryczny o pięciu wyrazach, w którym suma trzech początkowych wyrazów wynosi 7, zaś suma trzech końcowych wyrazów jest 8. V.3 Oblicz sumy: n i= a i. a) x + x + x x n c*) x + x + 3x nx n. b) + x + x x n V.3 Znaleźć cztery liczby, z których pierwsze trzy tworzą ciąg geometryczny, natomiast ostatnie trzy ciąg arytemtyczny. Suma liczb skrajnych wynosi 4, suma dwóch pozostałych wynosi. V.33 Dane są dwa ciągi: arytemetyczny i geometryczny. Dwa pierwsze wyrazy ciągu geometrycznego są odpowiednio równe dwóm pierwszym wyrazom ciągu arytmetycznego. Trzeci wyraz ciągu geometrycznego jest o większy od trzeciego wyrazu ciągu arytmetycznego. Trzeci wyraz ciągu arytmetycznego jest o większy od pierwszego wyrazu ciągu geometrycznego. Znaleźć te ciągi. V.34 Liczby x, y, z, u tworzą ciąg geometryczny. Wykazać, że: (x +y +z )(y +z +u ) = (xy +yz +zu). V.35* Ciągiem Fibonacciego nazywamy ciąg (a n ) określony nastęująco: a = a =, a n+ = a n+ + a n. Udowodnić, że a n = [( + 5 ) n ( 5 ) n ] 5 dla każdej liczby naturalnej n. V.36* Wykazać, że jeśli ciąg a n = n 5n+, to wtedy ciąg b n = a n+ a n +9 jest ciągiem arytmetycznym. V.37 Wiedząc, że liczby x + y, x + y +, x + 4y + 3x są trzema kolejnymi wyrazami ciągu arytmetycznego, zbadaj dla jakich x R ciąg ten jest ciągiem rosnącym? V.38 Dla jakich liczb rzeczywistych x ciąg ( 3 +, x, 3 ) jest ciągiem geometrycznym? V.39 Udowodnij, że jeśli drugi wyraz ciągu arytmetycznego jest średnią geometryczną wyrazu pierwszego i czwartego, to wyraz szósty jest średnią geometryczną wyrazu czwartego i dziewiątego. V.40 Dany jest ciąg o wyrazie ogólnym a n oraz dwie liczby g i ϵ. Które wyrazy danego ciągu spełniają nierówność: a n g < ϵ, gdy: 3

4 a) a n = n, g =, ϵ = 0 3 n b) a n = n n, g = 0, ϵ = V.4* Wykaż, że liczba 0 jest granicą ciągu (a n ): a) a n = n b) a n = ( )n n V.4* Udowodnij, że liczba g jest granicą ciągu (a n ), jeśli: c) a n = ( ) n, q = 0, ϵ = 3 0 n d) a n = n, g = 0, ϵ = 0. c) a n = 3 n + d) a n = n + n a) a n = n n +, g = b) a n = n 3(n + ), g = 3 c) a n = n + n n n +, g =. V.43* Pokazać, że ciąg: a n = + ( ) n nie ma granicy. V.44 Udowodnij twierdzenie o trzech ciągach: Jeżeli lim a n = lim c n = g oraz istnieje liczba δ, taka, że dla każdego n > δ V.45 Znajdź granicę ciągu o wyrazie ogólnym: n a) lim n + 5n 3 b) lim 7 5n n c) lim 3 n 3 d) lim (6n 4n 7 )3 e) lim n + n f) lim 4n + n 3 g) lim n3 + 4n n V.46 Znajdź granicę ciągu o wyrazie ogólnym: n a) lim n 5 b) lim n 0n + 9 n + 8 n 3n + n 5 n 3 c) lim n 5n + 7 n + 9 n ( d) lim + ) n n ( n + 3 ) 3 e) lim n ( n + ) n f) lim 6n n h) lim n n i) lim n 3 3 n+ 0 j) lim 5 4 n n(n+) k) lim n 3 a n b n c n, to lim b n = g. l) lim n(n ) m*) lim n n ( g) lim + 3 n h) lim ( n + 6 n ) n ) n i) lim ( + ) n n j*) k*) lim n(ln(n + ) ln n) lim log l) lim n 5 log 8 n n + n n n

5 V.47 Zbadaj, czy podany szereg geometryczny jest zbieżny. Jeśli tak, to znajdź jego granicę: a) b) c) d) , e) f) V.48 Dla jakich wartości x podany szereg geometryczny jest zbieżny: a) x 3x + 9x b) x + x x V.49 Oblicz granicę: ( 5 a) lim n + 3 n ) 6 n c) + + x + ( + x) +... d) tg x + tg x + tg 3 x ( 7 b) lim n + 4 n ) n. V.50 Oblicz: a) b) c) d) V.5 Podany ułamek okresowy zamień na zwykły: a) 0.() b).3() c) 0.0(80) d).8(8). V.5* W trójkąt równoboczny o boku a wpisanao koło, w to koło wpisano zanowu trójkąt równoboczny, a w ten trójkąt znów wpisano koło itd. Oblicz sumę długości promieni i sumę pól otrzymanego nieskończonego ciągu kół. V.53* Dany jest kwadrat o boku a. Kwadrat ten rozcięto na dwa prostokąty o równych polach. Jeden z tych prostokątów rozcięto następnie na kwadraty, z których jeden rozcięto znowu na prostokąty o równych polach itd. Znajdź sumę tych wszystkich pól, korzystając z własności szeregu geometrycznego. (Pokazanie na przykładzie słuszności wzoru na sumę ciągu geometrycznego). V.54 Znajdź granicę funkcji (na podstawie definicji Heinego): a) f(x) = 3x 5x 3 7 w punkcie. b) f(x) = x 4 x w punkcie c) f(x) = x3 7 x 3 w punkcie 3 d) f(x) = x 3 x 7 w punkcie 4 V.55* Znaleźć granicę funkcji f(x) = sin x/x przy x dążącym do zera. Wynik przedstawić w sposób graficzny. Jaki rodzaj nieciąglości posiada ta funkcja w punkcie x = 0? W jaki sposób można zbudować z tej funkcji funkcję ciągłą? V.56 Znajdź granicę funkcji w punkcie a) lim x (x ) c) lim x x 3 + (x 0) 0 x 9 e) lim x 3 x + 3 b) lim x ( 3x + 4x + 7) d) lim x 5 x x + 30 x 5 x + 4x + 4 f) lim x x + 5

6 g) lim sin(5x) x h) lim sin αx sin βx i) lim cos x x j) lim sin x sin 3x V.57 Znajdź granicę funkcji w nieskończoności k) lim 6x x x 3 x x + l) lim x m) lim x x x n) lim tg x o) lim x p*) lim x x x x ctg(πx/) a) lim x 3 x x b) lim x 6x + 9 x + 3 x x + c) lim x x + x + x + 4x 7 d) lim x 3x x + 3 ( e) lim + ) 3x x x ( x f) lim x x ) 5x g) lim x (x3 7x + π) h) lim x (x3 + x 6x + ) x 3 5x + 7x 8 i) lim x 3x 4 6x 0 3x 3 0x 7x + j) lim x x x 3 3x 5 V.58 Zbadać granice jednostronne funkcji w punktach nie należących do dziedziny: a) f(x) = x b) f(x) = x x 4 c) f(x) = x + d) f(x) = x e) f(x) = x x 5 f) f(x) = x + x 5 x + 5 g) f(x) = x h) f(x) = (x + ) i) f(x) = e /x V.59 Zbadać ciągłość funkcji na zbiorze R x + a) f(x) = x +, x, x = b) f(x) = x + x x x, x 0,, x = 0, x = x 3 + x + x + c) f(x) =, x x + 5, x = d) f(x) = x(x + cos x) x + sin x, x 0 0, x = 0 V.60 Oblicz pochodną funkcji: a) f(x) = x + 3 b) f(x) = x + 5 c) f(x) = x π d) f(x) = x + 7 e) f(x) = 5 f) f(x) = e g) f(x) = x h) f(x) = 5x i) f(x) = x j) f(x) = x k) f(x) = x 3 l) f(x) = x m) f(x) = x 3 n) f(x) = x o) f(x) = x 5 p) f(x) = x 3 q) f(x) = 3x r) f(x) = 5x 7 s) f(x) = 0x t) f(x) = 9x x + 4 6

7 u) f(x) = x 3 9x + 7x + 7 w) f(x) = (5 7x) y) f(x) = 8x 3 8x + x + 3 v) f(x) = 49x 70x + 5 V.6 Oblicz pochodną funkcji a) f(x) = tg x b) f(x) = ctg x V.6 Oblicz pochodną funkcji: x) f(x) = (x 3) 3 c) f(x) = sin x d) f(x) = 3 cos x + π z) f(x) = (x + ) 4 e) f(x) = 5 tg x 7 f) f(x) = 3 ctg x + 3 a) f(x) = (x )(x + x + ) b) f(x) = x(x )(x 3) c) f(x) = x e x d) f(x) = x x e) f(x) = x 3 log(x) + x log (x) f) f(x) = x cos x g) f(x) = x sin x + x tg x h) f(x) = (x x + )(sin x + 3 cos x) V.63 Oblicz pochodną funkcji: a) f(x) = x x b) f(x) = x x c) f(x) = x x d) f(x) = x x V.64 Oblicz pochodną funkcji złożonej: a) f(x) = (x + ) 0 b) f(x) = (x 3 + x x ) 5 c) f(x) = sin(x) d) f(x) = cos(3x) e) f(x) = tg(4x) f) f(x) = x + g) f(x) = ln(x + x + ) V.65 Oblicz pochodną funkcji złożonej a) f(x) = tg 8x b) f(x) = ctg 7x c) f(x) = (sin x) e) f(x) = x3 x f) f(x) = x 3 x g) f(x) = 5x 8 6x + e) f(x) = (tg x) 5 f) f(x) = 3(sin x) 4 h) f(x) = i) f(x) = ( 5x 8 ) 3 6x + h) f(x) = x log x x + i) f(x) = x (sin x + cos x) x cos x j) f(x) = xn e x ln(x) ( 6x 5x 9 ) 4 x 7 j) f(x) = (3x 5 7x + 3) 3 7 k) f(x) = (3x 5 7x + 3) 3 7 l) f(x) = 4 4x 3 + x π + x 9 m) f(x) = x x (x + ) h) f(x) = sin(x + 3) i) f(x) = cos(x 3) j) f(x) = tg(x 3 + 7) d) f(x) = (cos x) 3 g) f(x) = (tg x) 7 k) f(x) = ctg(3x 8x + 5) 7

8 V.66 Oblicz pochodną funkcji: ( x + 3 ) a) f(x) = 3x sin x + b) f(x) = [5x cos(x )] c) f(x) = 7x tg d) f(x) = x ctg x e) f(x) = sin x cos x ( x ) x + f) f(x) = (sin x + cos x) g) f(x) = sin x cos(x 3) h) f(x) = sin(x 3) cos(x + 3) i) f(x) = (ctg(x 7)) 3 tg 3 (x 7) j) f(x) = ln x k) f(x) = ln l) f(x) = ln x x x m) f(x) = ln(tg(sin(x + ))) V.67 Oblicz pochodną funkcji: a) f(x) = a x b) f(x) = 5a 3x c) f(x) = 8a 8x d) f(x) = 3a 3x e) f(x) = 3e 3x f) f(x) = 3e 3x6 g) f(x) = x x h) f(x) = x x i) f(x) = x tg x j) f(x) = (sin x) sin x k) f(x) = tg x x V.68* Znajdź równania stycznych do okręgu o środku w punkcie (3, ) i promieniu równym 4 dla punktów okręgu o odciętej x = 4. V.69* Znajdź kąt pomiędzy stycznymi do okręgu o środku w punkcie (4, 7) i promieniu równym 9 w punkcie x = 6. V.70 Znajdź styczną do wykresu funkcji: a) f(x) = x 3x + 5 w punkcie x = c) f(x) = sin x w punkcie x = π b) f(x) = e x 3 w punkcie x = 3 V.7 Znajdź ekstrema funkcji: a) f(x) = 3x 5x + 7 b) f(x) = 5x + 7x + c) f(x) = 3x 4 5x 7 d) f(x) = 5x 3 x +5x+ V.7 Znajdź punkt, w którym prosta styczna w tym punkcie do paraboli y = x jest równoległa do x y + 3 = 0. V.73 Określ przedziały monotoniczności funkcji a) y = x 3 4x + 4x + b) y = x x + c) y = x4 x 3 d) y = x e x e) y = x 3 x + x V.74* Bieguny ogniwa o sile elektromotorycznej E i oporności wewnętrznej r połączono przewodnikiem o oporności R. Zbadać dla jakiej wartości R moc na tej oporności jest największa. V.75* Na danym kole opisać trapez równoramienny o najmniejszym polu. V.76 Oblicz: 8

9 a) dx b) xdx c) (x + )dx d) (x 3x + 5)dx e) (x 3 5x + 4x )dx f) (x 4 x 3 + x 5x 5)dx g) (sin x + cos x)dx h) (cos x 3 sin x + x)dx i) tg xdx j) ctg xdx k) ( 5 x + x ) dx 4 l) x dx 3 m) x 3 dx n) (e x + tg x)dx o) x xdx p) 3 x + 4 x dx x V.77 Oblicz stosując twierdzenie o całkowaniu przez części: a) x sin xdx b) x cos xdx c) xe x dx d) x e x dx e) x 3 e x dx f) x ln xdx g) x 5 ln xdx h) e x sin xdx i) e x cos xdx V.78 Oblicz stosując twierdzenie o całkowaniu przez podstawienie: a) 8e 4x dx f) 6 sin 7xdx b) (7e 5x 7x + )dx c) sin xdx d) cos 5xdx e) ( ) sin x dx g) e x dx h) 5 ln(3x) 3 dx i) j) x + 9 dx x x + dx k) x dx l) 3x x 3 dx m) 7 8x dx V.79* Oblicz: a) sin xdx b) cos xdx c) 3 sin x cos xdx d) e) f) 3dx 3x 5x 4 (3x + 4 ) x + 7x + dx x x dx g) h) i) j) k) l) cos x dx sin 3 x + cos 3 x sin x sin x cos x + cos x dx x 4 dx x + dx x 6 dx 3x 4 5x 7 x 3 dx 5 9

10 m) 7x 3 3x 5 dx 0

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI CIAGI ARYTMETYCZNE ZADANIE 1 Suma drugiego, czwartego i szóstego wyrazu ciagu arytmetycznego jest równa 42, zaś suma kwadratów wyrazów drugiego

Bardziej szczegółowo

d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100

d) a n = e) a n = n 3 - n 2-16n + 16 f) a n = n 3-2n 2-50n +100 Ciągi - zadania Zad. 1 Oblicz sześć początkowych wyrazów ciągu (a n ) określonego wzorem a) a n = 3n + 2 b) a n = (n - 2)n c) a n = n 2-4 d) a n =n e) a n = f) a n = g) a n =(-1) n 2 n+3 h) a n = n - 2

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

1. Równania i nierówności liniowe

1. Równania i nierówności liniowe Równania i nierówności liniowe Wykonać działanie: Rozwiązać równanie: ( +x + ) x a) 5x 5x+ 5 = 50 x 0 b) 6(x + x + ) = (x + ) (x ) c) x 0x (0 x) 56 = 6x 5 5 ( x) Rozwiązać równanie: a) x + x = 4 b) x x

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 } Zadanie 0 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y } oraz B = { (x, y) ; x R i y R i 4x + 4y 4x 5 } Zaznacz osobno zbiór B-A ( ) Niech m N. Oznaczmy zbiory : A m = { (x,

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5.

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 1 Dany jest ciąg określony wzorem dla. Oblicz i. Zadanie 2 Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 3 Dany jest ciąg o wzorze ogólnym, gdzie. Piąty

Bardziej szczegółowo

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny. Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny Zestaw I 1) Przedstaw i omów postać kanoniczną i iloczynową funkcjikwadratowej Daną funkcję przedstaw w postaci kanonicznej: y = ( )(

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

( 2) 6 III EDYCJA MIĘDZYSZKOLNEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH O PROFILU ZAWODOWYM I TECHNICZNYM.

( 2) 6 III EDYCJA MIĘDZYSZKOLNEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH O PROFILU ZAWODOWYM I TECHNICZNYM. GRUPA WIEKOWA I część pierwsza Na rozwiązanie zadań masz godzinę lekcyjną Za kaŝde zadanie moŝesz zdobyć 1 punkt Wyznacz iloraz NWW (35,14) NWD(16,38) Zamień ułamek 0,(27) na ułamek zwykły Płaszcz z ceny

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

FUNKCJE WIELU ZMIENNYCH

FUNKCJE WIELU ZMIENNYCH FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f(x) = 3x 3 przy x = zakładając, że przyrost x zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f(x)

Bardziej szczegółowo

Lista 1 - Funkcje elementarne

Lista 1 - Funkcje elementarne Lista - Funkcje elementarne Naszkicuj wykresy funkcji: a) y = sgn, y = sgn ; b) y = ; c) y = 2 Przedstaw w jednym układzie współrzędnych wykresy funkcji potęgowej y = α dla: a) α =, 2, 3, 4; b) α =,, 2;

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 2014 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) ( Liczba 9 3 6 4 27) jest

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2015

LUBELSKA PRÓBA PRZED MATURĄ 2015 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Podstawy analizy matematycznej II

Podstawy analizy matematycznej II Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Ciągi. Granica ciągu i granica funkcji.

Ciągi. Granica ciągu i granica funkcji. Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ciągi. Granica ciągu i granica funkcji.. Ciągi Ciąg jest to funkcja określona na zbiorze N lub jego podzbiorze. Z tego względu ciągi dziey na

Bardziej szczegółowo

22 Pochodna funkcji definicja

22 Pochodna funkcji definicja 22 Pochodna funkcji definicja Rozważmy funkcję f : (a, b) R, punkt x 0 b = +. (a, b), dopuszczamy również a = lub Definicja 33 Mówimy, że funkcja f jest różniczkowalna w punkcie x 0, gdy istnieje granica

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

Zadania powtórzeniowe przygotowujące do matury. Matematyka

Zadania powtórzeniowe przygotowujące do matury. Matematyka Zadania powtórzeniowe przygotowujące do matury Matematyka Spis treści 1 Ciągi liczbowe 3 1.1 Zadania o sposobach opisywania ciągów................... 3 1.2 Zadania o granicach ciągów liczbowych....................

Bardziej szczegółowo

Internetowe Kółko Matematyczne

Internetowe Kółko Matematyczne Internetowe Kółko Matematyczne http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I ( X 2002) Zadanie. Niech n będzie dowolną liczbą naturalną. Udowodnij, że suma + 4 + 4 2 + 4 3 +...

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. rozszerzonym. dla uczniów technikum. część III Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie rozszerzonym dla uczniów technikum część III Granica ciągu liczbowego 1 Pojęcie granicy ciągu i ciągi zbieżne do zera sporządzać

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe

MATEMATYKA I SEMESTR WSPIZ (PwZ) 1. Ciągi liczbowe MATEMATYKA I SEMESTR WSPIZ (PwZ). Ciągi liczbowe.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony) liczbom naturalnym.

Bardziej szczegółowo

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza

Lista 1 - Kilka bardzo prostych funkcji. Logarytm i funkcja wykładnicza Lista - Kilka bardzo prostych funkcji Logarytm i funkcja wykładnicza Naszkicuj wykresy funkcji: y = sgn x oraz y = x sgn x; b) y = x oraz y = x ; c) y = x x Przedstaw w jednym układzie współrzędnych wykresy

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

Egzamin wstępny z Matematyki 1 lipca 2011 r.

Egzamin wstępny z Matematyki 1 lipca 2011 r. Egzamin wstępny z Matematyki 1 lipca 011 r. 1. Mamy 6 elementów. Ile jest możliwych permutacji tych elementów jeśli: a) wszystkie elementy są różne, b) dwa elementy wśród nich są identyczne, a wszystkie

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

2 cos α 4. 2 h) g) tgx. i) ctgx

2 cos α 4. 2 h) g) tgx. i) ctgx ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) =

x 2 5x + 6 x 2 x 6 = 1 3, x 0sin 2x = 2, 9 + 2x 5 lim = 24 5, = e 4, (i) lim x 1 x 1 ( ), (f) lim (nie), (c) h(x) = Zadanie.. Obliczyć granice 2 + 2 (a) lim (d) lim 0 2 + 2 + 25 5 = 5,. Granica i ciągłość funkcji odpowiedzi = 4, (b) lim 2 5 + 6 2 6 =, 4 (e) lim 0sin 2 = 2, cos (g) lim 0 2 =, (h) lim 2 8 Zadanie.2. Obliczyć

Bardziej szczegółowo

Matematyka. Zadania powtórzeniowe do matury -poziom podstawowy i rozszerzony

Matematyka. Zadania powtórzeniowe do matury -poziom podstawowy i rozszerzony Matematyka Zadania powtórzeniowe do matury -poziom podstawowy i rozszerzony Spis treści 1 Ciągi liczbowe 4 1.1 Zadania o sposobach opisywania ciągów................... 4 1.2 Zadania o granicach ciągów

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Marzec 2017 we współpracy z 1. Rozwiązania zadań i

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Def:(pochodnej funkcji w punkcie) Jeśli funkcja f : D R, D R określona jest w pewnym otoczeniu punktu 0 D i istnieje skończona granica ilorazu różniczkowego: f f( ( 0 )

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne Zadanie. 4 Rozwiąż równanie 07 sin( ). Wiadomo, że: wyrażenie 4 przyjmuje wartości nieujemne dla każdego

Bardziej szczegółowo

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2.

2. ZASTOSOWANIA POCHODNYCH. (a) f(x) = ln 3 x ln x, (b) f(x) = e2x x 2 2. 2. ZASTOSOWANIA POCHODNYCH. Koniecznie trzeba znać: twierdzenia o ekstremach (z wykorzystaniem pierwszej i drugiej pochodnej), Twierdzenie Lagrange a, Twierdzenie Taylora (z resztą w postaci Peano, Lagrange

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 90880 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Korzystajac ze

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 LUTEGO 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba x jest przybliżeniem

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Pochodna funkcji Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji. Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa

Bardziej szczegółowo

Lista 0 wstęp do matematyki

Lista 0 wstęp do matematyki dr Karol Selwat Matematyka dla studentów kierunku Ochrona Środowiska, 2-2 Lista wstęp do matematyki.. Sprawdź, czy następujące zdania logiczne są tautologiami: p q) p q) p q) p q) p q) q p) d)[p q) p]

Bardziej szczegółowo

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU

Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU Agata Boratyńska Zadania z matematyki Agata Boratyńska ZADANIA Z MATEMATYKI, I ROK SGH GRANICA CIĄGU. Korzystając z definicji granicy ciągu udowodnić: a) n + n+ = 0 b) n + n n+ = c) n + n a =, gdzie a

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY (TECHNIKUM) 18 KWIETNIA 2015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) 2+1 Liczba

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Zadania z analizy matematycznej - sem. II Całki nieoznaczone Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo