Wykład z równań różnicowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład z równań różnicowych"

Transkrypt

1 Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp. Definicja 1.1. Operatorem przesunięcia nazywamy operator określony na ciągach wzorem Ex (n) = x (n + 1). Operator I dany wzorem Ix (n) = x (n) nazywamy operatorem identycznościowym. Uwaga 1.2. W dalszym ciągu dla liczby rzeczywistej λ będziemy używać zapisu E λ zamiast E λi. Zastanówmy się co daje wielokrotne zastosowanie operatora przesunięcia. Mamy E 2 x (n) = E (Ex (n)) = Ex (n + 1) = x (n + 2), E 3 x (n) = E ( E 2 x (n) ) = Ex (n + 2) = x (n + 3). Widać, że indukcyjnie daje się wykazać ogólny wzór Jeżeli więc E k x (n) = x (n + k), k N. p (λ) = a 0 λ k + a 1 λ k a k jest dowolnym wielomianem stopnia k zmiennej λ, to możemy określić operator wielomianowy p (E) określony za pomocą wzoru który na ciągu x (n) przyjmuje wartość p (E) = a 0 E k + a 1 E k a k I, p (E) x (n) = a 0 x (n + k) + a 1 x (n + k 1) + + a k x (n). Następującym przykładem zilustrujemy czym są równania różnicowe. 1

2 Przykład 1.3. Załóżmy, że w chwili t = 0 populacja liczy P (0) osób. Roczny wskaźnik urodzeń wynosi b = , a roczna umieralność d = 101. Oznacza to, że jeżeli w końcu n-tego roku żyje P (n) osób, to w następnym roku urodzi się P (n) P (n) 100 dzieci i umrze 101 osób. Zatem liczba osób żyjących na koniec (n + 1)-ego roku wyniesie P (n + 1) = P (n) + P (n) 100 P (n) 101 = P (n) (1 + b d) = P (n) ( ) Zachodzi pytanie, czy z tego związku potrafimy wyznaczyć wzór na wyraz ogólny ciągu (P (n)). Jeżeli wprowadzimy oznaczenie r = b d, to nasz związek przyjmie postać P (n + 1) = P (n) (1 + r), (1) Jest to przykład równania różnicowego (tzw. równania wzrostu) opisującego przyrost populacji. Na początek odgadniemy rozwiązanie. Twierdzimy, że rozwiązaniem jest każdy ciąg postaci P (n) = A (1 + r) n, n = 0, 1, 2,..., gdzie A jest dowolną stałą. Sprawdzamy, że to jest rozwiązanie równania (1): L = A (1 + r) n+1, P = A (1 + r) n (1 + r) = A (1 + r) n+1, czyli L = P. Jest to tak zwane rozwiązanie ogólne równania (1). Rozwiązania ogólne zawsze zawierają dowolne stałe. Podstawiając w ich miejsce konkretne liczby, otrzymujemy tzw. rozwiązania szczególne. Aby dla danego problemu uzyskać właściwe rozwiązanie szczególne, potrzebne są tak zwane warunki początkowe. Warunek początkowy jest dodatkową porcją informacji, która pozwoli wyznaczyć nieokreślone stałe. Na przykład w naszym modelu wzrostu możemy dowiedzieć się, że populacja w chwili 0 liczy 100 osób, czyli P (0) = 100. Znaczy to, że 100 = P (0) = A (1 + r) 0 = A, a więc właściwym dla naszego problemu rozwiązaniem szczególnym będzie ( P (n) = ) n Widać więc, że równanie różnicowe będzie związkiem między kilkoma (niekoniecznie dwoma, jak w powyższym przykładzie) kolejnymi wyrazami ciągu, zaś jego rozwiązanie będzie polegać na wyznaczeniu wzoru na n-ty wyraz tego ciągu. Inaczej, rozwiązanie równania różnicowego jest wyznaczeniem wzoru na n-ty wyraz, gdy ciąg zadany jest rekurencyjnie. W naszym wykładzie zajmować się będziemy tylko szczególnym rodzajem równań różnicowych, mianowicie równaniami liniowymi. 2

3 2 Ogólna teoria liniowych równań różnicowych Definicja 2.1. Równaniem liniowym rzędu k nazywamy równanie różnicowe postaci y (n + k) + p 1 (n) y (n + k 1) + + p k (n) y (n) = g (n), (2) gdzie p i (n) dla i = 1, 2,..., k oraz g (n) są ciągami określonymi dla n n 0 przy pewnym ustalonym n 0 (w naszym wykładzie najczęściej n 0 = 0), przy czym p k (n) 0 dla n n 0. W równaniu powyższym niewiadomą jest ciąg y (n), zaś pozostałe ciągi są dane. Rozwiązaniem równania (2) nazywamy każdy ciąg y (n) określony dla n n 0, który spełnia to równanie. Jeżeli g (n) = 0 dla wszystkich n n 0, to równanie (2) nazywamy jednorodnym. W przeciwnym przypadku równanie to nazywamy niejednorodnym. Jeżeli równanie (2) jest niejednorodne, to równanie jednorodne postaci y (n + k) + p 1 (n) y (n + k 1) + + p k (n) y (n) = 0 (3) nazywamy równaniem jednorodnym stowarzyszonym z równaniem (2). Zauważmy, że równanie (2) można zapisać w postaci y (n + k) = p 1 (n) y (n + k 1) p k (n) y (n) + g (n), (4) z której przy n 0 = 0 kładąc n = 0, otrzymujemy y (k) = p 1 (0) y (k 1) p 2 (0) y (k 2) p k (0) y (0) + g (0), czyli k-ty wyraz szukanego ciągu jest dobrze określony przez wyrazy poprzednie y (0),..., y (k 1). Jeżeli znamy już y (k), to kładąc we wzorze (4) n = 1 mamy y (k + 1) = p 1 (1) y (k) p 2 (1) y (k 1) p k (1) y (1) + g (1), czyli potrafimy z kolei obliczyć y (k + 1). Powtarzając ten proces możemy obliczyć wszystkie y (n) dla n k. Zilustrujmy powiedziane wyżej za pomocą przykładu. Przykład 2.2. Rozważmy równanie liniowe trzeciego rzędu postaci y (n + 3) n y (n + 2) + ny (n + 1) 3y (n) = n, n 1. (5) n + 1 Załóżmy, że y (1) = 0, y (2) = 1 i y (3) = 1. Obliczymy kolejne wyrazy ciągu y (n). Zapiszmy równanie (5) w równoważnej postaci y (n + 3) = Podstawiając n = 1 w (6), dostajemy n y (n + 2) ny (n + 1) + 3y (n) + n. (6) n + 1 y (4) = 1 2 y (3) y (2) + 3y (1) + 1 =

4 Dla n = 2 Dla n = 3 Dla n = 4 y (5) = 2 3 y (4) 2y (3) + 3y (2) + 2 = 4 3. y (6) = 3 4 y (5) 3y (4) + 3y (3) + 3 = 5 2. y (7) = 4 5 y (6) 4y (5) + 3y (4) + 4 = 89 6 itd. Jeżeli do równania różnicowego dołączymy dodatkowo pierwszych k wartości szukanego rozwiązania, to otrzymamy tzw. zagadnienie początkowe: y (n + k) + p 1 (n) y (n + k 1) + + p k (n) y (n) = g (n), (7) y (n 0 ) = a 0, y (n 0 + 1) = a 1,..., y (n 0 + k 1) = a k 1, (8) gdzie a i są ustalonymi liczbami dla i = 0, 1,..., k 1. Z powyższych rozważań otrzymujemy następujące Twierdzenie 2.3. Zagadnienie początkowe (7) i (8) posiada dokładnie jedno rozwiązanie y (n). Pozostaje pytanie czy potrafimy wyznaczyć wzór na n-ty wyraz ciągu spełniającego równanie (2) lub spełniającego zagadnienie początkowe (7) i (8). Zajmiemy się w pierwszej kolejności równaniem liniowym jednorodnym rzędu k postaci x (n + k) + p 1 (n) x (n + k 1) + + p k (n) x (n) = 0, (9) gdzie p k (n) 0 dla n n 0. Zaczniemy od wprowadzenia ważnych pojęć Definicja 2.4. Ciągi f 1 (n),..., f r (n) nazywamy liniowo zależnymi dla n n 0, gdy istnieją stałe a 1,..., a r nie wszystkie równe zeru, takie, że a 1 f 1 (n) + + a r f r (n) = 0 dla n n 0. (10) Jeżeli nie jest spełniony warunek Definicji 2.4, to ciągi f 1 (n),..., f r (n) nazywamy liniowo niezależnymi. Inaczej, ciągi te nazywamy liniowo niezależnymi, gdy z równości a 1 f 1 (n) + + a r f r (n) = 0 dla n n 0 wynika, że a 1 = a 2 = = a r = 0. Zilustrujmy powyższe pojęcia za pomocą przykładu: Przykład 2.5. Pokażemy, że ciągi 3 n, n3 n, n 2 3 n są liniowo niezależne dla n 1. Przypuśćmy, że dla stałych a 1, a 2 i a 3 mamy a 1 3 n + a 2 n3 n + a 3 n 2 3 n = 0 dla n 1. 4

5 Dzieląc przez 3 n mamy a 1 + a 2 n + a 3 n 2 = 0 dla wszystkich n 1. To jest możliwe tylko w przypadku, gdy a 3 = 0, bo trójmian kwadratowy ma co najwyżej dwa pierwiastki rzeczywiste. Stąd dalej mamy a 2 = 0, bo wielomian stopnia 1 ma co najwyżej jeden pierwiastek, a stąd dalej a 1 = 0. Zatem mamy liniową niezależność. Definicja 2.6. Zbiór k liniowo niezależnych rozwiązań równania (9) nazywamy fundamentalnym zbiorem rozwiązań. Zwróćmy uwagę, że w powyższej definicji k jest rzędem równania. Podamy teraz praktyczniejszą metodę sprawdzania liniowej niezależności rozwiązań. Definicja 2.7. Kasoratianem W (n) rozwiązań x 1 (n),..., x r (n) nazywamy wyznacznik dany przez x 1 (n) x 2 (n)... x r (n) x 1 (n + 1) x 2 (n + 1)... x r (n + 1) W (n) =. (11)... x 1 (n + r 1) x 2 (n + r 1)... x r (n + r 1) Przykład 2.8. Rozważmy równanie różnicowe x (n + 3) 7x (n + 1) + 6x (n) = 0. Pokażemy, że ciągi 1, ( 3) n i 2 n są rozwiązaniami tego równania i obliczymy dla nich kasoratian. Najpierw sprawdzamy, czy to są rozwiązania, podstawiając te ciągi do równania. Dla ciągu x (n) = 1 mamy L = = 0 = P. Dla ciągu x (n) = ( 3) n mamy L = ( 3) n+3 7 ( 3) n ( 3) n = ( 3) n [ ] = 0 = P. Wreszcie dla ciągu x (n) = 2 n mamy L = 2 n n n = 2 n [ ] = 0 = P. Obliczamy teraz kasoratian: 5

6 1 ( 3) n 2 n W (n) = 1 ( 3) n+1 2 n+1 1 ( 3) n+2 2 n+2 = ( 3)n+1 2 n+1 ( 3) n+2 2 n n+1 ( 3)n 1 2 n ( 3) n+1 2n 1 ( 3) n+2 = 2 n+2 ( 3) n+1 2 n+1 ( 3) n+2 ( 3) n ( 2 n+2 2 n+1) + 2 n ( ( 3) n+2 ( 3) n+1) = 12 2 n ( 3) n 18 2 n ( 3) n 4 2 n ( 3) n n ( 3) n n ( 3) n n ( 3) n = 20 2 n ( 3) n. Wykazuje się, że zachodzi następujące twierdzenie: Twierdzenie 2.9. Zbiór rozwiązań x 1 (n), x 2 (n),..., x k (n) równania (9) rzędu k jest zbiorem fundamentalnym wtedy i tylko wtedy, gdy dla początkowego n 0 N {0} zachodzi W (n 0 ) 0. Przykład Sprawdzimy, że {n, 2 n } jest fundamentalnym zbiorem rozwiązań równania x (n + 2) 3n 2 x (n + 1) + 2n x (n) = 0. n 1 n 1 Podstawiając do równania ciąg x 1 (n) = n, dostajemy L = n+2 3n 2 n 1 2n (n + 1)+ n 1 n = n2 + n 2 3n 2 n n 2 = 0 = P. n 1 Podstawiając teraz ciąg x 2 (n) = 2 n, mamy L = 2 n+2 3n 2 n 1 2n+1 + 2n n 1 2n n 4n 4 6n n = 2 = 0 = P. n 1 Ponieważ równanie nie ma sensu dla n = 1, więc przyjmiemy n 0 = 2. Mamy W (2) = = 4 0. Stąd na mocy Twierdzenia 2.9 ciągi n, 2 n dla n 2 stanowią zbiór fundamentalny rozwiązań danego równania. Przykład Rozważmy równanie rzędu trzeciego postaci x (n + 3) + 3x (n + 2) 4x (n + 1) 12x (n) = 0. Pokażemy, że ciągi 2 n, ( 2) n i ( 3) n tworzą zbiór fundamentalny rozwiązań tego równania. Sprawdzamy najpierw, że są to rozwiązania danego równania: dla ciągu 2 n mamy L = 2 n n n n = 2 n ( ) = 0 = P, 6

7 dla ciągu ( 2) n mamy L = ( 2) n ( 2) n+2 4 ( 2) n+1 12 ( 2) n i dla ciągu ( 3) n mamy L = ( 3) n ( 3) n+2 4 ( 3) n+1 12 ( 3) n Mamy = ( 2) n ( ) = 0 = P, = ( 3) n ( ) = 0 = P W (0) = = Na mocy Twierdzenia 2.9 podane rozwiązania tworzą zbiór fundamentalny rozwiązań. Opierając się teraz na Twierdzeniu 2.3, dowodzi się Twierdzenie 2.12 (Twierdzenie podstawowe). Jeżeli p k (n) 0 dla wszystkich n n 0, to równanie (9) posiada fundamentalny zbiór rozwiązań dla n n 0. Pokazuje się, że jeżeli x 1 (n),..., x k (n) jest zbiorem fundamentalnym rozwiązań równania (9), to dla dowolnych liczb c 1,..., c k ciąg k c i x 1 (n) i=1 jest rozwiązaniem równania (9) i dodatkowo jeśli x (n) jest dowolnym rozwiązaniem tego równania, to istnieją liczby a 1,..., a k takie, że x (n) = k a i x i (n). i=1 Stąd wynika zasadność następującej definicji Definicja Niech {x 1 (n), x 2 (n),..., x k (n)} będzie fundamentalnym zbiorem rozwiązań równania (9). Wówczas rozwiązanie x (n) = k a i x i (n), i=1 gdzie a i są dowolnymi stałymi, nazywamy rozwiązaniem ogólnym równania (9). 7

8 3 Liniowe jednorodne równania o stałych współczynnikach Rozważmy równanie różnicowe rzędu k postaci x (n + k) + p 1 x (n + k 1) + p 2 x (n + k 2) + + p k x (n) = 0, (12) gdzie p i są stałymi rzeczywistymi i p k 0. (W tych równaniach przyjmujemy zawsze n 0 = 0.) Uwaga 3.1. Zauważmy, że równanie (12) daje się zapisać przy pomocy operatora przesunięcia w postaci p (E) x (n) = 0. gdzie p (λ) = λ k + p 1 λ k 1 + p 2 λ k p k. Wielomian p nazywamy wielomianem charakterystycznym równania (12), a jego pierwiastki pierwiastkami charakterystycznymi tego równania. Zajmiemy się szczególnym przypadkiem, gdy wielomian p rozkłada się wyłacznie na czynniki liniowe. Mamy do rozważenia dwa przypadki: Przypadek (a). Załóżmy, że pierwiastki charakterystyczne λ 1,..., λ k są różne, czyli każdy z pierwiastków charakterystycznych jest pierwiastkiem jednokrotnym. Pokazuje się, że wtedy zbiór {λ n 1,..., λ n k } jest fundamentalnym zbiorem rozwiązań. W konsekwencji rozwiązaniem ogólnym równania (12) jest x (n) = k a i λ n i, (13) i=1 gdzie a i są dowolnymi liczbami. Przypadek (b). Załóżmy teraz, że różnymi pierwiastkami charakterystycznymi są λ 1, λ 2,..., λ r i mają one odpowiednio krotności m 1, m 2,..., m r, przy czym r i=1 m i = k. Przy tych założeniach równanie (12) może być zapisane w postaci (E λ 1 ) m1 (E λ 2 ) m2 (E λ r ) mr x (n) = 0. (14) Wówczas pokazuje się, że zbiór G = G 1 G 2 G r, gdzie G i = { λ n i, nλ n i, n 2 λ n i,..., n mi 1 λ n i }, jest zbiorem fundamentalnym rozwiązań równania (14). Twierdzenie 3.2. Ogólnym rozwiązaniem równania (14) jest x (n) = r λ n i i=1 ( ai0 + a i1 n + a i2 n a imi 1n mi 1). (15) 8

9 Przykład 3.3. Rozwiążemy zagadnienie początkowe x (n + 3) 7x (n + 2) + 16x (n + 1) 12x (n) = 0, Równaniem charakterystycznym jest x (0) = 0, x (1) = 1, x (2) = 1. λ 3 7λ λ 12 = 0. Pierwiastkami charakterystycznymi są λ 1 = 2 = λ 2 i λ 3 = 3. Na mocy Twierdzenia 3.2 rozwiązaniem ogólnym jest x (n) = a 0 2 n + a 1 n2 n + b 0 3 n. Aby wyznaczyć stałe a 0, a 1, b 0 skorzystamy z warunków początkowych: x (0) = a 0 + b 0 = 0 x (1) = 2a 0 + 2a 1 + 3b 0 = 1 x (2) = 4a 0 + 8a 1 + 9b 0 = 1. Rozwiązując powyższy układ równań dostajemy a 0 = 3, a 1 = 2, b 0 = 3. Ostatecznie rozwiązaniem naszego zagadnienia początkowego jest x (n) = 3 2 n + 2n 2 n 3 n+1. 4 Liniowe niejednorodne równania: metoda przewidywania Zajmiemy się teraz równaniami postaci y (n + k) + p 1 (n) y (n + k 1) + + p k (n) y (n) = g (n), (16) gdzie p k (n) 0 dla n n 0 i g (n) nie jest ciągiem zerowym. Ciąg g (n) nazywamy składnikiem wymuszającym. Zachodzi Twierdzenie 4.1. Jeżeli y 1 (n) i y 2 (n) są rozwiązaniami równania (16), to ciąg x (n) = y 2 (n) y 1 (n) jest rozwiązaniem stowarzyszonego z nim równania jednorodnego x (n + k) + p 1 (n) x (n + k 1) + + p k (n) x (n) = 0. (17) Umówmy się, że ogólne rozwiązanie równania jednorodnego stowarzyszonego z danym równaniem niejednorodnym nazywać będziemy rozwiązaniem komplementarnym równania niejednorodnego i oznaczać będziemy symbolem y c (n). Rozwiązanie równania niejednorodnego nazywać będziemy rozwiązaniem szczególnym i oznaczać symbolem y p (n). Następne twierdzenie daje nam algorytm na generowanie wszystkich rozwiązań równania niejednorodnego (16). 9

10 Twierdzenie 4.2. Każde rozwiązanie y (n) równania (16) może być zapisane w postaci k y (n) = y p (n) + a i x i (n), gdzie {x 1 (n), x 2 (n),..., x k (n)} jest zbiorem fundamentalnym rozwiązań jednorodnego równania stowarzyszonego (17). Powyższe stwierdzenie upoważnia nas do zdefiniowania ogólnego rozwiązania równania niejednorodnego jako i=1 y (n) = y c (n) + y p (n). (18) Przejdźmy teraz do wyznaczania szczególnych rozwiązań równań niejednorodnych ze stałymi współczynnikami takich, jak y (n + k) + p 1 y (n + k 1) + + p k y (n) = g (n). (19) Ze względu na prostotę zaprezentujemy tzw. metodę przewidywania zwaną inaczej metodą współczynników nieoznaczonych. Metoda ta ogólnie mówiąc polega na przewidzeniu postaci rozwiązania szczególnego, a następnie podstawieniu jej do równania, co umożliwia sprecyzowanie ostateczne tego rozwiązania. Pamiętajmy jednak, że metoda ta nie jest efektywna dla zupełnie dowolnego ciągu g (n). Jednakże dobrze działa, gdy g (n) jest liniową kombinacją składników postaci a n lub n l lub a n n l. (20) Definicja 4.3. Operator wielomianowy N (E), gdzie E jest operatorem przesunięcia nazywamy anihilatorem g (n), gdy N (E) g (n) = 0. (21) Inaczej mówiąc N (E) jest anihilatorem g (n), gdy g (n) jest rozwiązaniem równania jednorodnego (21). Zatem wyznaczenie anihilatora polega na znalezieniu możliwie najprostszego równania jednorodnego, którego rozwiązaniem jest g (n). Przykład 4.4. Podamy anihilatory pewnych składników wymuszających: g (n) = 3 n N (E) = E 3 g (n) = n 2 + n N (E) = (E 1) 3 g (n) = n ( 2) n N (E) = (E + 2) 2 g (n) = n 2 2 n + n 1 N (E) = (E 2) 3 (E 1) 2. Zapiszmy równanie (19) używając operatora E gdzie p (E) = E k + p 1 E k 1 + p 2 E k p k I. p (E) y (n) = g (n), (22) 10

11 Załóżmy teraz, że N (E) jest anihilatorem ciągu g (n) w (22). Zastosujmy operator N (E) do obu stron równania (22) N (E) p (E) y (n) = 0. (23) Niech λ 1, λ 2,..., λ k będą pierwiastkami charakterystycznymi równania jednorodnego p (E) y (n) = 0 (24) i niech µ 1, µ 2,..., µ l będą pierwiastkami charakterystycznymi równania jednorodnego N (E) y (n) = 0. (25) Musimy rozważyć dwa przypadki: Przypadek 1. Żadne z λ i nie pokrywa się z żadnym µ j. Wówczas y p (n) piszemy jako ogólne rozwiązanie równania (25) z nieoznaczonymi współczynnikami. Podstawiając je do równania (19) wyznaczamy te współczynniki. Przypadek 2. Któreś λ i0 pokrywa się z pewnym µ j0. Dla wyznaczenia rozwiązania szczególnego y p (n) znajdujemy najpierw rozwiązanie ogólne równania (23), a następnie opuszczamy w nim wszystkie składniki, które pojawiają się w ogólnym rozwiązaniu y c (n) równania (24). Dalej, dla wyznaczenia współczynników, postępujemy, jak w Przypadku 1. Przykład 4.5. Rozwiążemy równanie y (n + 2) + y (n + 1) 12y (n) = n 2 n. (26) Pierwiastkami charakterystycznymi jednorodnego równania stowarzyszonego są λ 1 = 3 i λ 2 = 4. Zatem y c (n) = c 1 3 n + c 2 ( 4) n. Ponieważ anihilatorem składnika wymyszającego jest N (E) = (E 2) 2, więc µ 1 = µ 2 = 2 i zbiory pierwiastków charakterystycznych są rozłączne. Zatem y p (n) = a 1 2 n + a 2 n 2 n. Wstawiając ciąg y p (n) do równania (26), dostajemy a 1 2 n+2 +a 2 (n + 2) 2 n+2 +a 1 2 n+1 +a 2 (n + 1) 2 n+1 12a 1 2 n 12a 2 n 2 n = n 2 n, czyli (10a 2 6a 1 ) 2 n 6a 2 n 2 n = n 2 n. Aby powyższa równość zachodziła, musi być spełniony układ równań: { 6a1 + 10a 2 = 0 6a 2 = 1. Rozwiązaniem tego układu równań jest a 1 = 5 18 i a 2 =

12 W konsekwencji y p (n) = n 1 6 n 2n i rozwiązaniem ogólnym danego równania jest y (n) = c 1 3 n + c 2 ( 4) n n 1 6 n 2n. Przykład 4.6. Rozwiążemy równanie y (n + 2) y (n + 1) 6y (n) = 5 3 n. (27) Pierwiastkami charakterystycznymi jednorodnego równania stowarzyszonego są λ 1 = 3 i λ 2 = 2. Zatem y c (n) = c 1 3 n + c 2 ( 2) n. Ponieważ anihilatorem składnika wymuszającego jest N (E) = E 3, więc µ 1 = 3, czyli µ 1 = λ 1. Zauważmy, że dane równanie zapisane przy użyciu operatora przesunięcia jest postaci (E 3) (E + 2) y (n) = 5 3 n. Zatem przykładając do obu stron tego równania anihilator składnika wymuszającego, otrzymujemy równanie jednorodne Rozwiązaniem ogólnym równania (28) jest (E 3) 2 (E + 2) y (n) = 0. (28) ỹ (n) = (a 1 + a 2 n) 3 n + a 3 ( 2) n. Opuszczając w tym rozwiązaniu składniki występujące w y c (n), otrzymujemy y p (n) = a 2 n 3 n. Podstawienie y p (n) do równania (27) daje nam a 2 (n + 2) 3 n+2 a 2 (n + 1) 3 n+1 6a 2 n 3 n = 5 3 n, skąd a 2 = 1 3. W kosekwencji y p (n) = n 3 n 1 i rozwiązaniem ogólnym równania (27) jest y (n) = c 1 3 n + c 2 ( 2) n + n 3 n 1. Przykład zastosowania w finansach. Załóżmy, że kupiliśmy bezterminową obligację, która pod koniec roku daje dywidendę w wysokości I złotych. Jaką kwotę uzyskamy, jeśli nie wydajemy pochodzących z tego źródła dochodów, a stopa procentowa jest stała i wynosi r procent? Ponieważ nie wydajemy 12

13 dochodów, więc mamy do czynienia z procentem składanym. Jeżeli w roku n mamy kwotę M n, to M n+1 = (1 + r) M n + I, n = 0, 1, 2,... Otrzymaliśmy w ten sposób równanie różnicowe, które musimy rozwiązać przy warunku brzegowy M 0 = 0. Jeżeli oznaczymy przez c = 1+r, to nasze równanie przyjmie postać M n+1 cm n = I. Wielomianem pomocniczym jest p (x) = x c. Zatem ogólne rozwiązanie odpowiedniego równania jednorodnego ma postać M n = A c n. Sprawdźmy, czy dane równanie niejednorodne ma stałe rozwiązanie M n = k. Podstawiając do lewej strony dostajemy L = k ck = k (1 c) = rk. Zatem przy k = I r otrzymaliśmy rozwiązanie szczególne równania niejednorodnego. Stąd rozwiązaniem ogólnym tego równania jest M n = I r + A cn. Uwzględnaiając warunek brzegowy M 0 = 0, dostajemy A = I r. Zatem ostatecznym rozwiązaniem naszego problemu jest lub inaczej 5 Zadania M n = I r + I r cn = I r (cn 1) = I cn 1 c 1 M n = I r ((1 + r)n 1). Rozwiąż następujące zagadnienia początkowe: Zadanie 1: y (n + 1) y (n) = 3 ( 1) n, y (0) = 1 2. Zadanie 2: Zadanie 3: y (n + 1) y (n) = 2n + 1, y (0) = 2. y (n + 1) 3y (n) = 5, y (0) =

14 Zadanie 4: Zadanie 5: y (n + 1) 2y (n) = 4 3 n, y (0) = 7. y (n + 1) + 2y (n) = n ( 2) n + 5, y (0) = 2 3. Zadanie 6: y (n + 2) y (n + 1) 2y (n) = 2n n, y (0) = 11 2, y (1) = Zadanie 7: y (n + 2) + y (n + 1) 2y (n) = 2n + ( 2) n, y (0) = 1, y (1) = Zadanie 8: y (n + 3) 7y (n + 2) + 8y (n + 1) + 16y (n) = 10 4 n+2 36, y (0) = 0, y (1) = 4, y (2) = 96. Odpowiedzi: 1. y (n) = 3 2 ( 1)n y (n) = n y (n) = 3 n y (n) = 3 2 n n. 5. y (n) = ( n 2 + n 4 ) ( 2) n y (n) = ( 1) n n n n y (n) = ( 2) n ( 1 6 n + 1) n2 5 9 n. 8. y (n) = ( n 2 + n ) 4 n + 2 ( 1) n 2. 14

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Całka nieoznaczona, podstawowe wiadomości

Całka nieoznaczona, podstawowe wiadomości Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Przestrzenie wektorowe

Przestrzenie wektorowe Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Zajęcia nr. 6: Równania i układy równań liniowych

Zajęcia nr. 6: Równania i układy równań liniowych Zajęcia nr. 6: Równania i układy równań liniowych 13 maja 2005 1 Podstawowe pojęcia. Definicja 1.1 (równanie liniowe). Równaniem liniowym będziemy nazwyać równanie postaci: ax = b, gdzie x oznacza niewiadomą,

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Dwa równania kwadratowe z częścią całkowitą

Dwa równania kwadratowe z częścią całkowitą Dwa równania kwadratowe z częścią całkowitą Andrzej Nowicki Wydział Matematyki i Informatyki Uniwersytet M. Kopernika w Toruniu anow @ mat.uni.torun.pl 4 sierpnia 00 Jeśli r jest liczbą rzeczywistą, to

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL. Podstawy matematyki szkolnej

RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL. Podstawy matematyki szkolnej RÓWNANIA KWADRATOWE ZBIGNIEW STEBEL Podstawy matematyki szkolnej WAŁBRZYCH 01 Spis treści 1 Wstęp Równania stopnia drugiego.1 Teoria i przykłady............................. Podstawowe wzory skróconego

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Dane są wielomiany, i. Znajdź wielomian. Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem.

Dane są wielomiany, i. Znajdź wielomian. Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem. Zadanie 1 Dane są wielomiany, i Znajdź wielomian To łatwe Iloczyn dwóch wielomianów jest wielomianem, suma dwóch wielomianów jest wielomianem Zadanie 2 Podziel (z resztą) wielomian przez wielomian Przykro

Bardziej szczegółowo

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami

Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Rozwiązaniem jest zbiór (, ] (5, )

Rozwiązaniem jest zbiór (, ] (5, ) FUNKCJE WYMIERNE Definicja Miech L() i M() będą niezerowymi wielomianami i niech D { R : M( ) 0 } Funkcję (*) D F : D R określoną wzorem F( ) L( ) M( ) nazywamy funkcją wymierną Funkcja wymierna, to iloraz

Bardziej szczegółowo

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację

Bardziej szczegółowo

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x. Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia

Bardziej szczegółowo

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa...

Funkcje i tabele. Paweł Bednarz 29 marca Funkcje Funckja liniowa Własności funkcji liniowej Funkcja kwadratowa... Funkcje i tabele Paweł Bednarz 29 marca 2015 Spis treści 1 Funkcje 2 1.1 Funckja liniowa............................ 2 1.1.1 Własności funkcji liniowej.................. 2 1.2 Funkcja kwadratowa.........................

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s) = s n + 1 s n 1 ++a 1 s+a 0, 1) gdzie n N, a i R i = 0,,n), 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i i = 0,,n)

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo