ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EMISJI GAZÓW"

Transkrypt

1 ZASTOSOWANIE PROGRAOWANIA DYNAICZNEGO DO OPRACOWANIA STRATEGII REDUKCJI EISJI GAZÓW ANDRZEJ KAŁUSZKO Instytut Bada Systemowych Streszczene W pracy opsano zadane efektywnego przydzału ogranczonych rodków fnansowych przeznaczonych na redukcj emsj zaneczyszcze gazowych w ródłach tej emsj. Celem jest mnmalzacja funkcj strat rodowskowych, zwzanych z emsj w okrelonym okrese. Redukcja emsj w ródle jest dokonywana przez wprowadzene do tego ródła jednej z dostpnych technolog redukcj emsj, charakteryzujcych s kosztam nwestycyjnym kosztam operacyjnym (eksploatacyjnym). Do rozwzana zadana zaproponowano metod programowana dynamcznego. Słowa kluczowe: emsja zaneczyszcze, redukcja emsj, programowane dynamczne. Wstp W pracy jest rozwaany problem opracowana strateg redukcj emsj gazów do atmosfery. W pewnym regone jest połoonych N zakładów produkcyjnych ródeł emsj zaneczyszcze gazowych. Kady z zakładów jest scharakteryzowany przez welko produkcj welko emsj zaneczyszcze do atmosfery. Zakładamy, e welko emsj w kadym zakładze jest proporcjonalna do welkoc produkcj. Wprowadzamy nastpujce oznaczena: P welko produkcj -tego zakładu, =,,, N, E welko emsj zaneczyszcze -tego zakładu. Produkcja P emsja E s powzane przez współczynnk A w nastpujcy sposób: E = A * P () Oznacza to, e welko emsj ze ródła ne jest zwzana wyłczne z welkoc produkcj, ale take z jej rodzajem. Emsja kadego zakładu moe zosta zmnejszona przez zastosowane jednej z technolog redukcj emsj. Zakładamy, e do zakładu mona wprowadz tylko jedn technolog w tym samym czase. Wprowadzene technolog do zakładu pocga za sob koszty nwestycyjne koszty operacyjne (eksploatacyjne). Koszty nwestycyjne s ponoszone jednorazowo, koszty operacyjne s ponoszone przez cały czas stosowana technolog. Wprowadzamy nastpujce oznaczena: j f -- jednostkowe (lczone na jednostk produkcj) koszty nwestycyjne, zwzane wprowadzenem technolog j do zakładu koszty jednorazowe, f -- jednostkowe (lczone na jednostk produkcj) koszty operacyjne, zwzane wprowadzenem j technolog j do zakładu koszty ponoszone w jednostce czasu (np. roku).

2 Andrzej Kałuszko 69 Zastosowane programowana dynamcznego do opracowana strateg redukcj emsj gazów Całkowte koszty nwestycyjne s opsane wzorem: P () f j za całkowte koszty operacyjne (ponoszone w kadej jednostce czasu) wzorem P f j Kada technologa redukcj emsj jest scharakteryzowana przez jej efektywno e j, tj. stope w jakm redukuje emsj. Zakładamy, e efektywno kadej dostpnej technolog jest jednakowa dla kadego zakładu, w którym jest stosowana. ona zatem napsa: j 0 E = E ( e ) () lub j j E = P A e ) (3) ( j gdze E jest welkoc pocztkowej emsj ze ródła (bez redukcj emsj), 0 j E jest welkoc emsj ze ródła po wprowadzenu technolog j redukcj emsj.. Ops zadana Rozwamy teraz nastpujce zadane. W zadanym okrese T, złoonym z pewnej lczby jednakowych przedzałów (np. rocznych) mamy do dyspozycj fundusze przeznaczone na redukcj emsj w rozpatrywanych Nródłach. Fundusze maj t sam warto w kadym przedzale mog by przeznaczone na pokryce kosztów nwestycyjnych operacyjnych wprowadzena technolog redukcj emsj w ródłach. Stosujemy tu nastpujce oznaczena: t =,,, T numer przedzału czasowego, C t fundusze do dyspozycj w przedzale t, przy czym C = C = = C T. Zadane polega na optymalnym rozdysponowanu dostpnych funduszy, tzn. tak przydzał technolog redukcj do ródeł emsj, by sumaryczna emsja z Nródeł w okrese T była mnmalna. Przykładowe molwe rozkłady czasowe kosztów nwestycyjnych operacyjnych technolog redukcj s pokazane na rys. rys.. Rysunek 3 przedstawa podany rozkład w czase kosztów nwestycyjnych operacyjnych dla wszystkch rozpatrywanych ródeł.

3 70 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa aterały, nr 0, 007 Rysunek. Rozkład czasowy kosztów nwestycyjnych operacyjnych dla przykładowego ródła. Rysunek. Rozkład czasowy kosztów nwestycyjnych operacyjnych dla przykładowego ródła.

4 Andrzej Kałuszko 7 Zastosowane programowana dynamcznego do opracowana strateg redukcj emsj gazów Rysunek 3. Przykładowy rozkład czasowy kosztów nwestycyjnych operacyjnych dla welu ródeł. W dalszym cgu wprowadzmy dwe zmenne bnarne, zdefnowane nastpujco.. {0, } =, w przypadku, jel w przedzale t jest eksploatowana technologa j w ródle, = 0, w przypadku przecwnym. Zmenne j = musz spełna ogranczene: =, dla =,,, N, t =,,, T (4). y {0, } y =, w przypadku, jel w przedzale t s ponoszone koszty nwestycyjne, zwzane z wprowadzenem technolog j w ródle, y =0, w przypadku przecwnym. Zmenne j = y musz spełna ogranczene: y =, dla =,,, N, t =,,, T (5) Przykładowe rozkłady czasowe wartoc zmennych y s pokazane na rys. 4 5.

5 7 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa aterały, nr 0, 007 Rysunek 4. Rozkład czasowy zmennej y. Na podstawe defncj zmennych Rysunek 5. Rozkład czasowy zmennej. y spełnone jest ogranczene y, dla =,,, N, j =,,,,, t =,,, T (6) + Oznacza to, e ne jest molwe jednoczesne nwestowane eksploatacja. Koszty nwestycyjne dla ródła w całym okrese T s podane przez wzór: T t= gdze y f P (7)

6 Andrzej Kałuszko 73 Zastosowane programowana dynamcznego do opracowana strateg redukcj emsj gazów f - cz kosztów nwestycyjnych, zwzanych z wprowadzenem technolog j do ródła, przypadajca na przedzał t. Koszty nwestycyjne, zwzane technolog j w ródle w przedzale t s podane przez wzór: y f P (8) Koszty operacyjne technolog j dla ródła w przedzale t s podane przez wzór: gdze f = f j f P (9) Koszty operacyjne dla wszystkch ródeł w przedzale t podaje wzór: N = f P (0) Koszty nwestycyjne dla wszystkch ródeł w przedzale t podaje wzór: N = y f P () Suma kosztów operacyjnych nwestycyjnych dla wszystkch ródeł w przedzale t mus by ne wksza od ogranczena C t. N = ( f + y f ) P C t =,,..., T () t. ona teraz zapsa omawane zadane jako mnmalzacj nastpujcej funkcj zmennych T t= N = P A ( e ) (3) przy ogranczenach zapsanych powyej. 3. Zastosowane programowana dynamcznego j Opsane powyej zadane, nawet dla prostych przypadków praktycznych, ma bardzo du lczb zmennych bnarnych z tego powodu jego analtyczne rozwzane ne jest molwe. Pozostaj metody przyblone. W dalszym cgu zostane przedstawone zastosowane programowana dynamcznego do rozwzana postawonego zadana. Z punktu wdzena ograncze kosztowych mamy do czynena z jednym rodzajem zasobów perwotnym. Z punktu wdzena wprowadzana technolog mamy do czynena z zasobam

7 74 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa aterały, nr 0, 007 wtórnym dwóch rodzajów: przeznaczonym na nwestycje przeznaczonym na eksploatacj. Na potrzeby zastosowana programowana dynamcznego dostpne zasoby dyskretyzujemy w tak sposób, jak pokazany na rys. 6. Dyskretyzacja zasobów wzgldem os czasu jest naturalna, ponewa tak s zdefnowane zasoby. Dyskretyzacja zasobów wzgldem os wartoc jest arbtralna dostosowana do molwoc oblczenowych. Rysunek 6. Dyskretyzacja zasobów W dalszym cgu proponujemy cztery molwe schematy rozwzana zadana przy uycu programowana dynamcznego. S one przedstawone ponej. Schemat nr. Zakładamy, e dysponujemy tylko jednym, nowym rodzajem zasobu, utworzonego sztuczne. Jest on zdefnowany w ten sposób, e dotyczy jednakowej wartoc zasobu perwotnego dla całego rozpatrywanego okresu T. Na rys. 7 zaznaczono jednostk nowego zasobu. Rysunek 7. Jednostka zasobu (zacemnone pola) w schemace nr Przy takm zdefnowanu zasobu zadane perwotne jest sprowadzone do jednowymarowego zadana programowana dynamcznego. Zgodne z zasad programowana dynamcznego, w kolej-

8 Andrzej Kałuszko 75 Zastosowane programowana dynamcznego do opracowana strateg redukcj emsj gazów nych krokach przydzelamy odpowedne welkoc zasobu do kolejnych zmennych (w tym przypadku ródeł emsj). Po przydzelenu zasobu do zmennej wyberamy najkorzystnejszy (maksymalne redukujcy emsj z tego ródła) warant nwestowana, tzn. technolog tym samym moment jej rozpoczca dzałana. Wad tego schematu jest to, e uzyskane rozwzane moe by nskej jakoc z powodu nepełnego wykorzystana zasobów. Tak przykład jest pokazany na rys. 8. Powodem tego jest sztywny przydzał porcj zasobów do kadego ze ródeł osobno. Rysunek 8. Rozkład czasowy kosztów nwestycyjnych eksploatacyjnych dla dwóch przykładowych ródeł schemat nr Schemat nr. Schemat nr jest ulepszon wersj schematu nr, w którym odstpujemy od sztywnego rozdzału zasobów na ródła. Przy przydzale zasobów do kolejnego ródła uwzgldnamy zasoby newykorzystane przez poprzedno rozpatrywane ródła. Powoduje to pełnejsze wykorzystane zasobów tym samym uzyskane lepszego rozwzana. Dla przypadku pokazanego na rys. 8 zmana polega na przydzale dodatkowych zasobów newykorzystanych przez ródło nr do ródła nr. W schemace nr lepsze rozwzane jest uzyskwane kosztem wydłuena czasu oblcze. Przykład lepszego rozwzana n uzyskane w schemace nr jest pokazany na rys. 9.

9 76 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa aterały, nr 0, 007 Rysunek 9. Rozkład czasowy kosztów nwestycyjnych eksploatacyjnych dla dwóch przykładowych ródeł schemat nr Schemat nr 3 Zakładamy, e dysponujemy tylko jednym rodzajem zasobu, który moe by przeznaczony na koszty nwestycyjne koszty eksploatacyjne w dowolnym przedzale czasowym. Na rys. 0 zaznaczono jednostk tego zasobu. Rysunek 0. Jednostka zasobu (zacemnone pola) w schemace nr 3 Przy takm zdefnowanu zasobu mamy do czynena z jednowymarowym zadanem programowana dynamcznego. Podobne jak w schemace nr, w kolejnych krokach przydzelamy odpo-

10 Andrzej Kałuszko 77 Zastosowane programowana dynamcznego do opracowana strateg redukcj emsj gazów wedne welkoc zasobu do kolejnych ródeł wyberamy najlepsz technolog dla danego pozomu zasobów. Wad schematu nr 3 jest to, e uzyskane rozwzane moe by nedopuszczalne z powodu przekroczena zuyca zasobów w którym z przedzałów. Przykład takego rozwzana jest pokazany na rys.. Rysunek. Rozkład czasowy kosztów nwestycyjnych eksploatacyjnych dla dwóch przykładowych ródeł schemat nr 3 Słab stron tego schematu jest te dua złoono oblczenowa, ze wzgldu na rozpatrywane duej lczby jednostek zasobu. Schemat nr 4 W tym przypadku zakładamy, e mamy dwa rodzaje zasobów: jeden zdefnowany tak jak w schemace nr 3, drug zwzany z zasobam na eksploatacj. Take załoene powoduje, e rozwzujemy zadane programowana dynamcznego dla dwóch rodzajów zasobów, co znaczne powksza złoto oblczenow schematu w porównanu do schematu nr 3. Pozwala to jednak na unknce takch rozwza, jak pokazane na rys.. Schemat ne gwarantuje uzyskana rozwzana dopuszczalnego. Rozwzane moe by takego typu jak pokazane na rys.. W tym przypadku s spełnone ogranczena na koszty całkowte oraz na koszty eksploatacj w kadym przedzale, ale rozwzane ne jest dopuszczalne.

11 78 POLSKIE STOWARZYSZENIE ZARZDZANIA WIEDZ Sera: Studa aterały, nr 0, 007 Rysunek. Rozkład czasowy kosztów nwestycyjnych eksploatacyjnych dla dwóch przykładowych ródeł schemat nr 4 Numer schematu ródło: badana własne Tabela. Porównane schematów oblczenowych. Czy zawsze wyznacza rozwzane dopuszczalne? Złoono oblczenowa TAK mała TAK redna 3 NIE dua 4 NIE bardzo dua W tabel nr przedstawono porównane opsanych powyej schematów oblczenowych. Dwa perwsze zapewnaj uzyskane rozwzana dopuszczalnego, dwa ostane ne. Na podstawe charakterystyk 4 schematów oblczenowych mona zaproponowa nastpujc procedur oblczenow. Oblczena rozpoczynamy od schematu nr 3. Jeel uzyskane rozwzane jest dopuszczalne, koczymy oblczena. W przypadku przecwnym stosujemy schemat nr 4. W przypadku uzyskana rozwzana dopuszczalnego, koczymy oblczena, podobne jak przy poprzednm schemace. Jeel otrzymane rozwzane ne jest dopuszczalne, traktujemy je jako oszacowane rozwza wylczonych przez schematy nr nr. W dalszym cgu uywamy schematu nr. Jeel otrzymane rozwzane jest zadowalajce, tzn. funkcja celu jest gorsza od oszacowana w stopnu przez nas akceptowanym, koczymy oblczena. W przypadku otrzymana rozwzana odbegajcego od wartoc akceptowanej, posługujemy s schematem nr.

12 Andrzej Kałuszko 79 Zastosowane programowana dynamcznego do opracowana strateg redukcj emsj gazów Bblografa. Bellman R.E., Dreyfus S E. (96) Appled Dynamc Programmng. Prnceton Unversty Press.. Kałuszko A., P. Holnck (005) nmzng costs of emsson reducton a dynamc programmng approach, w Applcatons of nformatcs n envronment, engneerng and medcne, Instytut Bada Systemowych PAN. 3. Kałuszko A. (006) The optmal strategy of emsson reducton a dynamc formulaton. Albrecht Gnauck: odellerung und Smulaton von Okosystemem, Shaker Verlag, 006. APPLICATION OF THE DYNAIC PROGRAING TO DEVELOPING THE STRATEGY OF GAS EISSIONS ABATEENT. Summary The paper deals wth the problem of the effcent assgnment of lmted fnancal means to the set of gas emssons sources n order to mnmze the functon reflectng envronmental losses n a gven perod. The emsson abatement n a source s done by mplementng one of the emsson reducton technologes. Each technology s characterzed by both the nvestment cost and the operaton cost. The dynamc programmng s proposed as a tool for solvng the problem. Keywords: polluton emsson, emsson abatement, dynamc programmng. Andrzej Kałuszko Instytut Bada Systemowych PAN ul. Newelska 6, Warszawa

METODA EFEKTYWNEGO ZARZĄDZANIA ROZDZIAŁEM ŚRODKÓW NA REDUKCJĘ EMISJI GAZÓW CIEPLARNIANYCH

METODA EFEKTYWNEGO ZARZĄDZANIA ROZDZIAŁEM ŚRODKÓW NA REDUKCJĘ EMISJI GAZÓW CIEPLARNIANYCH Zeszyty Naukowe Wydzału Informatycznych Technk Zarządzana Wyższej Szkoły Informatyk Stosowanej Zarządzana Współczesne Problemy Zarządzana Nr /20 ETODA EFEKTYWNEGO ZARZĄDZANIA ROZDZIAŁE ŚRODKÓW NA REDUKCJĘ

Bardziej szczegółowo

aij - wygrana gracza I bij - wygrana gracza II

aij - wygrana gracza I bij - wygrana gracza II M.Mszczsk KBO UŁ, Badana operacjne I (cz.) (wkład B 7) GRY KONFLIKTOWE GRY -OSOBOWE O SUMIE WYPŁT ZERO I. DEFINICJE TWIERDZENI Konflktowe gr dwuosobowe opsuje macerz wpłat ( a ) [ ] mxn j,b j gdze: aj

Bardziej szczegółowo

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1)

LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-1) LABORATORIUM METROLOGII TECHNIKA POMIARÓW (M-) wwwmuepolslpl/~wwwzmape Opracował: Dr n Jan Około-Kułak Sprawdzł: Dr hab n Janusz Kotowcz Zatwerdzł: Dr hab n Janusz Kotowcz Cel wczena Celem wczena jest

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz

System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.

ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu. ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

HEURYSTYCZNA PROCEDURA SZEREGOWANIA ZADA W SYSTEMIE MASZYN RÓWNOLEGŁYCH PRZY OGRANICZONEJ DOST PNO CI ZASOBÓW

HEURYSTYCZNA PROCEDURA SZEREGOWANIA ZADA W SYSTEMIE MASZYN RÓWNOLEGŁYCH PRZY OGRANICZONEJ DOST PNO CI ZASOBÓW EURYSYCA PROCEDURA SEREGOWAIA ADA W SYSEMIE MASY RÓWOLEGŁYC PRY OGRAICOEJ DOSPOCI ASOBÓW BIGIEW BUCALSKI Poltechna Wrocławsa Streszczene Cele artył jest prezentacja rezltatów bada proble czasowo-optyalnego

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

PROCEDURA OCENY EFEKTÓW KSZTAŁCENIA, OSI GANYCH PRZEZ STUDENTÓW SPECJALNO CI INFORMATYCZNYCH

PROCEDURA OCENY EFEKTÓW KSZTAŁCENIA, OSI GANYCH PRZEZ STUDENTÓW SPECJALNO CI INFORMATYCZNYCH PROCEDURA OCENY EFEKTÓW KSZTAŁCENIA, OSIGANYCH PRZEZ STUDENTÓW SPECJALNOCI INFORMATYCZNYCH WALERY SUSŁOW, ADAM SŁOWIK, TOMASZ KRÓLIKOWSKI Streszczene W nnejszym artykule przedstawono procedury organzacyjne

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Zeszyty Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH Nr 96 Seria: Administracja i Zarz dzanie 2013

Zeszyty Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH Nr 96 Seria: Administracja i Zarz dzanie 2013 Zeszyty aukowe UIWERSYTETU PRZYRODICZO-HUMAISTYCZEGO w SIEDLCACH r 96 Sera: Admnstracja Zarzdzane 013 mgr Marta Kruk Poltechnka Warszawska Ocena ryzyka nwestowana w walory wybranych spóek brany budowlanej

Bardziej szczegółowo

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym.

liniowym w przeciwnym przypadku mówimy o programowaniu nieliniowym. =DGDQLHSROHJDMFHQDSRV]XNLZDQLXPDNV\PDOQHMOXEPLQLPDOQHMZDUWRFLIXQNFMLZLHOX ]PLHQQ\FKSU]\MHGQRF]HVQ\PVSHáQLHQLXSHZQHMLORFLQDáR*RQ\FKZDUXQNyZ UyZQDOXE QLHUyZQRFLQRVLQD]Z]DGDQLDRSW\PDOL]DF\MQHJROXE]DGDQLDSURJUDPRZDQLD

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

POROZUMIENIE. z dnia roku

POROZUMIENIE. z dnia roku Załcznk do UCHWAŁY NR LXI/710/02 RADY MIASTA ZIELONA GÓRA z dna 1 padzernka 2002 r. POROZUMIENIE z dna... 2002 roku Na podstawe: 1. Uchwały Nr... Rady Masta...z dna... 2002 r w sprawe porozumena 2. Uchwały

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Rozliczanie kosztów Proces rozliczania kosztów

Rozliczanie kosztów Proces rozliczania kosztów Rozlczane kosztów Proces rozlczana kosztów Koszty dzałalnośc jednostek gospodarczych są złoŝoną kategorą ekonomczną, ujmowaną weloprzekrojowo. W systeme rachunku kosztów odbywa sę transformacja jednych

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 ZESZYTY NAUKWE PLITECHNIKI ŚLĄSKIEJ 2014 Sera: RGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Dorota GAWRŃSKA Poltechnka Śląska Wydzał rganzacj Zarządzana WIELKRYTERIALNA ANALIZA PRÓWNAWCZA PJAZDU Z SILNIKIEM

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

ANALIZA TARYF PRZESYŁOWYCH JAKO ELEMENTU BEZPIECZNEGO I EFEKTYWNEGO KIEROWANIA PRAC SYSTEMU ELEKTROENERGETYCZNEGO

ANALIZA TARYF PRZESYŁOWYCH JAKO ELEMENTU BEZPIECZNEGO I EFEKTYWNEGO KIEROWANIA PRAC SYSTEMU ELEKTROENERGETYCZNEGO POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY Instytut Energoelektryk PRACA DOKTORSKA ANALIZA TARYF PRZESYŁOWYCH JAKO ELEMENTU BEZPIECZNEGO I EFEKTYWNEGO KIEROWANIA PRAC SYSTEMU ELEKTROENERGETYCZNEGO Autor:

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

KRYTERIA WYBORU ARCHITEKTURY SIECI NEURONOWYCH - FINANSOWE CZY BŁ DU PROGNOZY

KRYTERIA WYBORU ARCHITEKTURY SIECI NEURONOWYCH - FINANSOWE CZY BŁ DU PROGNOZY KRYTERIA WYBORU ARCHITEKTURY SIECI NEURONOWYCH - FINANSOWE CZY BŁDU PROGNOZY HENRYK MARJAK Zachodnopomorsk Unwersytet Technologczny w Szczecne Streszczene Klasyczne podejce do zastosowana sec neuronowych

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

METODA GMDH DO PROGNOZOWANIA RYNKÓW W WARUNKACH KRYZYSU FINANSOWEGO

METODA GMDH DO PROGNOZOWANIA RYNKÓW W WARUNKACH KRYZYSU FINANSOWEGO METODA GMDH DO PROGNOZOWANIA RNKÓW W WARUNKACH KRZSU FINANSOWEGO ANTONI WILISKI Zachodnopomorsk Unwersytet Technczny Streszczene W artykule rozwaany jest odweczny problem dokładnoc predykcj na rynkach

Bardziej szczegółowo

Programowanie wielokryterialne

Programowanie wielokryterialne Prgramwane welkryteralne. Pdstawwe defncje znaczena. Matematyczny mdel sytuacj decyzyjnej Załóżmy, że decydent dknując wybru decyzj dpuszczalnej x = [ x,..., xn ] D keruje sę szeregem kryterów f,..., f.

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Kwantyzacja skalarna. Plan 1. Definicja 2. Kwantyzacja równomierna 3. Niedopasowanie, adaptacja 4. Kwantyzacja nierównomierna

Kwantyzacja skalarna. Plan 1. Definicja 2. Kwantyzacja równomierna 3. Niedopasowanie, adaptacja 4. Kwantyzacja nierównomierna Kwantyzacja salarna Plan. Defncja. Kwantyzacja równomerna 3. Nedopasowane, adaptacja 4. Kwantyzacja nerównomerna Pojce wantyzacj Defncja: Kwantyzacja reprezentacja duego w szczególnoc nesoczonego) zboru

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Instrukcja uytkownika

Instrukcja uytkownika Przewodowa centrala alarmowa Instrukcja uytkownka 1 Wstp 2 11 Główne cechy central 2 12 Opsy kodów 2 13 Sterowane central 2 2 Klawatura V-LCD 2 21 Wstp 2 22 Funkcje systemowe 3 23 Funkcje programowalne

Bardziej szczegółowo

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska Jerzy Czesław Ossowsk Kaedra Ekonom Zarzdzana Przedsborswem Wydzał Zarzdzana Ekonom Polechnka Gdaska IX Ogólnoposke Semnarum Naukowe n. Dynamczne modele ekonomeryczne, Kaedra Ekonomer Saysyk, Unwersye

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu.

Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu. Laboratorum z Podstaw Konstrukcj aszyn - - Ćw.. Wyznaczane wartośc średnego współczynnka tarca sprawnośc śrub złącznych oraz uzyskanego przez ne zacsku da okreśonego momentu.. Podstawowe wadomośc pojęca.

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne

Wprowadzenie do Sieci Neuronowych Sieci rekurencyjne Wprowadzene do Sec Neuronowych Sec rekurencyjne M. Czoków, J. Persa 2010-12-07 1 Powtórzene Konstrukcja autoasocjatora Hopfelda 1.1 Konstrukcja Danych jest m obrazów wzorcowych ξ 1..ξ m, gdze każdy pojedynczy

Bardziej szczegółowo

STATYSTYKA REGIONALNA

STATYSTYKA REGIONALNA ЕЗЮМЕ В,. Т (,,.),. В, 2010. щ,. В -,. STATYSTYKA REGIONALNA Paweł DYKAS Zróżncowane rozwoju powatów w woj. małopolskm W artykule podjęto próbę analzy rozwoju ekonomcznego powatów w woj. małopolskm, wykorzystując

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Wielokryterialny Trójwymiarowy Problem Pakowania

Wielokryterialny Trójwymiarowy Problem Pakowania Łukasz Kacprzak, Jarosław Rudy, Domnk Żelazny Instytut Informatyk, Automatyk Robotyk, Poltechnka Wrocławska Welokryteralny Trójwymarowy Problem Pakowana 1. Wstęp Problemy pakowana należą do klasy NP-trudnych

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Wyznaczanie zakresu remontu budynku mieszkalnego

Wyznaczanie zakresu remontu budynku mieszkalnego Budownctwo Archtektura 12(1) (2013) 15-22 Wyznaczane zakresu remontu budynku meszkalnego Robert Buco 1, Anna Sobotka 2 1 Katedra Inyner Procesów Budowlanych, Wydzał Budownctwa Archtektury, Poltechnka Lubelska,

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

TOWARZYSTWO GOSPODARCZE POLSKIE ELEKTROWNIW

TOWARZYSTWO GOSPODARCZE POLSKIE ELEKTROWNIW TOWARZYSTWO GOSPODARCZE POLSKIE ELEKTROWNIW Odpowedź na uwag Komsj Europejskej do wnosku o przydzał bezpłatnych uprawneń do emsj gazów ceplarnanych na lata 2013-2020 na modernzację wytwarzana energ elektrycznej

Bardziej szczegółowo

-ignorowanie zmiennej wartości pieniądza w czasie, -niemoŝność porównywania projektów o róŝnych klasach ryzyka.

-ignorowanie zmiennej wartości pieniądza w czasie, -niemoŝność porównywania projektów o róŝnych klasach ryzyka. Podstawy oceny ekonomcznej przedsęwzęć termo-modernzacyjnych modernzacyjnych -Proste (statyczne)-spb (prosty czas zwrotu nakładów nwestycyjnych) -ZłoŜone (dynamczne)-dpb, NPV, IRR,PI Cechy metod statycznych:

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW

APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 015 Sera: TRANSPORT z. 86 Nr kol. 196 Jan WARCZEK, Kaml BRONCEL APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili

Bardziej szczegółowo

PROBLEMY ROLNICTWA ŚWIATOWEGO

PROBLEMY ROLNICTWA ŚWIATOWEGO Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wejskego w Warszawe PROBLEMY ROLNICTWA ŚWIATOWEGO Tom 15 (XXX) Zeszyt 3 Wydawnctwo SGGW Warszawa 2015 Zeszyty Naukowe Szkoy Gównej Gospodarstwa Wejskego w Warszawe

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY AUKOWE UIWERSYTETU SZCZECI SKIEGO R 394 PRACE KATEDRY EKOOMETRII I STATYSTYKI R 5 004 SEBASTIA GAT Unwersytet Szczec sk KRYTERIA BUDOWY PORTFELI PAPIERÓW WARTO CIOWYCH W OKRESIE BESSY A GIEŁDA

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMYSŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Regulamin promocji upalne lato 2014 2.0

Regulamin promocji upalne lato 2014 2.0 upalne lato 2014 2.0 strona 1/5 Regulamn promocj upalne lato 2014 2.0 1. Organzatorem promocj upalne lato 2014 2.0, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH

WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Ćwczene nr 1 Statystyczne metody wspomagana decyzj Teora decyzj statystycznych WPROWADZENIE DO TEORII DECYZJI STATYSTYCZNYCH Problem decyzyjny decyzja pocągająca za sobą korzyść lub stratę. Proces decyzyjny

Bardziej szczegółowo

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Rozmyta efektywność portfela

Rozmyta efektywność portfela Krzysztof PIASECKI Akadema Ekonomczna w Poznanu Problem badawczy Rozmyta ektywność portfela Buckley [] Calz [] zaproponowal reprezentowane wartośc przyszłych nwestycj fnansowych przy pomocy lczb rozmytych.

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

WSPOMAGANIE PODEJMOWANIA DECYZJI W FIRMIE PRODUKUJ CEJ OPROGRAMOWANIE Z UWZGL DNIENIEM INFORMACJI NIEPEWNEJ

WSPOMAGANIE PODEJMOWANIA DECYZJI W FIRMIE PRODUKUJ CEJ OPROGRAMOWANIE Z UWZGL DNIENIEM INFORMACJI NIEPEWNEJ WSPOMAGANIE PODEJMOWANIA DECYZJI W FIMIE PODUKUJ CEJ OPOGAMOWANIE Z UWZGL DNIENIEM INFOMACJI NIEPEWNEJ JOANNA BANA SZYMON KOZIOŁ Zachodnopomorsk Unwersytet echnologczny w Szczecne Streszczene W artykule

Bardziej szczegółowo

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Wstęp Bogdan Supeł W ostatnm czase obserwuje sę welke zanteresowane dzannam dystansowym do produkcj materaców. Człowek około /3 życa

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

ZMODYFIKOWANA METODA ZASILANIA I STEROWANIA SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO

ZMODYFIKOWANA METODA ZASILANIA I STEROWANIA SILNIKA RELUKTANCYJNEGO PRZEŁĄCZALNEGO Maszyny Elektryczne Zeszyty Problemowe r 3/2015 (107) 51 Potr Bogusz, Marusz Korkosz, Jan Prokop Poltechnka Rzeszowska ZMODYFIKOWAA METODA ZASILAIA I STEROWAIA SILIKA RELUKTACYJEGO PRZEŁĄCZALEGO MODIFIED

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

Optymalizacja belki wspornikowej

Optymalizacja belki wspornikowej Leszek MIKULSKI Katedra Podstaw Mechank Ośrodków Cągłych, Instytut Mechank Budowl, Poltechnka Krakowska e mal: ps@pk.edu.pl Optymalzacja belk wspornkowej 1. Wprowadzene RozwaŜamy zadane optymalnego kształtowana

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI

RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI Wojcech BOŻEJKO, Marusz UCHROŃSKI, Meczysław WODECKI Streszczene: W pracy rozpatrywany jest ogólny problem kolejnoścowy

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

IDENTYFIKACJA MATEMATYCZNYCH MODELI LEPKOSPRYSTYCH MATERIAŁÓW BIOLOGICZNYCH METOD PRONY'EGO

IDENTYFIKACJA MATEMATYCZNYCH MODELI LEPKOSPRYSTYCH MATERIAŁÓW BIOLOGICZNYCH METOD PRONY'EGO Acta Sc. Pol., echnca Agrara 4() 005, 4-59 IDEYFIKACJA MAEMAYCZYCH MODELI LEPKOSPRYSYCH MAERIAŁÓW BIOLOGICZYCH MEOD PROY'EGO Anna Stankewcz Akadema Rolncza w Lublne Streszczene. W pracy przedstawono bazujcy

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Zastosowanie priorytetów dynamicznych do optymalizacji wieloproduktowych systemów produkcyjnych w poligrafii

Zastosowanie priorytetów dynamicznych do optymalizacji wieloproduktowych systemów produkcyjnych w poligrafii Zachodnopomorsk Unwersytet Technologczny w Szczecne Wydzał Informatyk Zastosowane prorytetów dynamcznych do optymalzacj weloproduktowych systemów produkcyjnych w polgraf Autoreferat rozprawy doktorskej

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

ZRÓŻNICOWANIE ROZWOJU EKONOMICZNEGO POWIATÓW POLSKI WSCHODNIEJ

ZRÓŻNICOWANIE ROZWOJU EKONOMICZNEGO POWIATÓW POLSKI WSCHODNIEJ Studa Materały. Mscellanea Oeconomcae Rok 19, Nr 4/2015, tom I Wydzał Zarządzana Admnstracj Unwersytetu Jana Kochanowskego w Kelcach Zntegrowane podejśce do spójnośc rola statystyk publcznej Paweł Dykas

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)

Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %) Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID

Symulator układu regulacji automatycznej z samonastrajającym regulatorem PID Symulator układu regulacj automatycznej z samonastrajającym regulatorem PID Założena. Należy napsać program komputerowy symulujący układ regulacj automatycznej, który: - ma pracować w trybe sterowana ręcznego

Bardziej szczegółowo

Studium przypadku Case Study CCNA2-ROUTING

Studium przypadku Case Study CCNA2-ROUTING Na podstawie oryginału CISCO, przygotował: mgr in. Jarosław Szybiski Studium przypadku Case Study CCNA2-ROUTING Ogólne załoenia dla projektu Przegld i cele Podczas tego wiczenia uczestnicy wykonaj zadanie

Bardziej szczegółowo

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych

ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych ISSN 009-069 ZESZYTY NUKOWE NR () KDEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNRODOW KONFERENCJ NUKOWO-TECHNICZN E X P L O - S H I P 0 0 6 Paweł Zalewsk, Jakub Montewka Metody wymarowana obszaru manewrowego

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo