Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II"

Transkrypt

1 Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane są następujące zastrzeżenia: x 4x + 3 x + x 0, (1) 0, () 1 1 x 1, (3) arc sin 1 x > 0. (4) Dla rozwiązania zastrzeżenia (1) naszkicujemy wykresy wyrażeń podmodułowych 1 3 1

2 Z rysunku widać, że mamy do rozpatrzenia cztery przypadki: a) x ( ; 1), b) x 1; ), c) x ; 3), c) x 3; + ). W przypadku a) warunek (1) jest równoważny nierówności x 4x x + x 0, x x 1 0. Pierwiastkami trójmianu stojącego po lewej stronie są liczby = 1 oraz + = 1+. Z wykresu rozwiązanie powyższej nierówności kwadratowej jest postaci x ( ; ; + ). Uwzględniając zastrzeżenie przypadku a) otrzymujemy rozwiązanie w tym przypadku x ( ; 1. (5) W przypadku b) warunek (1) jest równoważny nierówności x + 4x 3 + x + x 0, x + 6x 7 0. Pierwiastkami trójmianu stojącego po lewej stronie są liczby 6 = 3 + oraz 6+ = 3. Z wykresu rozwiązanie powyższej nierówności kwadratowej jest postaci x 3 ; 3 +. Uwzględniając zastrzeżenie przypadku b) otrzymujemy rozwiązanie w tym przypadku x 3 ;. (6) W przypadku c) warunek (1) jest równoważny nierówności x + 4x 3 + x + x 0, x + 4x 3 0. Pierwiastkami trójmianu stojącego po lewej stronie są liczby 4 = 3 oraz 4+ = 1. Z wykresu rozwiązanie powyższej nierówności kwadratowej jest postaci x 1; 3. Uwzględniając zastrzeżenie przypadku c) otrzymujemy rozwiązanie w tym przypadku x ; 3). (7) W przypadku d) warunek (1) jest równoważny nierówności x 4x x + x 0,

3 x 4x Pierwiastkami trójmianu stojącego po lewej stronie są liczby 4 = 1 oraz 4+ = 3. Z wykresu rozwiązanie powyższej nierówności kwadratowej jest postaci x ( ; 1 3; + ). Uwzględniając zastrzeżenie przypadku d) otrzymujemy rozwiązanie w tym przypadku x 3; + ). (8) Sumując rozwiązania (5), (6), (7) i (8), otrzymujemy rozwiązanie zastrzeżenia (1) x ( ; 1 3 ; + ). (9) Z zastrzeżenia () otrzymujemy natychmiast x 4. (10) Zauważmy, że zastrzeżenie (4) jest równoważne warunkowi 1 x > 0. Zatem warunki (3) i (4) możemy łącznie zapisać w postaci nierówności podwójnej 0 < 1 x 1. (11) Rozwiążemy najpierw nierówność lub równoważnie 0 < 1 x (1 x) () > 0. Szkicujemy wykres lewej strony tej nierówności -4 1 Z wykresu mamy rozwiązanie powyższej nierówności x ( 4; 1). (1) Druga z nierówności (11) jest równoważna nierówności 1 x x 4 3 0

4 x 3 0. Powyższa nierówność jest równoważna koniunkcji ( x 3) () 0 0. Dla rozwiązania pierwszego czynnika tej koniunkcji szkicujemy wykres lewej strony nierówności -4-3/ Z wykresu odczytujemy rozwiązanie uwzględniając drugi czynnik koniunkcji x ( ; 4) 3 ; + ). (13) Biorąc część wspólną rozwiązań (1) i (13) otrzymujemy łączne rozwiązanie zastrzeżeń (3) i (4) x 3 ; 1). (14) Osatecznie dziedziną funkcji f jest część wspólna warunków (9), (10) i (14) D f = 3 ; 1. Zadanie. Dane są funkcje f (x) = 1 (log x 1) i g (x) = 3 arctg (x 1). a) Wyznacz złożenia f g i g f oraz ich dziedziny naturalne. b) Zdefiniuj funkcje h i k tak, aby f = k h. c) Wyznacz funkcję odwrotną względem funkcji g. Rozwiązanie. Zauważmy, że D f = (0; + ) i D g = R. a) (f g) (x) = f (g (x)) = f (3 arctg (x 1)) ( 1 (g f) (x) = g (f (x)) = g = 3 arctg ( ) (log x 1) ( 1 (log x 1) Dziedziną f g otrzymujemy następująco = 1 (log (3 arctg (x 1)) 1), ) 3 arctg (x 1) > 0 arctg (x 1) > 0 x 1 > 0 i stąd D f g = ( 1 ; + ). Łatwo widać, że D g f = (0; + ). ) 1 = 3 arctg (log x ). 4

5 b) Zdefiniujmy h (x) = log x i k (x) = 1 (x 1). Wówczas f = k h. Inne rozwiązanie otrzymamy, gdy h (x) = log x 1 i k (x) = 1 x. c) Sprawdzimy różnowartościowość funkcji g. Weźmy dowolne x 1, x R i załóżmy, że g (x 1 ) = g (x ), tzn. Dzieląc stronami przez 3, otrzymujemy 3 arctg (x 1 1) = 3 arctg (x 1). arctg (x 1 1) = arctg (x 1). Z różnowartościowości funkcji arkus tangens dostajemy x 1 1 = x 1. Dodając do obu stron 1 i dzieląc przez, otrzymujemy x 1 = x. Na mocy definicji funkcja g jest różnowartościowa. Dla wyznaczenia wzoru na funkcję odwrotną rozwiązujemy równanie y = 3 arctg (x 1) względem niewiadomej x. Dzieląc stronami przez 3, otrzymujemy arctg (x 1) = y 3. Obliczamy z obu stron wartość funkcji tangens x 1 = tg y 3. Pamiętajmy jednak, że funkcją odwrotną względem funkcji arkus tangens jest funkcja tangens na przedziale ( π, ) π. Musimy więc zażądać, by 3π < y < 3π. Dalej mamy x = tg y Ostatecznie, g 1 (x) = tg x (, x 3π ; 3π ). Zadanie 3. Funkcję wymierną f rozłóż na ułamki proste, gdy f (x) = x 00 x 4 5x 3 + 0x 16. Rozwiązanie. Rozkładamy mianownik funkcji f na czynniki. x 4 5x 3 + 0x 16 = ( x 4 16 ) 5x ( x 4 ) = ( x 4 ) ( x + 4 5x ) = (x ) (x + ) (x 1) (x 4). 5

6 Zatem rozkład na ułamki proste jest postaci x 00 (x ) (x + ) (x 1) (x 4) = A x + B x + + Mnożąc stronami przez mianownik lewej strony, dostajemy C x 1 + D x 4. (15) x 00 = A (x + ) (x 1) (x 4) + B (x ) (x 1) (x 4) + C (x ) (x + ) (x 4) + D (x ) (x + ) (x 1) x 00 = Ax 3 3Ax 6Ax + 8A + Bx 3 7Bx + 14Bx 8B + Cx 3 4Cx 4Cx + 16C + Dx 3 Dx 4DD x 00 = (A + B + C + D) x 3 + ( 3A 7B 4C D) x + ( 6A + 14B 4C 4D) x + (8A 8B + 16C + 4D). Otrzymana równość wielomianów daje nam układ równań A +B +C +D = 0 3A 7B 4C D = 6A +14B 4C 4D = 0 8A 8B +16C +4D = 40. (16) Mnożąc stronami przez 4 równanie pierwsze i dodając do trzeciego oraz mnożąc stronami przez 4 równanie drugie i dodając do czwartego, dostajemy układ równań { A +18B = 0. (17) 4A 36B = 3 Dzieląc otrzymane równania odpowiednio przez i cztery, mamy { A +9B = 10. (18) A 9B = 8 Jeśli teraz dodamy stronami równania układu (18), to otrzymamy A =, czyli A = 1. Z drugiego równania układu (18) otrzymujemy 9B = 9, czyli B = 1. Podstawiając otrzymane A i B do pierwszego i drugiego równania układu (16), otrzymujemy układ równań { C +D = 0 4C D = 6. Dodając stronami, mamy 3C = 6, skąd C =. Z pierwszego z ostatnich równań, wstawiając znalezione C, mamy D =. Wstawiając współczynniki A, B, C, D do równości (15), dostajemy ostatecznie f (x) = 1 x 1 x + + x 1 x 4. 6

7 Zadanie 4. Rozwiąż równanie log 4 x = (log x) log Rozwiązanie. Dziedziną danego równania jest oczywiście D = (0; + ). Korzystając z wzoru na zamianę podstaw logarytmów i definicji logarytmu, dostajemy log x log 4 (log x) + 3 = 0 (log x) + 1 log x + 3 = 0. Mnożąc stronami przez i podstawiając t = log x, otrzymujemy równanie kwadratowe t + t + 6 = 0. Pierwiastkami tego równania są liczby = oraz niewiadomej x, mamy alternatywę Stąd ostateczne rozwiązanie Zadanie 5. Rozwiąż nierówność log x = log x = 3. x = 4 x = 1. 1 x + 1 x x x 3 x x 3. = 3. Wracając do Rozwiązanie. Zauważmy, że rozkładem na czynniki drugiego mianownika jest x x 3 = (x 3) (x + 1), więc wspólnym mianownikem lewej strony będzie (x 3) (x + 1) i dziedziną nierówności jest D = R \ { 1, 3}. Przenosimy wszystkie niezerowe składniki na lewą stronę i sprowadzamy do wspólnego mianownika x 3 x + x (x + 1) (x 3) (x + 1) x 3 x x 1 0. (x 3) (x + 1) Rozkładając licznik na czynniki i przechodząc do iloczynu, przy założeniu, że x 1 i x 3, otrzymujemy równoważnie ( x 1 ) (x + 1) (x 3) (x + 1) 0 i po podzieleniu stronami przez x 1 mamy Szkicujemy wykres lewej strony (x + 1) (x 3)

8 -1 3 Z wykresu odczytujemy ostateczne rozwiązanie x ( ; 3) \ { 1}. 8

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

Lista 1 liczby rzeczywiste.

Lista 1 liczby rzeczywiste. Lista 1 liczby rzeczywiste Zad 1 Przedstaw liczbę m w postaci W każdym ze składników tej sumy musimy wyłączyd czynnik przed znak pierwiastka Można to zrobid rozkładając liczby podpierwiastkowe na czynniki

Bardziej szczegółowo

EGZAMIN EKSTERNISTYCZNY Z MATEMATYKI Z ZAKRESU LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRZYKŁADOWE ZADANIA EGZAMINACYJNE WRAZ Z ROZWIĄZANIAMI

EGZAMIN EKSTERNISTYCZNY Z MATEMATYKI Z ZAKRESU LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRZYKŁADOWE ZADANIA EGZAMINACYJNE WRAZ Z ROZWIĄZANIAMI EGZAMIN EKSTERNISTYCZNY Z MATEMATYKI Z ZAKRESU LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRZYKŁADOWE ZADANIA EGZAMINACYJNE WRAZ Z ROZWIĄZANIAMI Poniżej prezentujemy przykładowe, które znalazły się na egzaminie

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1.

KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Prace klasowe

Bardziej szczegółowo

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą

Klasa 1 LO. Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą Klasa LO Wymagania wraz z przykładowymi zadaniami na ocenę dopuszczającą ZBIÓR I PODZBIOR DZIAŁANIA NA ZBIORACH I W ZBIORACH Przykładowe zadania: potrafi określić rodzaj liczby (N, C, W, NW, R) ) Ze zbioru

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /

WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki

Klasa 1. Osiągnięcia. Treści kształcenia. Dział. Uczeń: buduje zdania złożone w postaci koniunkcji, 1.1. Język matematyki Opis założonych osiągnięć ucznia W tabelach dla poszczególnych klas, przy treściach kształcenia podajemy przewidywane osiągnięcia uczniów w ramach zakresu rozszerzonego. Podzieliliśmy je na podstawowe

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa

Wymagania z matematyki, poziom rozszerzony. nowa podstawa programowa Wymagania z matematyki, poziom rozszerzony nowa podstawa programowa Nauczyciel matematyki: mgr Izabela Stachowiak Wilk Zbiór liczb rzeczywistych i jego podzbiory odróżnia zdanie logiczne od innych wypowiedzi

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 MATEMATYKA

EGZAMIN MATURALNY 2011 MATEMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 0 MATEMATYKA POZIOM PODSTAWOWY MAJ 0 Egzamin maturalny z matematyki poziom podstawowy Zadanie (0 ) Obszar standardów i tworzenie informacji

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska

PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):

Bardziej szczegółowo

MATEMATYKA KL I LO zakres podstawowy i rozszerzony

MATEMATYKA KL I LO zakres podstawowy i rozszerzony MATEMATYKA KL I LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMN MATURALNY W ROKU SZKOLNYM 04/05 FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZOM PODSTAWOWY ZASADY OCENANA ROZWĄZAŃ ZADAŃ ARKUSZ MMA-P MAJ 05 Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 04/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A4, A6, A7) GRUDZIEŃ 04 Klucz odpowiedzi do zadań zamkniętych Nr zadania 4 5 6

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16

Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 Przedmiotowy System Oceniania klasa I TH matematyka PP 2015/16 PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

Matematyka. Program nauczania w Technikum Elektronicznym Nr 1. Zakres rozszerzony. Marcin Kurczab Elżbieta Kurczab Elżbieta Świda

Matematyka. Program nauczania w Technikum Elektronicznym Nr 1. Zakres rozszerzony. Marcin Kurczab Elżbieta Kurczab Elżbieta Świda Marcin Kurczab Elżbieta Kurczab Elżbieta Świda Matematyka Program nauczania w Technikum Elektronicznym Nr 1 Zakres rozszerzony Oficyna Edukacyjna * Krzysztof Pazdro 2 Warszawa 2012 3 Spis treści I. Wstęp...

Bardziej szczegółowo

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące

Informator o egzaminie eksternistycznym. od 2007 roku MATEMATYKA. Liceum ogólnokształcące Informator o egzaminie eksternistycznym od 007 roku MATEMATYKA Liceum ogólnokształcące Warszawa 007 Opracowano w Centralnej Komisji Egzaminacyjnej we współpracy z okręgowymi komisjami egzaminacyjnymi w

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające MATeMAtyka lan wynikowy: Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Temat lekcji

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-P_P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 5 stron (zadania

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY M A T E M A T Y K A LICEUM OGÓLNOKSZTAŁCĄCE, TECHNIKUM, LICEUM UZUPEŁNIAJĄCE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Zakres podstawowy i rozszerzony Katalog wymagań na poszczególne oceny: Zakres wiedzy

Bardziej szczegółowo

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń:

1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń: 1. Funkcja liniowa Tematyka: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej. Własności funkcji liniowej Znaczenie współczynników we wzorze funkcji liniowej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z matematyki w Regionalnym Centrum Edukacji Zawodowej Kształcenie w zakresie podstawowym i rozszerzonym. cały cykl

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Materiały dydaktyczne do zajęć wyrównawczych z matematyki dla kierunku Inżynieria Materiałowa

Materiały dydaktyczne do zajęć wyrównawczych z matematyki dla kierunku Inżynieria Materiałowa Publikacja dystrybuowana bezpłatnie Materiały dydaktyczne do zajęć wyrównawczych z matematyki dla kierunku Inżynieria Materiałowa Autor: Marek Radwański Projekt Inżynieria materiałowa inżynieria przyszłości

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki

Przedmiotowy System Oceniania z matematyki Przedmiotowy System Oceniania z matematyki Opracowany zgodnie ze Statutem oraz z Wewnątrzszkolnym Systemem Oceniania Liceum Ogólnokształcącego im. Janka Bytnara w Kolbuszowej. I. Kontrakt między nauczycielem

Bardziej szczegółowo

Lista zadań. Babilońska wiedza matematyczna

Lista zadań. Babilońska wiedza matematyczna Lista zadań Babilońska wiedza matematyczna Zad. 1 Babilończycy korzystali z tablicy dodawania - utwórz w arkuszu kalkulacyjnym EXCEL tablicę dodawania liczb w układzie sześćdziesiątkowym, dla liczb ze

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE I ZASADNICZEJ SZKOŁY ZAWODOWEJ. I. Liczby rzeczywiste oś liczbowa i przedziały liczbowe. 1. Definicja liczb: naturalnych całkowitych wymiernych niewymiernych

Bardziej szczegółowo

1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36.

1. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad.1 Oblicz: d) + e) (0,15+(-1,15)) 3. g) 15 (45,2 : 12 30 : 6 )- 1 7 36. Zestaw zadań na ocenę dopuszczającą z matematyki po klasie - ZSP w Żelechowie Opracowała A. Lasocka. DZIAŁANIA NA UŁAMKACH, POTĘGACH I PIERWIASTKACH Zad. Oblicz: + - + - + e + 0 Zad. Oblicz: 9 + 0 : 9

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 Kamienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-8 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CENTRUM KSZTAŁCENIA USTAWICZNEGO NR 1 ZAKRES PODSTAWOWY Rozkład materiału został opracowany zgodnie z wymaganiami nowej podstawy

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Nierówności dla początkujących olimpijczyków Aleksander Kubica Tomasz Szymczyk wwwomgedupl Warszawa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 2.

PLAN WYNIKOWY (zakres rozszerzony) klasa 2. PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych

Odpowiedzi do zadań zamkniętych. Schemat oceniania zadań otwartych Odpowiedzi do zadań zamkniętych Nr zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 Odpowiedź A C C B C A B C A D B C D B D C A B A A A C B A A Schemat oceniania zadań otwartych Zadanie 6. ( pkt) Rozwiąż

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

I. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE Temat. Ilość godzin Podstawowe wiadomości o zbiorach. Opis wymagań

I. LICZBY RZECZYWISTE I WYRAŻENIA ALGEBRAICZNE Temat. Ilość godzin Podstawowe wiadomości o zbiorach. Opis wymagań PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki) I. LICZBY RZECZYWISTE

Bardziej szczegółowo

Układy równań stopnia pierwszego z dwiema i trzema niewiadomymi

Układy równań stopnia pierwszego z dwiema i trzema niewiadomymi Układy równań stopnia pierwszego z dwiema i trzema niewiadomymi Przedmowa To opracowanie jest napisane z myślą o gimnazjalistach, ale mogą z niego korzystać także Ci, co chcą się dowiedzieć np. jak rozwiązuje

Bardziej szczegółowo

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole

WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole WYMAGANIA POJĘCIOWE III etap edukacyjny obowiązuje wszystkich uczniów IV etap obowiązuje w zakresie realizowanym w szkole Cele kształcenia wymagania ogólne MATEMATYKA III etap edukacyjny I. Wykorzystanie

Bardziej szczegółowo

EGZAMIN MATURALNY 2012 MATEMATYKA

EGZAMIN MATURALNY 2012 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie. (0 ) Obszar standardów Modelowanie matematyczne Opis

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 MATEMATYKA

EGZAMIN MATURALNY 2010 MATEMATYKA entralna Komisja Egzaminacyjna w Warszawie EGZMIN MTURLNY 010 MTEMTYK POZIOM PODSTWOWY Klucz punktowania odpowiedzi MJ 010 Egzamin maturalny z matematyki Zadania zamknięte W zadaniach od 1. do 5. podane

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math)

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Ciągi Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Spis treści 1 Ciągi liczbowe 1 1.1 Podstawowe własności ciągów................... 2 1.2 Granica ciągu............................

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi: PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki, wydawnictwo Nowa Era)

Bardziej szczegółowo

Matematyka Program nauczania

Matematyka Program nauczania Marcin Kurczab Elżbieta Kurczab Elżbieta Świda 1 Zakres podstawowy Matematyka Program nauczania w liceach i w technikach Oficyna Edukacyjna * Krzysztof Pazdro 2 Matematyka. Program nauczania w liceach

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego

MATEMATYKA. Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego MATEMATYKA Pod redakcją Andrzeja Justa i Andrzeja Piątkowskiego Internetowy kurs dla kandydatów na Politechnikę Łódzką Repetytorium dla studentów I roku Politechniki Łódzkiej Skrypt niniejszy zawiera wiadomości

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA ZESPÓŁ SZÓŁ OGÓLNOSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 amienna Góra tel.: (+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY SYSTEM

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo