Wykład IX Optymalizacja i minimalizacja funkcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład IX Optymalizacja i minimalizacja funkcji"

Transkrypt

1 Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej Metody dla problemów sumy kwadratów Mnmalzacja z ogranczenam Problem mnmalzacj globalnej

2 Postawene zadana Optymalzacja to ulepszane rozwązana (techncznego). Np. optymalzacja kształtu kerowncy samochodu zadane z dzedzny ergonom, optymalzacja sec przesyłu energ dla zmnejszena strat problem technczno-ekonomczny, optymalzacja rozdzału zadań do wykonana (wypełnane grafka zadań) problem logstyczny. Zapsane problemu optymalzacj w postac kryterum jakośc zależnego od parametrów defnuje zadane mnmalzacj lub maksymalzacj kryterum (funkcj) w przestrzen parametrów. Ze względu na łatwość zmany zadana maksymalzacj na zadane mnmalzacj przez zmanę znaku kryterum, w dalszej częśc mowa będze o zadanu mnmalzacj. Standardowe matematyczne sformułowane zadana mnmalzacj brzm: Dla danej funkcj f dla danego obszaru S E k znaleźć punkt x * S tak, że f(x * ) f(x) dla wszystkch x S. E k jest k-wymarową przestrzeną eukldesową, x jest punktem tej przestrzen. Przestrzeń poszukwana wartośc parametrów może być ogranczona. Ogranczena mają charakter przedzałów (a), ogranczeń równoścowych (b) lub nerównoścowych (c). x x x b) g ( x ) = 0 c) g ( x ) 0 a) l u

3 Podstawowe dee rozwązań problemu mnmalzacj Przypadk rozwązywalne analtyczne: problemy LP (Lnear Programmng) - kryterum ogranczena są lnowym funkcjam parametrów problemy QP (Quadratc Programmng) - kwadratowe kryterum lnowe ogranczena Problemy NP (Nonlnear Programmng) wymagają użyca teracyjnych metod poszukwana opartych na nformacj o wartoścach kryterum w wybranych punktach przestrzen parametrów. Mnmalzacja lokalna: poszukwane pojedynczego mnmum funkcj. Najbardzej efektywne metody wykorzystują numeryczne przyblżena pochodnych funkcj. W trudnych przypadkach (np. necągłośc) stosowane są metody, które wykorzystują tylko wartośc funkcj. Mnmalzacja globalna: poszukwane jednego punktu mnmalnego przy welu mnmach lokalnych. Jest to trudne zadane oblczenowe. Pomysły na rozwązane to welokrotne starty metody lokalnej z różnych punktów lub zasada błądzena wokół beżącego oszacowana mnmum w nadze znalezena sąsadującego lepszego rozwązana (np. Smulated Annealng). Dobre wprowadzene do metod mnmalzacj można znaleźć w Buchanan, Turner Numercal Methods and Analyss w dokumentacj do Optmzaton Toolbox Matlaba.

4 Proste metody mnmalzacj jednowymarowej Przez analogę do poszukwana zera metodą połowena (bsekcj) możemy podać sposób poszukwana mnmum metodą jego otoczena sukcesywnego zawężana przedzału. Dysponując trzema kolejnym punktam a, b, c które spełnają warunek f ( a) f ( b) f ( c), tzn. punkt środkowy leży najnżej, możemy wnoskować że mnmum leży gdześ pomędzy a b. Metoda złotego podzału (golden secton) podaje receptę na dobór położena następnego punktu wybór nowej trójk punktów. Najkorzystnejszy dla szybkośc zbeżnośc jest podzał w stosunku Błąd oszacowana położena mnmum maleje lnowo. f(x) a b d c x Jeśl dopuścmy zmenność stosunku podzału, to cąg optymalnych (dla szybkośc zbeżnośc) podzałów jest zwązany z cągem Fbonaccego (Fbonacc search) zdefnowanym jako: Fk+ 1 = Fk + Fk 1, F1 = F0 = 1 Kolejne stosunk podzału są równe: F F, F 3 F 1,, F0 F n n n n

5 Kontynuując analoge do metod poszukwana zera, dysponując klkoma punktam możemy poszukwać mnmum funkcj przyblżającej (nterpolującej) funkcję mnmalzującą. Metoda nterpolacj kwadratowej (quadratc search) bazuje w każdym kroku na trzech punktach buduje na nch weloman nterpolujący p( x) ax bx c = + + o mnmum w punkce xmn w kategorach trzech punktów bazowych x 1, x, x 3 daje rozwązane na nowy punkt: x = x 4 1 ( x x1) f ( x) f ( x3) ( x x3) f ( x) f ( x1) ( x x ) f ( x ) f ( x ) ( x x ) f ( x ) f ( x ) b = co a Metoda nterpolacj sześcennej (cubc search) jest często wykorzystywana wtedy kedy dostępna jest nformacja o pochodnej funkcj. Wtedy współczynnk welomanu nterpolującego p x = ax + bx + cx+ d można wyznaczyć z wartośc funkcj jej pochodnej w dwóch punktach. ( ) 3 Implementacja Matlaba fmnbnd to kombnacja metody złotego podzału nterpolacj kwadratowej Metody mnmalzacj jednowymarowej są powszechne wykorzystywane w algorytmach welowymarowych, które po oszacowanu kerunku poszukwana mnmum stosują metodę jednowymarową wzdłuż kerunku (zob. temat lne search w Optmzaton Toolbox User s Gude).

6 Mnmalzacja welowymarowa bez użyca nformacj różnczkowej Metoda Smplex autorstwa Nelder-Mead (1965) [zob. Numercal Recpes]. Wykorzystuje ona w dzałanu zestaw N+1 punktów w przestrzen N-wymarowej, które tworzą najprostszą fgurę geometryczną w tej przestrzen (nazywaną smpleksem). Krok metody polega na wyznaczenu następnego punktu przyblżena mnmum w kerunku wyznaczonym przez symetryczne odbce punktu najwyżej położonego względem naprzecwległej ścany smpleksu. Może być przy tym wykonane zawężene lub rozszerzene smpleksu. Warunkem zakończena w metodze jest zmnejszene rozmarów smpleksu ponżej wartośc grancznej. odbce odbce+ skurczene odbce+ rozszerzene skurczene Implementacja w Matlabe to fmnsearch.(w starszej wersj fmns)

7 Mnmalzacja z użycem nformacj różnczkowej metody gradentowe Metoda najwększego spadku (steepest descent) Następne przyblżene mnmum jest poszukwane w kerunku przecwnym do gradentu: d= f ( x ) Zamplementowana w fmnunc ale ne polecana, bo w szczególnych przypadkach, jak np. funkcja Rosenbrocka (popularna funkcja testowa, nazywana też funkcją bananową) f ( x ) = 100( x x1 ) + ( 1 x1), metoda jest bardzo wolno zbeżna do rozwązana (wyjaśnć problem na tablcy). Wyznaczene kerunku poszukwana mnmum jest perwszym etapem pojedynczego kroku metody mnmalzacj welowymarowej. Drugm etapem jest jednowymarowe poszukwane mnmum wzdłuż wyznaczonego kerunku, tzn. mnmalzacja względem α zależnośc: x = x + k+ 1 k α d Dokonuje sę tego omówonym poprzedno metodam złotego podzału, cągu Fbonaccego, metodam nterpolacj/ekstrapolacj. Metody kerunków/gradentów sprzężonych Fletchera-Reevesa, Polaka-Rbere a [zobacz szczegóły w ksążce Fletchera 1987]. Są to metody mnej popularne (słabsze rozpowszechnene źródeł gotowych procedur) ale zachowujące sę porównywalne z metodam dalej omawanym.

8 Metody różnczkowe drugego rzędu metody Newtona quas-newtona Metoda gradentowa używała modelu perwszego rzędu (lnowego) zachowana sę funkcj w okolcy beżącego punktu. Dokładnejsze wyznaczene kerunku poszukwana mnmum otrzymuje sę przy uwzględnenu nformacj różnczkowej drugego rzędu. Model otoczena beżącego punktu ma wtedy postać kwadratową, z zastępczym problemem mnmalzacj: 1 T T mn xhx+ bx + c, n x R gdze H jest symetryczną dodatno określoną macerzą hesjanu aproksymowanej funkcj, b wektorem gradentu w beżącym punkce, c stałą. Z przyrównana pochodnej modelu względem x do 0 otrzymuje sę kerunek d poszukwana mnmum (kerunek Newtona): 1 d= H b Metody z bezpośrednm wyznaczanem hesjanu są nazywane metodam Newtona. Wyznaczane macerzy hesjanu jest jednak kosztowne oblczenowo. Z tego względu opracowano metody z teracyjną aktualzacją tej macerzy nazywane metodam quas-newtona (lub metodam zmennej metryk). Najpopularnejsze formuły aktualzacj to BFGS (pokazana dla przykładu): T T T = + qq k k HssH k k k k H + H sk = xk+ 1 x k q = f ( x ) f ( x ) qs shs k 1 k T T k k k k k k k+ 1 k DFP aktualzująca bezpośredno odwrotność macerzy hesjanu. Obydwe są do wyboru w Matlabe w funkcjach fmnunc, fmncon.

9 Mnmalzacja z ogranczenam - wprowadzene Stosowana do nedawna metoda uwzględnana ogranczeń przez stosowane funkcj kary (czyl gwałtownego zwększena wartośc kryterum po przekroczenu ogranczeń) jest przestarzała. Obecne defnuje sę problem mnmalzacj z ogranczenam z użycem mnożnków Lagrange a w postac: (,λ) ( ) λ ( ) = + m L x f x g x = 1 Warunkam konecznym optymalnośc rozwązana zadana z ogranczenam równoścowym nerównoścowym są równana Kuhna-Tuckera, które są warunkam wystarczającym dla problemu wypukłego, tj. przy funkcj celu ogranczenach w postac funkcj wypukłych. ( ) λ ( ) f x + g x = 0 ( ) m = 1 λg x = 0, = 1,, m λ 0, = me + 1,, m Poszukujemy rozwązana w przestrzen x dodatkowo λ. Perwsze równane ma być spełnone z nezerowym współczynnkam λ tylko przy aktywnych ogranczenach (m e to lość ogranczeń równoścowych, pozostałe są nerównoścowe. Take postawene problemu jest podstawą mplementacj w funkcj fmncon.

10 Algorytmy dla problemu nelnowej najmnejszej sumy kwadratów (NLS) Problem najmnejszej sumy kwadratów czynnków nelnowych względem parametrów powstaje przy wszelkch dopasowanach typu least-squares, np. w dentyfkacj obektów dynamcznych metodą dopasowana odpowedz modelu do pomarów. Poneważ jest to problem z określoną strukturą, to możemy sę spodzewać uproszczeń w oblczenach. Kryterum mnmalzacj ma węc postać: f T ( x) = F ( x) = F( x) F( x ) Lcząc gradent G hesjan H kryterum uzyskamy: T G x = J x F x, gdze J jest jakobanem wektora F, ( ) ( ) ( ) T H( x) = J( x) J( x) + Q( x ), gdze ( ) = F ( ) ( ) Q x x H x, H jest hesjanem -tej składowej. Pomjając czynnk Q pozbylśmy sę macerzy drugch pochodnych, korzystamy tylko z jakobanu. Metoda Gaussa-Newtona Stosując kerunek Newtona do powyższego uzyskamy jego wersję dla problemu NLS. Skutkuje to kerunkem będącym rozwązanem problemu lnowego LS: mn J x d+ F x ( ) ( ) d T T czyl układu równań: J( x) J( x) d = J( x) F( x )

11 Metoda Levenberga-Marquardta Jest to ulepszene metody Gaussa-Newtona dla przypadku kedy czynnk Q(x) ne może być pomnęty. Rozsądne wyjśce, to ne korzystać wtedy w ogóle z hesjanu tylko wybrać krok metody najwększego spadku. Take zachowane można zapewnć doberając współczynnk λ w uogólnonej regule wyznaczana kerunku: T J( x) J( x) + λi d= J ( x) F( x ) Dla λ równego zero jest to kerunek Gaussa-Newtona natomast dla dużego λ perwszy czynnk zwązany z hesjanem trac na znaczenu o kerunku decyduje prawa strona zwązana z gradentem. Implementacją tej metody jest funkcja Matlaba lsqnonln (w starszych wersjach leastsq). Jest to metoda polecana np. do dentyfkacj poneważ dobrze zachowuje sę z dala od mnmum (od dobrego dopasowana do pomarów) - wtedy korzysta z modelu lnowego najwększego spadku, jak w okolcy mnmum gdze modeluje kryterum funkcją kwadratową.

12 Przykład Porównane efektywnośc poszczególnych metod na funkcj Rosenbrocka a) steepest descent 1000 teracj a b b) quas-newton BFGS 140 teracj c) Gauss-Newton 48 teracj d) Levenberg-Marquardt 90 teracj c d

13 Rozwązana problemu mnmalzacj globalnej Metoda pokryca satką prostokątną lub nerównomerną Poszukwane mnmum globalnego funkcj jest w tym przypadku zastąpone zadanem poszukwana mnmum dyskretnego skończonego zboru wartośc. Koneczność wyznaczana wartośc kryterum w wykładnczo rosnącej z wymarem problemu lczbe punktów. Proste metody poszukwana losowego Pokryce satką losową. Ulepszane rozwązana przez mnmalzację lokalną z najlepszego z wylosowanych punktów lub mnmalzacja lokalna z każdego z wylosowanych punktów z wyborem najlepszego rozwązana. Zaawansowane metody losowe Wprowadzene czynnka losowego do efektywnych metod mnmalzacj lokalnej (smpleksów, najwększego spadku, quas-newtona) zaburza kerunek poszukwana umożlwając przejśce do sąsednego dołka. Zmenny udzał czynnka losowego w kerunku powoduje, że w początkowej faze optymalzacj przeszukwana jest cała przestrzeń parametrów dla znalezena otoczena punktu mnmum globalnego, a faza końcowa wyznacza z wększą dokładnoścą położene tego punktu. Przykładem takej mplementacj jest metoda Smulated Annealng analoga do procesu chłodzena w termodynamce [zob. Numercal Recpes]. Algorytmy genetyczne poszukwane mnmum wg zasad ewolucj bologcznej, stosowane głowne w problemach optymalzacj dyskretnej.

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej...

1 Metody optymalizacji wielokryterialnej... 1 1.1 Ogólna charakterystyka problemu... 1 1.2 Tradycyjne metody optymalizacji wielokryterialnej... 1 Metody optymalzacj welokryteralnej.... 1 1.1 Ogólna charakterystyka problemu.... 1 1.2 Tradycyjne metody optymalzacj welokryteralnej.... 3 1.2.1 Metoda ważonych kryterów.... 3 1.2.2 Metoda optymalzacj

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Sieci Neuronowe 1 Michał Bereta

Sieci Neuronowe 1 Michał Bereta Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH Danel Kosorowsk Katedra Statystyk, UEK w Krakowe Posedzene Rady Wydzału Zarządzana Kraków, 23.05.2013 PLAN REFERATU 1.

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań

Algorytm FA. Zastosowanie w zadanich optymalizacji z ograniczeniami dla ciągłych dziedzin poszukiwań Algorytm FA Metaheurystyczna metoda poszukwań (Xn-She Yang, 2008), nsprowana przez: zachowana społeczne zjawsko bolumnescencj robaczków śwetojańskch (śwetlków) Zastosowane w zadanch optymalzacj z ogranczenam

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

KINEMATYKA MANIPULATORÓW

KINEMATYKA MANIPULATORÓW KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można

Bardziej szczegółowo

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH

OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI OD BRZEGU OBSZARU Z ZASTOSOWANIEM METODY ROZWIĄZAŃ PODSTAWOWYCH Z E S Z Y T Y N A U K O W E P O L I T E C H N I K I P O Z N AŃSKIEJ Nr Budowa Maszyn Zarządzane Produkcją 005 PIOTR GORZELAŃCZYK, JAN ADAM KOŁODZIEJ OKREŚLENIE OPTYMALNEJ ODLEGŁOŚCI KONTURU ZE ŹRÓDŁAMI

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

Wyznaczanie długości fali światła metodą pierścieni Newtona

Wyznaczanie długości fali światła metodą pierścieni Newtona 013 Katedra Fzyk SGGW Ćwczene 368 Nazwsko... Data... Nr na lśce... Imę... Wydzał... Dzeń tyg.... Ćwczene 368: Godzna.... Wyznaczane długośc fal śwatła metodą perścen Newtona Cechowane podzałk okularu pomarowego

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Wielokryterialny Trójwymiarowy Problem Pakowania

Wielokryterialny Trójwymiarowy Problem Pakowania Łukasz Kacprzak, Jarosław Rudy, Domnk Żelazny Instytut Informatyk, Automatyk Robotyk, Poltechnka Wrocławska Welokryteralny Trójwymarowy Problem Pakowana 1. Wstęp Problemy pakowana należą do klasy NP-trudnych

Bardziej szczegółowo

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU Studa Ekonomczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

Bardziej szczegółowo

TYPOWE OPERATORY KRZYŻOWANIA OBLICZENIA EWOLUCYJNE FUNKCJE TESTOWE F. RASTRIGINA F. ACKLEYA ... 3. ( x) = x i 30 -30. minimum globalne.

TYPOWE OPERATORY KRZYŻOWANIA OBLICZENIA EWOLUCYJNE FUNKCJE TESTOWE F. RASTRIGINA F. ACKLEYA ... 3. ( x) = x i 30 -30. minimum globalne. FUNKCJE TESTOWE OBLICENIA EWOLUCJNE FITNESS F. START COMPUTATION FITNESS F. COMPUTATION INITIAL SUBPOPULATION SENDING CHROM. TO COMPUTERS chromoome EVOLUTIONAR OPERATORS AND RECEIVING FITNESS F. wykład

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

SPIS TREŚCI 1. WSTĘP... 4

SPIS TREŚCI 1. WSTĘP... 4 SPIS TREŚCI. WSTĘP... 4.. WAśNOŚĆ PROBLEMATYKI BĘDĄCEJ PRZEDMIOTEM PRACY....4.. CELE PRACY....4.3. ZAKRES PRACY...4.4. WYKORZYSTANE ŹRÓDŁA....5. OBLICZENIA DYNAMICZNE KONSTRUKCJI BUDOWLANYCH... 6.. MACIERZOWE

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Regulamin promocji zimowa piętnastka

Regulamin promocji zimowa piętnastka zmowa pętnastka strona 1/5 Regulamn promocj zmowa pętnastka 1. Organzatorem promocj zmowa pętnastka, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna

Bardziej szczegółowo

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO

WYBRANE ASPEKTY HARMONOGRAMOWANIA PROCESU MAGAZYNOWEGO PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 64 Transpor 28 Tomasz AMBROZIAK, Konrad LEWCZUK Wydzał Transporu Polechnk Warszawske Zakład Logsyk Sysemów Transporowych ul. Koszykowa 75, -662 Warszawa am@.pw.edu.pl;

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

Statyczna alokacja kanałów (FCA)

Statyczna alokacja kanałów (FCA) Przydzał kanałów 1 Zarys wykładu Wprowadzene Alokacja statyczna a alokacja dynamczna Statyczne metody alokacj kanałów Dynamczne metody alokacj kanałów Inne metody alokacj kanałów Alokacja w strukturach

Bardziej szczegółowo

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń

1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń ZAŁĄCZNIK nr Zasada dzałana Algorytmu Rozdzału Obcążeń. Zmenne dane wejścowe Algorytmu Rozdzału Obcążeń.. Zmennym podlegającym optymalzacj w procese rozdzału obcążeń są welośc energ delarowane przez Jednost

Bardziej szczegółowo

THE STATISTICAL MODEL OF ROAD TRAFFIC MONITORING

THE STATISTICAL MODEL OF ROAD TRAFFIC MONITORING ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 200909 Sera: TRANSPORT z. 65 Nr kol. 1807 Teresa PAMUŁA, Aleksander KRÓL STATYSTYCZNY MODEL MONITOROWANIA RUCHU DROGOWEGO Streszczene. W artykule przedstawono koncepcję

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw MATERIAŁY I STUDIA Zeszyt nr 86 Analza dyskrymnacyjna regresja logstyczna w procese oceny zdolnośc kredytowej przedsęborstw Robert Jagełło Warszawa, 0 r. Wstęp Robert Jagełło Narodowy Bank Polsk. Składam

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI MODELOWANIE INśYNIERSKIE ISSN 1896-771X 36, s. 187-192, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI ZBIGNIEW KOSMA, BOGDAN NOGA Instytut Mechank Stosowane,

Bardziej szczegółowo

Zastosowanie algorytmów genetycznych do optymalizacji modelu SVM procesu stalowniczego

Zastosowanie algorytmów genetycznych do optymalizacji modelu SVM procesu stalowniczego POLITECHIKA ŚLĄSKA Wydzał Inżyner Materałowej Metalurg Zakład Informatyk w Procesach Technologcznych Katedra Elektrotechnolog Kerunek: Zarządzane Inżynera Produkcj Specjalzacja: Informatyka w Zarządzanu

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Regulamin promocji fiber xmas 2015

Regulamin promocji fiber xmas 2015 fber xmas 2015 strona 1/5 Regulamn promocj fber xmas 2015 1. Organzatorem promocj fber xmas 2015, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 grudna 2015

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES Zbgnew SKROBACKI WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES W artykule przedstawone systemowe podejśce

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Nowe europejskie prawo jazdy w celu większej ochrony, bezpieczeństwa i swobodnego przemieszczania się

Nowe europejskie prawo jazdy w celu większej ochrony, bezpieczeństwa i swobodnego przemieszczania się KOMISJA EUROPEJSKA NOTATKA Bruksela, 18 styczna 2013 r. Nowe europejske prawo jazdy w celu wększej ochrony, bezpeczeństwa swobodnego przemeszczana sę W dnu 19 styczna 2013 r., w ramach wejśca w życe trzecej

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE 3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Instytut Badań Systemowych Polskiej Akademii Nauk

Instytut Badań Systemowych Polskiej Akademii Nauk Instytut Badań Systemowych Polskej Akadem Nauk ul. Newelska 6 0-447 Warszawa Przemysław Cholajda Zastosowane genetycznego generowana reguł rozmytych do wspomagana dagnostyk transformatorów Rozprawa doktorska

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

SPRAWNOŚĆ MECHANICZNA ZESPOŁU NAPĘDOWEGO Z SIŁOWNIKIEM HYDRAULICZNYM PRZY UWZGLĘDNIENIU TARCIA SUCHEGO

SPRAWNOŚĆ MECHANICZNA ZESPOŁU NAPĘDOWEGO Z SIŁOWNIKIEM HYDRAULICZNYM PRZY UWZGLĘDNIENIU TARCIA SUCHEGO Acta Agrophysca, 2008, 11(3), 741-751 SPRAWNOŚĆ MECHANICZNA ZESPOŁU NAPĘDOWEGO Z SIŁOWNIKIEM HYDRAULICZNYM PRZY UWZGLĘDNIENIU TARCIA SUCHEGO Andrzej Anatol Stępnewsk, Ewa Korgol Katedra Podstaw Technk,

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

Materiały z II Konferencji Naukowo-Technicznej "Diagnostyka w sieciach elektroenergetycznych zakładów przemysłowych", Płock, 2001, str.3-10.

Materiały z II Konferencji Naukowo-Technicznej Diagnostyka w sieciach elektroenergetycznych zakładów przemysłowych, Płock, 2001, str.3-10. Materały z II Konferencj Naukowo-Techncznej "Dagnostyka w secach elektroenergetycznych zakładów przemysłoch", Płock, 001, str.3-10. Andrzej OLENCKI Poltechnka Zelonogórska, 65-46 Zelona Góra, ul. Podgórna

Bardziej szczegółowo

Modelowanie komputerowe fraktalnych basenów przyciągania.

Modelowanie komputerowe fraktalnych basenów przyciągania. Modelowane komputerowe fraktalnych basenów przycągana. Rafał Henryk Kartaszyńsk Unwersytet Mar Cure-Skłodowskej Pl. M. Cure-Skłodowskej 1, 0-031 Lubln, Polska Streszczene. W artykule tym zajmujemy sę prostym

Bardziej szczegółowo

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego

Ryszard Kutyłowski. Optymalizacja topologii kontinuum materialnego Ryszard Kutyłowsk Optymalzacja topolog kontnuum materalnego Ofcyna Wydawncza Poltechnk Wrocławskej Wrocław 2004 Recenzje Leszek MIKULSKI Paweł ŚNIADY Opracowane redakcyjne korekta Mara IZBICKA Copyrght

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

WSPOMAGANIE KOOPERACJI Z WYKORZYSTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ

WSPOMAGANIE KOOPERACJI Z WYKORZYSTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ Macej Wolny WPOMAGANIE KOOPERACJI Z WYKORZYTANIEM TEORII GIER I ANALIZY WIELOKRYTERIALNEJ Wprowadzene Kooperacja mędzy organzacjam ma stotne znaczene w życu gospodarczym. Podmoty gospodarcze lub ch poszczególne

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA InŜynera Rolncza 7/2005 Jan Radoń Katedra Budownctwa Weskego Akadema Rolncza w Krakowe PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA Streszczene Opsano nawaŝnesze

Bardziej szczegółowo

NORMALiZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM

NORMALiZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM PRZEGLĄD STATYSTYCZNY R. XLIV - ZESZ\'T 1-1997 DANUTA STRAHL, MAREK WALESIAK NORMALZACJA ZMIENNYCH W SKALI PRZEDZIAŁOWEJ I ILORAZOWEJ W REFERENCYJNYM SYSTEMIE GRANICZNYM l. WPROWADZENIE Przy stosowanu

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ Jan JANKOWSKI *), Maran BOGDANIUK *),**) SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ W referace przedstawono równana ruchu statku w warunkach falowana morza oraz

Bardziej szczegółowo

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Macej Wolny ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Wprowadzene Zagadnena welokryteralne dotyczą sytuacj, w których rozpatruje sę elementy zboru dopuszczalnych

Bardziej szczegółowo

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo