Analiza Matematyczna część 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza Matematyczna część 5"

Transkrypt

1 [wersja z 14 V 6] Analiza Matematyczna część 5 Konspekt wykładu dla studentów fizyki/informatyki Akademia Świętokrzyska 5/6 Wojciech Broniowski 1

2 Równania różniczkowe

3 Definicje, klasyfikacja Równanie różniczkowe zwyczajne ma ogólną postać F( x, y( x), y'( x),...) =, gdzie... oznaczają możliwosć wystąpienia wyższych pochodnych. Zmienna x jest zmienną niezależną, a y( x)jest szukaną funkcją. Rząd równania to najwyższy rząd pochodnej. W szczególnosci, równanie różniczkowe rzędu pierwszego ma postać F( x, y, y') =. Równanie różniczkowe cząstkowe ma ogólną postać yx ( 1,..., xn) yx ( 1,..., xn) F( x1, x,..., xn, y( x1,..., xn),,...,,...) = x x (równaniami cząstkowymi nie bedziemy się zajmować) 1 n Uklad równań różniczkowych zwyczajnych na n funkcji y ( x) ma postać F( x, y ( x),..., y ( x), y '( x),..., y '( x),...) i 1 n 1 n =, i = 1,..., n i Model fizyczny/ekonomiczny/... r. różniczkowe 3

4 Przykład: oscylator harmoniczny Ftxt (, ( ), xt ( ), xt ( )) = r. mechaniki f = ma prawo Newtona k kx t = mx t k m > = ω m x () t = ω x() t r. różniczkowe do rozwiązania ( ) ( ),,, oscylator harmoniczny xt ( ) = Acos( ωt) + Bsin( ωt) ogólna postać rozwiązania = ω ω + ω ω = ω Sprawdzenie: xt ( ) A sin( t) B cos( t), xt ( ) xt ( ) Warunki początkowe: xt () = x, xt () = v A= x, Bω = v v xt () = x cos( ωt) + sin( ωt) rozwiązanie spelniające war. początkowe ω 4

5 Przykład: rozpad promieniotwórczy / wzrost populacji dn() t = λnt (), λ > dt (ubytek na jedn. czasu proporcjonalny do liczby atomów) Rozw.: Nt ( ) = Nexp( λt) liczba nierozpadlych atomów po czasie t λ λ Nt ( ) = Nexp( λt) populacja w czasie t, prawo wzrostu Malthusa Bardziej realistyczne równanie: dn() t = λnt Nt N dt x = N N x = λx x) * ()[1 ()/ ], * / (1 (nieliniowosć!) 5

6 Ogólne uwagi i twierdzenia Rozwiązanie yx ( ) r.r. nazywamy calką r.r., a wykres ( xyx, ( )) krzywą calkową. Calka ogólna równania rzę du pierwszego jest postaci yx ( ) = f( x, C), gdzie C jest stalą. Stalą tę wyznacza się z warunku poczatkowego y = f( x, C). Rozwiązanie osobliwe to rozwiązanie, którego nie można uzyskać z postaci f( x, C) dla żadnej wartosci C. y ' Przyklad: y' = y = 1 ( y) ' = 1 y = x+ C, x+ C y ( x+ C), x C yx ( ) =, x < C y( x ) = rozw. osobliwe 6

7 Jednoznaczność rozwiązań Tw. (o jednoznacznosci rozwiązań) R. postaci y' = f( x, y), f( x, y) i f ( x, y) ciagle w pewnym otoczeniu ( x, y ) y otoczenie ( x a, x + a), w którym jest okreslona dokladnie jedna funkcja φ( x) o wlasnociach: φ'( x) = f ( x, φ( x)), φ( x ) = y. 7

8 Równanie o zmiennych rozdzielonych dy p( y) y '( x) = q( x) p( y) = q( x) p( y) dy = q( x) dx p( y) dy = q( x) dx dx P( y) = p( y) dy, Q( x) = q( xd ) x, Rozwiązanie jest dane w postaci uwiklanej! 3 ' 3, ' P( y) = Q( x) + C, C pewna stala d dy d d D: ( P( y( x)) Q( x) C) = P( y) Q( x) = y' p( y) q( x) = dx dx dy dx Przyklad: 3 dy() t y t 3 3 y = t y dy = tdt = + C y = t + 3C dt 3 3 C = C y = t + C 3 y t C ' Warunek początkowy: y( t ) = y = + y = ( t t ) + y 3 3 Z nieskończonej liczby rozwiązań z parametrem C warunek początkowy wybiera jedno! 8

9 Rozwiązanie równania populacji ( λ = 1): dx dx x x = x(1 x) dt ln t C exp( t C) dt = = + = + x(1 x) x 1 x = exp( C)exp( t) 1 = C' exp( t) x( t) = x x 1 C' exp( t) 1 war. początkowy: xt ( = ) = x 1 = C' x xt () = 1 1 x + x 1 exp( 1 x x x 1 + exp( t) exp( t) t ln, x (,) ( 1, ) x x 1 x 1 x = x( t) = x :lim x( t) = 1 t t) 9

10 Jednoparametrowe rodziny krzywych R. populacji x = x(1 x) xt () = 1 1 x + t x 1 exp( ) Inne równanie y y = t yt () 3t = 3 + y 3 1

11 Równania sprowadzalne do równania o zmiennych rozdzielonych y' = f( ax + by + c) u = ax+ by + c u' = a+ by ' = a+ bf ( u) u ' = 1 a+ bf( u) R. jednorodne w x i y: y y'( x) = f x y ux ( ) =, y= ux, y' = ux ' + u x u' x+ u = f( u) u ' 1 =, f( u) u, x f( u) u x 11

12 Równanie zupełne dy P Q Pxy (, ) + Qxy (, ) =, = dx y x F F Wówczas istnieje F( x, y) : = P, = Q x y df( x, y) F F dy = + = P+ Qy' = F( x, y) = C dx x y dx F = P F( x, y) = P( x, y) dx+ φ( y) = χ( x, y) + φ( y) x F( x, y) χ( x, y) φ( y) = + = Q daje się rozwiązać dla φ( y) y y y 1

13 Przyklad: 3 3 (4x 6 xy ) dx (9x y 3) dy P Q F F = = = = + = = + y x x y xy, P 4x 6 xy, Q 9x y (, ) (, ) (4 6 ) 3 ( ) F x y = P x y dx = x + xy dx = x + x y + φ y F y F x = = 9x y + '( y) = = 9x y + 3 '( ) = 3 ( ) = 3 + φ 4 3 (, y) C = x + 3x y + 3 y + C' = 4 3 Rozwiązanie: x + 3x y + 3 y + C' = Q φ y φ y y c 13

14 Czynnik całkujący dy Czynnik calkujący to funkcja μ( x, y) : μ( x, y) P( x, y) + μ( x, y) Q( x, y) = jest dx r. zupelnym, czyli ( μp) = ( μq). Funkcja taka istnieje zawsze, ale tylko w niektórych y x przypadkach można ją znaleźć w prosty sposób, np. gdy jest postaci μ( x), μ( y), lub f ( x) g( y) Przyklad: (1 ) + ( ) = x y dx x y x dy P Q = x = y 3 x. Szukamy μ( x) : ( μ( x)(1 x y)) = ( μ( x) x ( y x)) y x y x x μ( x) μ'( x) x ( y x) μ( x)(x 3 x ) μ '( x) μ( x) x μ ( x) = = + y = - (przyjmujemy c = 1). Mnożymy r.: ( x y) dx+ ( y x) dy =, co jest r. zupelnym. c x 14

15 Równanie liniowe dy Jednorodne: y' = p( x) y = p( x) ln y = p( x) dx C y + x y = Cexp ( p( x) dx) lub y = y exp p() t dt x Niejednorodne: y' = p( x) y + qx ( ). Różnica dwóch rozwiązań r. niejednorodnego spelnia r. jednorodne: y' = y ' y ' = ( pxy ( ) 1 + qx ( )) ( pxy ( ) + qx ( )) = px ( )( y y ) = pxy ( ) 1 1 rozw. ogólne r. niejednorodnego jest suma rozw. szczególnego r. niejednorodnego i rozw. ogólnego r. jednorodnego Metoda I: odgadniecie rozw. szczególnego r. Metoda II: uzmiennianie stalej. niejednorodnego. 15

16 Uzmiennianie stałej y' = p( x) y + q( x), P( x) = p( x) dx, y( x) = C( x)exp( P( x)) C'( x)exp( Px ( )) + Cxpx ( ) ( )exp( Px ( )) = pxcx ( ) ( )exp( Px ( )) + qx ( ) C'( x) = qx ( )exp( Px ( )) Cx ( ) = qx ( )exp( Px ( )) dx yx ( ) = qx ( ) exp( Px ( )) dx exp( P( x)) rozw. szczególne Dodajemy rozw. ogólne r. jednorodnego Przyklad: ( c ) yx ( ) = + qx ( )exp( Px ( )) dx exp( Px ( )) szukane rozw. ogólne ( ) y' = xy xexp x x R. jedn. : y' = xy, y = Cexp( xdx), y = C( x) exp x x x x yx ( ) = c xexp dx exp = c exp exp 16

17 Równanie Bernouilliego y' = p( x) y + q( x) y α 1 α z y z x α p x z x α q x = '( ) = (1 ) ( ) ( ) + (1 ) ( ) Równanie typu F(x,y,y )= Podstawienie z = y',co daje ukad równan z = y', F( x, z, z') 17

18 Układy równań różniczkowych x1' = f1( t, x1,..., xn ) x' = f( t, x1,..., xn ) x' = f( t, x) (*)... xn ' = fn( t, x1,..., xn) 1. Jednoznacznosć rozwiązania. Zależnosć od warunku początkowego 3. Stabilnosć ("mala zmiana warunku poczatkowego powoduje male zmiany rozwiazania dla duzych t") n Tw. f :[ t α, t + α] K( x, r) R ciągla ( α >, r > ), oraz spelnia warunek Lipschitza, tzn. L > t [ t α, t + α] x, y K( x, r) : f( t, x) f( t, y) L x y δ > oraz dokladnie jedno rozwiazanie ukladu (*) x : ( t δ, t + δ) K( x, r) spelniające warunek poczatkowy xt ( ) = x ( lokalna jednoznacznosć). (rozwiązanie zależy od n parametrów - calkowity rząd ukladu równań) 18

19 Jeżeli f ma ciągle pochodne cząstkowe, to spelnia war. Lipschitza, więc uklad z taką funkcją f ma jednoznaczne rozwiązanie z danym warunkiem początkowym. Jesli f nie spelnia war. Lipschitza, to równanie może mieć więcej niż 3 1/3 jedno rozwiązanie, np. x' = x ma dwa rozwiązania: x1 ( t) = (osobliwe) x t = t x ) =. n n Przedlużanie rozwiązania: x1 :( ab, ) R, x :( c, d) R, ( a, b) ( cd, ), wtedy x jest przedlużeniem x. Rozwiązanie (*) jest wysycone wzbiorze A, 3/ i ( ). Obydwa spelniają war. początkowy ( 1 jeżeli jedynym jego przedlużeniem w zbiorze A jest ono samo. n Tw. f : A= ( ab, ) U R ciągla i spelniająca warunek Lipschitza w pewnym otoczeniu każdego punktu A. Wtedy dla dowolnego punktu ( t, x) A istnieje dokladnie jedno rozwiązanie wysycone spelniajace xt ( ) = x. 19

20 R. r. liniowe rzędu drugiego ay '' + by ' + c = f( x), a, a, b, c stale R. jednorodne: ay '' + by ' + cy =. y = rx ar + br + c = Δ = b ac Podstawiamy exp( ) (r. charakterystyczne), 4 b ± Δ 1) Δ>, r1/ =, y = C1 exp( rx 1 ) + C exp( r x) a b ) Δ=, r =, y = ( C1 + xc ) exp( rx) a b Δ 3) Δ<, α =, β =, y = exp( αx) C1cos( βx) + Csin( x) a a [ β ] b± i Δ (lub y = C1exp( rx 1 ) + C exp( rx), gdzie r1/ = a Przyklad: uklad RLC, Q ladunek na kondensatorze dq dq Q L 1 L + R + =, Δ = R 4, ω = dt dt C C LC R = Qt () = Ccos( ωt) + C sin( ωt) 1

21 R. niejednorodne - uzmiennianie C i C lub odgadnięcie Przyklad: wymuszony obwód RLC, f ( t) = U cos( ω t), ω = 1 Odgadujemy rozw. szczególne ukladu jednorodnego: Qt ( ) = Acos( ω t) + B sin( ω t), podstawienie A B LAω + RBω + cos( ωt) + LBω RAω + = Ucos( ωt) C C ( U ω ω ) A = A ( ) LAω + RBω + = U L R C ω ω + ω L B LBω RAω + = U Rω B = C L ( ) R ω ω + ω L To rozwiązanie dodajemy do rozw. ogólnego równania jednorodnego. 1 LC 1

22 Układ równań liniowych a11() t a1 n () t x '( t) = A( t) x() t + b(), t A() t = (*) an1( t) ann( t) n Tw: t ( a, b), x R, aij ( t) ciągle jedyne rozwiązanie (*) spelniajace xt () = x. Rozwiązanie jest okreslone w calym przedziale ( ab, ).

23 R. Różniczkowe cząstkowe 3

24 Szereg Fouriera 4

25 Transformata Fouriera 5

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

1 Równania różniczkowe drugiego rzędu

1 Równania różniczkowe drugiego rzędu Równania różniczkowe drugiego rzędu Najpierw zajmiemy się równaniami różniczkowymi rzędu drugiego, w których y nie występuje w sposób jawny, tzn. F (x, y, y ) = 0 (.) Równanie takie rozwiązujemy poprzez

Bardziej szczegółowo

1 Równanie różniczkowe pierwszego rzędu

1 Równanie różniczkowe pierwszego rzędu 1 Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład 1. Znaleźć krzywą dla której

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Wiele obiektywnych prawidłowości przyrodniczych udaje się zapisać w postaci równości formalnej F (x, y(x), y (1) (x), y () (x),..., y (n) (x)) = 0, gdzie y (k) (x) to k ta

Bardziej szczegółowo

1. Równanie różniczkowe pierwszego rzędu

1. Równanie różniczkowe pierwszego rzędu 1. Równanie różniczkowe pierwszego rzędu Wiele zagadnień geometrycznych, fizycznych, ekonomicznych i innych prowadzi do zależności, w których pojawiają się pochodne. Przykład. Znaleźć krzywą dla której

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas

Równania różniczkowe. Równania różniczkowe zwyczajne rzędu pierwszego. Małgorzata Wyrwas Równania różniczkowe Równania różniczkowe zwyczajne rzędu pierwszego Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/49 Równania różniczkowe

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk

Równania różniczkowe. Analiza Matematyczna. Aleksander Denisiuk Analiza Matematyczna Równania różniczkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Analiza

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne. P. F. Góra Komputerowa analiza zagadnień różniczkowych 1. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Zasady zaliczenie ćwiczeń egzamin ustny; na egzaminie

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1

RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 RÓWNANIA RÓŻNICZKOWE WYKŁAD 1 Przedmiot realizowany w układzie wykład 2 godz. tygodniowo ćwiczenia 2 godz. tygodniowo Regulamin zaliczeń www.mini.pw.edu.pl/~figurny 2 Program zajęć Równania różniczkowe

Bardziej szczegółowo

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Równania różniczkowe. Równania różniczkowe zwyczajne rzędun,n 2. Małgorzata Wyrwas. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równania różniczkowe zwyczajne rzędun,n 2 Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe str. 1/38 Równania różniczkowe zwyczajne

Bardziej szczegółowo

[wersja z 5 X 2010] Wojciech Broniowski

[wersja z 5 X 2010] Wojciech Broniowski [wersja z 5 X 1] Analiza Matematyczna część 4 Konspekt wykładu dla studentów fizyki Akademia Świętokrzyska 1/11 Wojciech Broniowski 1 Analiza funkcji wielu zmiennych Przestrzeń wektorowa unormowana : X

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Równania różniczkowe zwyczajne analityczne metody rozwiazywania

Równania różniczkowe zwyczajne analityczne metody rozwiazywania Równania różniczkowe zwyczajne analityczne meto rozwiazywania Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Plan Określenia podstawowe 1 Wstęp Określenia podstawowe

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych 2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5

RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

opracował Maciej Grzesiak Całki krzywoliniowe

opracował Maciej Grzesiak Całki krzywoliniowe opracował Maciej Grzesiak Całki krzywoliniowe 1. Definicja całki krzywoliniowej nieskierowanej Rozważmy następujący problem. Dany jest przewód elektryczny na którym rozmieszczone są ładunki. Przypuśćmy,

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Automatyka i robotyka studia stacjonarne sem. I, rok ak. 2009/2010 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego...

1 Wiadomości wstępne z równań różniczkowych Podstawowe definicje Interpretacja geometryczna równania rzędu pierwszego... Skrypt powstał na bazie wykładów z przedmiotu Równania różniczkowe, które prowadzę dla studentów drugiego semestru kierunku Automatyka i Robotyka na Wydziale Elektrotechniki i Automatyki Politechniki Gdańskiej.

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU

26. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE DRUGIEGO RZĘDU 6. RÓWNANIA RÓŻNIZKOWE ZWYZAJNE DRUGIEGO RZĘDU 6.. Własności ogólne Równaniem różniczkowym zwyczajnym rzęd drgiego nazywamy równanie, w którym niewiadomą jest fnkcja y jednej zmiennej i w którym występją

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Operatory samosprzężone

Operatory samosprzężone Operatory samosprzężone grudzień 2013 Operatory samosprzężone Operatory hermitowskie (3.29) (g, Lf) = (Lg, f) albo (3.30) g (x){l(x)f(x)}w(x)dx = {L(x)g(x)} f(x)w(x)dx. (Użyliśmy nawiasu klamrowego jako

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Równania różniczkowe zwyczajne zadania z odpowiedziami

Równania różniczkowe zwyczajne zadania z odpowiedziami Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne

Bardziej szczegółowo

Rozwiązania wybranych zadań z równań różniczkowych. mgr inż. Piotr Kowalski

Rozwiązania wybranych zadań z równań różniczkowych. mgr inż. Piotr Kowalski Rozwiązania wybranych zadań z równań różniczkowych mgr inż. Piotr Kowalski 9 grudnia 03 Wersje numer data autor opis 0. 3.03.03 Piotr Kowalski Rozwiązanie równania jednorodnego z zajęć (wykryty błąd na

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Stochastyczne równania różniczkowe, studia II stopnia

Stochastyczne równania różniczkowe, studia II stopnia Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Wykład 8. Matematyka 2, semestr letni 2010/2011

Wykład 8. Matematyka 2, semestr letni 2010/2011 Wykład 8. Matematyka 2, semestr letni 21/211 Równania różniczkowe są podstawowym narzędziem w fizyce matematycznej. Przyjrzyjmy się poniższym przykładom: Przykład 1. Jeśli N(t) oznacza liczbę atomów pierwiastka

Bardziej szczegółowo

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego

RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego NIELINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. RÓWNANIE BERNOULLIEGO. RÓWNANIE JEDNORODNE. KRZYWE ORTOGONALNE. RÓWNANIE BERNOULLIEGO. Nieliniowe równanie różniczkowe Bernoulliego ma postać:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =

Bardziej szczegółowo

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a, bud. Agro

Bardziej szczegółowo

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych [ ] e Zadanie 1 Pokazać, że X(t) = 2t cos t sin t e 2t jest specjalną macierzą fundamentalną w sin t cos t [ 2 cos chwili τ = 0 układu

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Równania różniczkowe zwyczajne pierwszego rzędu, cd

Równania różniczkowe zwyczajne pierwszego rzędu, cd Równania różniczkowe zwyczajne pierwszego rzędu, cd Marcin Orchel Spis treści 1 Wstęp 1 1.1 Równania różniczkowe zwyczajne w postaci uwikłanej........... 1 1.1.1 Rozwiązanie w postaci parametrycznej................

Bardziej szczegółowo

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011

Wykład 15. Matematyka 3, semestr zimowy 2011/ listopada 2011 Wykład 5 Matematyka 3, semestr zimowy / 9 listopada W trakcie tego i następnych kilku wykładów zajmować się będziemy analizą zespoloną, czyli różniczkowaniem i całkowaniem funkcji argumentu zespolonego

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Przykłady i zadania. Andrzej Palczewski

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Przykłady i zadania. Andrzej Palczewski RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Przykłady i zadania Andrzej Palczewski Spis treści Przedmowa 5 1 Podstawowe pojęcia 7 2 Równania skalarne 13 2.1 Równania o zmiennych rozdzielonych................... 13

Bardziej szczegółowo

Wykład z modelowania matematycznego.

Wykład z modelowania matematycznego. Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Załóżmy, że równanie różniczkowe x (t) = f (t, x) (1) ma rozwiązanie ogólne x(t) = ϕ(t, c). (2) Rodzina funkcji

Bardziej szczegółowo

TRANSFORMATA FOURIERA

TRANSFORMATA FOURIERA TRANSFORMATA FOURIERA. Wzór całkowy Fouriera Wzór ten wykorzystujemy do analizy funkcji nieokresowych; funkcje te mogą opisywać np.przebiegi eleektryczne. Najpierw sformułujmy tzw. warunki Dirichleta.

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Andrzej Palczewski

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Andrzej Palczewski RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Andrzej Palczewski Spis treści 1 Definicje i przykłady 5 1.1 Definicja równania różniczkowego..................... 5 1.2 Zagadnienie początkowe..........................

Bardziej szczegółowo

Analiza matematyczna 2 zadania z odpowiedziami

Analiza matematyczna 2 zadania z odpowiedziami Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

%*$*+ RÓWNANIA RÓ NICZKOWE ZWYCZAJNE I CZ STKOWE ZADANIA Z MATEMATYKI SU 1578. Janina Niedoba Wies aw Niedoba

%*$*+ RÓWNANIA RÓ NICZKOWE ZWYCZAJNE I CZ STKOWE ZADANIA Z MATEMATYKI SU 1578. Janina Niedoba Wies aw Niedoba SU 578 AKADEMIA GÓRNICZO-HUTNICZA IM.STANIS AWA STASZICA W KRAKOWIE Janina Niedoba Wies aw Niedoba RÓWNANIA RÓ NICZKOWE ZWYCZAJNE I CZ STKOWE ZADANIA Z MATEMATYKI Pod redakcj Bogdana Choczewskiego Wydanie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne

4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne Równania w postaci Leibniza 4 1 4 Równania różniczkowe w postaci Leibniza, równania różniczkowe zupełne 4.1 Równania różniczkowe w postaci Leibniza Załóżmy,żeP:D RiQ:D Rsąfunkcjamiciągłymiokreślonymina

Bardziej szczegółowo

CAŁKI NIEOZNACZONE C R}.

CAŁKI NIEOZNACZONE C R}. CAŁKI NIEOZNACZONE Definicja 1 Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) = f(x) dla każdego x I. Np. funkcjami pierwotnymi funkcji f(x) = sin x na R są cos x, cos x+1, cos

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568 Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Kryptografia - zastosowanie krzywych eliptycznych

Kryptografia - zastosowanie krzywych eliptycznych Kryptografia - zastosowanie krzywych eliptycznych 24 marca 2011 Niech F będzie ciałem doskonałym (tzn. każde rozszerzenie algebraiczne ciała F jest rozdzielcze lub równoważnie, monomorfizm Frobeniusa jest

Bardziej szczegółowo