METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki"

Transkrypt

1 Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz B. Bogack 1

2 Metody Planowana Eksperymentów Rozdzał 1. Strona 2 z 14 LITERATURA 1. Atknson, A. C., A. N. Donev, Optmum Expermental Desgns, Oxford Scence Publcatons, Clarendon Press, Oxford, Draper, N. R., H. Smth, Analza Regresj Stosowana, PWN, Warszawa, Mańczak K., Technka Planowana Eksperymentu, WNT, Warszawa, Rafajłowcz, E., Algorytmy Planowana Eksperymentu z Implementacjam w Środowsku MATHEMATICA, Akademcka Ofcyna Wydawncza PLJ, Warszawa, Rafajłowcz, E., Optymalzacja Eksperymentu z Zastosowanam w Montorowanu Jakoścą Produkcj, Ofcyna Wydawncza Poltechnk Wrocławskej, Marusz B. Bogack 2

3 Metody Planowana Eksperymentów Rozdzał 1. Strona 3 z 14 SPIS TREŚCI Metoda analzy regresj 3. Plany czynnkowe dwupozomowe 4. Plany czynnkowe welopozomowe 5. Plan optymalzacj Boxa - Wlsona 6. Plany D-optymalne (podstawowe założena, krytera optymalnośc; Plany D- T- optymalne) Marusz B. Bogack 3

4 Metody Planowana Eksperymentów Rozdzał 1. Strona 4 z WSTĘP Planowane eksperymentu łączy ze sobą elementy teor z bezpośredną praktyką. Początk jej datowane są na lata dwudzeste trzydzeste zeszłego weku, a jej rozwój zwązany był z badanam eksperymentalnym w rolnctwe. Ze względu na długe okresy wegetacj rośln, złe zaplanowane eksperymentu mogło zostać naprawone najwcześnej dopero po roku. Stąd prawdłowo zaplanowany eksperyment był podstawą badań rozstrzygających o doborze gatunków czy sposobe upraw. Po drugej wojne śwatowej technk planowana eksperymentów przenesone zostały do nektórych gałęz przemysłu. Głównym mejscem zastosowań stał sę przemysł chemczny, gdze planowane eksperymentu służy mędzy nnym doborow optymalnych warunków prowadzena procesu technologcznego, czy też otrzymana substancj o pożądanych właścwoścach. Podjęto równeż próby zastosowana planowana w badanach laboratoryjnych w celach poznawczych. W ostatnm dwudzestolecu zeszłego weku nastąpł znaczny wzrost zanteresowana metodam planowana eksperymentu, zarówno w aspektach praktycznych jak też teoretycznych. Zwązane to było z jednej strony z gwałtownym rozwojem technk oblczenowych (dostępność tanch szybkch komputerów), z drugej natomast strony z powstanem nowych obszarów zastosowań takch jak chocażby sterowane jakoścą produkcj Zastosowana metod planowana eksperymentu Sterowane jakoścą produkcj. Badana te obejmują cały szereg zagadneń zwązanych ne tylko z klasyczną kontrolą jakośc czy sposobam prowadzena kart kontrolnych, ale równeż badana eksperymentalne stosowane na etape projektowana wdrażana wyrobów do produkcj. Celem tych badań jest poszukwane optymalnych warunków prowadzena procesu. Mnmalzacja zmennośc w jakośc produkcj. Obok badań zwązanych z sterowanem jakoścą wytwarzana stotnym zagadnenem jest utrzymane zadanych parametrów wyrobu, Marusz B. Bogack 4

5 Metody Planowana Eksperymentów Rozdzał 1. Strona 5 z 14 przy jednoczesnej mnmalzacj ch rozrzutu wokół wartośc zadanych. Chodz tu o tak sposób produkcj, aby lczba produktów wadlwych oraz różnce pomędzy parametram charakteryzującym produkty dobre były jak najmnejsze. Eksperyment w systemach automatyk. Pomar odpowedz układu na skokową zmanę sygnału wejścowego jest ważnym elementem technk projektowana układów regulacj automatycznej. Celem takch badań jest budowa modelu matematycznego obektu na podstawe danych pomarowych. Pozwala to na właścwe zaprojektowane układu regulacj. Ważnym zagadnenem w takch badanach jest właścwy dobór wymuszeń. Planowane zadań oblczenowych. Przeprowadzając symulacje komputerowe obnżyć można koszty badań eksperymentalnych na rzeczywstych obektach. Dzęk znacznemu wzrostow mocy oblczenowej komputerów powstają coraz bardzej złożone modele opsujące badane zjawska. Jednakże prowadz to do paradoksalnej sytuacj. Coraz bardzej rozbudowane modele wymagają prowadzena oblczeń w coraz dłuższym czase przy wykorzystanu coraz wększych mocy oblczenowych, co zwększa koszty tego etapu badań. Równocześne mocno rozbudowane modele złożonych zjawsk ne poddają sę prostemu opsow matematycznemu, zaczynają wykorzystywać różne algorytmy przyblżone take jak stochastyczne czy heurystyczne. Wszystko to spowodowało, że modele take zaczęto traktować podobne jak podlegające badanom eksperymentalnym obekty fzyczne w efekce stosować technk planowana eksperymentu. Pojawł sę tutaj jednakże nowy problem. W klasycznym eksperymence wynk badań zakłócone są przez różne często ne zdentyfkowane czynnk, co oznacza, że dla tych samych warunków prowadzena dośwadczene otrzymujemy różne wynk. Odmenna sytuacja jest w przypadku eksperymentów komputerowych, w których dla tych samych danych wejścowych wynk powtórnych oblczeń jest dokładne tak sam. Wymagało to zastosowana nowych technk planowana eksperymentu. Dośwadczena w badanach leków. Badana klnczne nowych leków stanową ważną równocześne specyfczną grupę zastosowań technk planowana eksperymentu. Zwązane jest to zarówno ze specyfką badań badana prowadzone są na ludzach jak też z możlwoścą wystąpena szeregu zjawsk zarówno korzystnych (właścwośc terapeutyczne badanego specyfku) jak też nekorzystnych (efekty uboczne). Marusz B. Bogack 5

6 Metody Planowana Eksperymentów Rozdzał 1. Strona 6 z Podstawowe pojęca W badanach eksperymentalnych dysponujemy pewnym obektem badań, który poddajemy dośwadczenom. Obekt ten traktować możemy jako czarną skrzynkę, która w wynku zastosowanych wymuszeń u generuje odpowedz y (rysunek 1.1). u 1 u 2 u M OBIEKT y 1 y 2 y T ε 1, ε 2,, ε T, Rys Schematyczna reprezentacja eksperymentu. u 1, u 2,..., u M czynnk lub zmenne objaśnające, y 1, y 2,..., y T wyjśca lub odpowedz obektu, ε 1, ε 2,, ε T błędy losowe zakłócające odpowedz obektu. Przedstawony na rysunku 1.1 obekt ma M wejść u 1, u 2,..., u M zwanych czynnkam lub zmennym objaśnającym oraz T wyjść y 1, y 2,..., y T zwanych równeż odpowedzam obektu. Badany obekt poddany jest neznanym nemerzalnym zakłócenom ε 1, ε 2,, ε T. Przyjmuje sę, że lczba zakłóceń odpowada lczbe wyjść T. Przeprowadzane badana mają doprowadzć do stworzena opsu matematycznego (modelu matematycznego) analzowanego obektu. W tym celu eksperymentator, w trakce badań, modyfkuje czynnk u obserwując odpowedz obektu y. Przy czym wszystke odpowedz obektu obarczone są neznanym błędam ε. Są one przypadkowe podlegają cągłym neprzewdywalnym zmanom. Dlatego też powtarzając eksperyment przy tych samych określonych wartoścach wejść x 1, x 2,..., x M możlwe jest otrzymane różnych wartośc wyjść y 1, y 2,..., y T. Marusz B. Bogack 6

7 Metody Planowana Eksperymentów Rozdzał 1. Strona 7 z 14 Prawdzwy zwązek pomędzy odpowedzam obektu y a czynnkam u jest zwykle neznany. Oznacza to, że badany obekt opsuje neznana, ogólne nelnowa funkcja, której argumentam są zarówno określone przez eksperymentatora czynnk u, jak też nemerzalne zakłócena ε ( u1, u 2, Ku m, ε1, ε 2, K, ε t y = f ) (1) Poneważ rzeczywsta postać tej funkcj jest neznana, to oberamy model matematyczny będący funkcją aproksymującą odpowedz obektu w badanym obszarze. Model ten wyznaczmy na podstawe obserwacj wyjść obektu. Model matematyczny uzyskany albo w forme wzorów matematycznych, albo też w postac algorytmu spełnać pownen klka warunków 1. Być możlwe prosty. 2. Charakteryzować sę dużą dokładnoścą w punktach, gdze dokonano pomarów. 3. Zapewnać możlwość sensownej oceny (aproksymować) wartośc wyjśca w punktach, w których ne dokonano pomarów. Wymagane to ogranczone jest do obszaru badań. 4. Ops pownen odzwercedlać cechy jakoścowe badanego procesu. Oznacza to, że pownen na przykład zachować wypukłość zależnośc y od x, o le badany proces cechę taką posada. Opracowywany plan eksperymentu zależy od modelu opsującego badany obekt. Stąd stotny jest dobór właścwego modelu. W welu przypadkach na podstawe rozważań teoretycznych można zaproponować postać modelu opsującego badany obekt. Jednakże najczęścej ne jest to możlwe. W takch przypadkach dokonać tego należy na podstawe danych eksperymentalnych. Jak stąd wynka sprawa doboru postac modelu opsującego badany obekt jest bardzo stotna dla powodzena dentyfkacj właścwośc obektu jego ewentualnej dalszej optymalzacj. W prowadzonych badanach eksperymentalnych wyróżnć można klka etapów począwszy od decyzj dotyczących obektu badań, poprzez przyjęce stosowanych metod badaw- Marusz B. Bogack 7

8 Metody Planowana Eksperymentów Rozdzał 1. Strona 8 z 14 czych, na analze uzyskanych wynków badań skończywszy. Celem uzyskana odpowedz na postawone pytana dotyczące badanego obektu kolejno należy 1. Wyodrębnć szeroko rozumany obekt badań eksperymentalnych. Obekt tak traktować można jako pewnego rodzaju czarną skrzynkę, która w wynku zastosowana wymuszeń x generuje odpowedź y (rysunek 1.1). 2. Wskazać pewne merzalne welkośc y charakteryzujące badany obekt, dalej zwane wyjścam lub odpowedzam obektu. Pomary tych welkośc odbywać sę mogą przy pomocy różnych przyrządów pomarowych. 3. Wyróżnć welkośc u, o których mamy podstawy przypuszczać, że oddzaływają na wskazane wcześnej welkośc y charakteryzujące aktualny stan obektu badań. Welkośc te nazywać będzemy welkoścam wejścowym, czynnkam lub zmennym objaśnającym. 4. Scharakteryzować pewen ops matematyczny zwany modelem matematycznym opsujący zależność pomędzy wejścam u a wyjścam y. Ops ten zwykle ne jest w pełn znany. Informacje o nm zdobywamy w trakce przeprowadzanego eksperymentu. Należy tutaj podkreślć, że przez eksperyment rozumemy serę dośwadczeń wykonywanych każdorazowo od początku do końca w sposób nezależny. 5. Określć plan eksperymentu, przez który rozumeć będzemy zestaw welkośc wejścowych u, które stosowane będą w trakce eksperymentu. W przyjętym tutaj ujęcu planowane eksperymentu ma na celu, uwzględnając wygodę eksperymentatora umożlwć wyznaczene pożądanego opsu matematycznego (modelu matematycznego) oraz ułatwć oblczena w faze opracowywana wynków badań. Dodatkowo przyjęty plan eksperymentu ma na celu zmnmalzować koszt badań. 6. Wykonać eksperyment przez który rozumemy serę dośwadczeń. 7. Opracować wynk badań. Tak węc przed przystąpenem do dentyfkacj obektu rozważyć należy, znane z wcześnejszych dośwadczeń, zwązk pomędzy rozpatrywanym zmennym. Przeanalzować należy równeż dzałane obektu uwzględnając cel jego stnena. Na tej podstawe określć należy ogólną strukturę modelu obektu, ustalając wejśca wyjśca. W końcu przyjąć należy Marusz B. Bogack 8

9 Metody Planowana Eksperymentów Rozdzał 1. Strona 9 z 14 postać modelu matematycznego lub też klku jego warantów. Mając model przystąpć możemy do planowana eksperymentu. Poszukwane planu eksperymentu jest procesem złożonym realzowanym zgodne z pewnym algorytmem. Algorytm ten uwzględnając różne czynnk generuje oczekwany produkt w postac dobrego plany eksperymentu. Przy tym przystępując do planowana zastanowć sę należy nad celem przyjętego dzałana. W zasadze wskazać można dwa podstawowe cele, dla których podejmowane jest planowane eksperymentu 1. Modelowane powerzchn odpowedz systemu. Celem planowana jest możlwe dokładne, w określonym sense, oszacowane zależnośc funkcyjnej opsującej zwązek pomędzy wejścem u a wyjścem y. 2. Poszukwane ekstremum odpowedz obektu. W przypadku, gdy ops matematyczny obektu ne jest znany, należy najperw na podstawe przeprowadzonego eksperymentu oszacować funkcję opsującą obekt, a następne wykonać jej maksymalzację Krytera dobrego planu eksperymentu Istotnym zagadnenem jest opracowane dobrego planu eksperymentu. Podać możemy cały szereg różnych wymagań zwązanych z planam eksperymentu spośród, których wyróżnć można następujące: 1. Planowane ortogonalne. W czasach, gdy dostępność komputerów była znkoma lub żadna opracowane wynków eksperymentów było zajęcem bardzo pracochłonnym. Dlatego zaproponowano tak zwane plany ortogonalne, to znaczy take, w których kolumny macerzy zawerającej wynk pomarów spełnały warunek ortogonalnośc. Iloczyn takej macerzy X T X generuje macerz dagonalną, dla której w prosty sposób znajduje sę macerz odwrotną. Dodatkowo plany take charakteryzują sę szeregem zalet z punktu wdzena statystycznego. Przede wszystkm pomnęce w modelu pewnych członów ne powoduje konecznośc przelczana oszacowań pozostałych parametrów, o le pomary wykonane zostały zgodne z planem ortogonalnym dla tego nowego modelu. Inną ch cechą jest to, że dla welu model wskaźnków jakośc planowana, plany ortogonalne okazały sę optymalne. Marusz B. Bogack 9

10 Metody Planowana Eksperymentów Rozdzał 1. Strona 10 z Rotatablność planu. Model matematyczny procesu tworzony jest często w otoczenu wybranego punktu, zwanego centrum eksperymentu. Pożądaną cechą planu jest zapewnene, by dokładność oszacowana wartośc wyjść modelu (merzona przy pomocy warancj) ne preferowała żadnego kerunku. Inaczej mówąc własność ta oznacza stałość warancj w stałej odległośc od centrum planu. 3. Optymalność planu. Wymagane optymalnośc oznacza, że przyjęty został pewen wskaźnk merzący jakość różnych planów. Plan uznajemy za optymalny, gdy zapewna najwyższą możlwą do osągnęca w danych warunkach wartość tego wskaźnka. Wskaźnkem takm może być przykładowo dokładność oszacowana parametrów modelu. 4. Zapobegane złemu uwarunkowanu problemu estymacj. Wymagane to zwązane jest ze zmnejszanem błędów numerycznych powstających przy oblczanu oszacowań parametrów modelu metodą najmnejszych kwadratów. Plany ortogonalne w pewnym stopnu spełnają ten wymóg. 5. Odporność na duże zakłócena. W trakce badań powstać mogą tak zwane błędy grube. Mogą one wystąpć na skutek chwlowej nesprawnośc układu pomarowego lub też błędów popełnonych przez człoweka (źle odczytane wynk pomarów, błędy popełnone przy wprowadzanu danych, tp., td.). Problem odpornośc oszacowana modelu na tak zwane błędy grube pomarów jest stosunkowo nowy. Oczekujemy takego zaplanowana eksperymentu, aby zmnmalzować skutk ewentualnych błędów grubych. 6. Odporność na neprawdłową specyfkację modelu. Jednym z założeń przyjętych w badanach planów optymalnych jest założene, że postać modelu znana jest przed dośwadczenem, z dokładnoścą do neznanych parametrów, a specyfkacja modelu jest dokładna. Założene to bardzo slne ograncza możlwośc planowana eksperymentu. W ostatnm okrese pojawają sę prace wskazujące na nowe możlwośc w tym zakrese 1.4. Standaryzacja zmennych Każdy z czynnków u, = 1, 2,..., M, których wpływ na obekt badamy, przyjmuje wartośc z pewnego przedzału zman Marusz B. Bogack 10

11 Metody Planowana Eksperymentów Rozdzał 1. Strona 11 z 14 u,mn u u, = 1,2, K, M (2), max Grance górna u,max dolna u,mn w jakch zmenają sę poszczególne czynnk zależą zarówno od fzycznych ogranczeń badanego układu jak też od przedzału zman nteresujących eksperymentatora. Ogranczena te wynkać mogą na przykład z zakresu temperatur w jakch badane substancje są ceczam, względne są one stablne termczne. Inne ogranczena wynkać mogą z możlwośc aparaturowych. Bardzo często zdarza sę, że czynnk, których wpływ na obekt badamy, przyjmują wartośc z różnych zakresów lczbowych. Różnce te mogą być nawet klku rzędów. W takch przypadkach korzystna jest transformacja zmennych zwana równeż standaryzacją lub kodowanem zmennych. Polega to na takm ch przeskalowane, aby nowe zmenne, oznaczone dalej przez x, przyberały wartośc z przedzału [-1, 1], wówczas, gdy orygnalne zmenne zmenają sę w przedzałach [u,mn, u,max ], = 1, 2,..., M. Transformacja ta przekształca układ współrzędnych, w którym znajdują sę zmenne rzeczywste, do nowego układu współrzędnych z punktem centralnym (środkem układu) wyznaczonym przez punkt u 10, u 20,..., u M0, w którego otoczenu wykonuje sę eksperyment. Jednocześne skala nowego układu współrzędnych dobrana jest w tak sposób, aby planowane wartośc zman czynnków u, = 1, 2,..., M były jednostkowe w nowym układze współrzędnych. Take standaryzowane lub kodowane zmenne defnuje sę w sposób następujący x u u 0 =, = 1,2, K, M (3) u gdze u 0 u,max u,mn u,max + u,mn = u,mn + = (4) 2 2 jest punktem centralnym nowego układu współrzędnych, oraz u,max u,mn u = u,max u0 = u0 u,mn = (5) 2 jest planowaną wartoścą zman czynnka u (wartoścą bezwzględną kroku wzdłuż os OX w skal naturalnej. Marusz B. Bogack 11

12 Metody Planowana Eksperymentów Rozdzał 1. Strona 12 z 14 W przypadku, gdy eksperyment opsywany jest przy pomocy zmennych kodowanych, konecznym jest powrót do orygnalnych zmennych, szczególne w przypadku nterpretacj uzyskanych wynków. Wtedy stosować należy transformację odwrotną u = u + x u (6) Obszar badań Jak już wcześnej wspomnano każdy z badanych czynnków przyjmuje wartośc z pewnego przedzału zman. W zależnośc od przyjętego charakteru ogranczeń wyróżnć można klka szczególnych przypadków. Nektóre z nch przedstawone zostały one na rysunku 1.2. (a) (b) x 2 (c) (d) x 1 Rys Przykłady nektórych obszarów badań: a) kwadrat (bryła dla M > 2); b) koło (sfera dla M > 2); c) sympleks, dla eksperymentów zwązanych z badanam nad skłądem meszann; d) z dodatkowym ogranczenam wykluczającym duże wartośc równocześne dla x 1 x 2. Marusz B. Bogack 12

13 Metody Planowana Eksperymentów Rozdzał 1. Strona 13 z 14 Jeżel ogranczene (2) spełnone jest nezależne dla każdego z M czynnków, to obszar badań dla zmennych x jest M wymarową bryłą. W szczególnym przypadku dla M = 2 jest to kwadrat (rysunek 1.2a), natomast dla M = 3 sześcan. Ten typ ogranczeń jest najczęścej spotykanym obszarem badań. Czasam natura eksperymentu wymusza bardzej złożoną specyfkację przedzałów zman dla czynnków, a tym samym obszaru badań. Przykładem może być sferyczny obszar badań zdefnowany wyrażenem m 2 x = 1 R 2 (7) gdze R jest promenem sfery. W przypadku gdy M = 2 uzyskujemy koło (rys. 1.2b), natomast dla M = 3 obszar badań będze kulą. Przyjęce takego obszaru sugeruje równy pozom zanteresowana we wszystkch kerunkach wychodzących z punktu centralnego planu. Spora grupa badań zwązana jest z optymalnym doborem składu meszanny. W takm przypadku funkcja odpowedz ne zależy od całkowtej lośc poszczególnych składnków meszanny, a od proporcj w jakch one sę znajdują. Oznacza to, że jeżel w trakce badań zmenamy lość jednego ze składnków meszanny, to automatyczne musmy zmenć lośc pozostałych. Ogranczene to zapsujemy w postac M = 1 x = 1, x 0 (8) Oznacza ono, że meszanna M składnków generuje obszar badań będący (M 1) wymarowym sympleksem. Obszar badań w przypadka 3 składnkowej meszanny pokazuje rysunek 1.2c. Częstokroć obszary badań są bardze złożone, szczególne gdy występują specjalne ogranczena. Przykładowo sytuacja taka wystąpć może w przypadku badań nad reakcją następczą w której nteresuje nas produkt przejścowy B A B C (9) Prowadzene takej reakcj w długm czase lub też przy podwyższonej temperaturze jest nekorzystne. Obszar takch badań przedstawa rysunek 1.2d. Marusz B. Bogack 13

14 Metody Planowana Eksperymentów Rozdzał 1. Strona 14 z 14 Oznaczmy przez I określony przez eksperymentatora obszar badań. Algorytm postępowana mający na celu wygenerowane planu eksperymentu poszukwać będze, w zadanym obszarze I, planu eksperymentu spełnającego określone przez eksperymentatora oczekwana (krytera). Należy tu podkreślć, że postać tego obszaru determnować będze zarówno sposób w jak ten plan będzemy znajdować, jak też rodzaj uzyskanego planu Błąd losowy Wykonując eksperyment uzyskujemy obserwowane w N punktach planu zbudowanego na obszarze I wyjśca obektu y, = 1, 2,..., N. Przy czym wszystke obserwacje obcążone są pewnym błędem ε. Wyróżnć możemy tutaj dwa przypadk 5. Błąd systematyczny. Zwązany on może być na przykład z newłaścwym skalbrowanem aparatury, błędach popełnonych w trakce przygotowywana dośwadczena tp. Wystąpene jego jest najczęścej zwązane z błędam popełnanym przez eksperymentatora jest nekorzystne. Jednym ze sposobów postępowana mającym na celu elmnację takej sytuacj jest wykonywane dośwadczeń, w ramach planu, w sposób losowy. 6. Błąd losowy. Jest on reprezentowany przez wektor ε na rysunku 1.1. Błędy losowe są nezależne od eksperymentatora występują zawsze. W przypadku błędów losowych zakładamy, że wszystke zakłócena ε, = 1, 2,..., N są nezależnym zmennym losowym o wartośc oczekwanej zero skończonych, jednakowych dla wszystkch zakłóceń, warancjach σ 2, czyl N, 2 ( 0 σ ) ε = (10) Zakładamy równeż, że zakłócena te oddzaływują addytywne na obekt badań y = µ + ε, = 1,2, K, N (11) gdze µ są prawdzwym, neznanym wartoścam wyjść modelu. Marusz B. Bogack 14

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Część III: Termodynamika układów biologicznych

Część III: Termodynamika układów biologicznych Część III: Termodynamka układów bologcznych MATERIAŁY POMOCNICZE DO WYKŁADÓW Z PODSTAW BIOFIZYKI IIIr. Botechnolog prof. dr hab. nż. Jan Mazersk TERMODYNAMIKA UKŁADÓW BIOLOGICZNYCH Nezwykle cenną metodą

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja KATEDRA KLINIKA CHORÓB WEWNĘTRZNYCHYCH GERIATRII ALERGOLOGU Unwersytet Medyczny m. Pastów Śląskch we Wrocławu 50-367 Wrocław, ul. Cure-Skłodowskej 66 Tel. 71/7842521 Fax 71/7842529 E-mal: bernard.panaszek@umed.wroc.pl

Bardziej szczegółowo

POJAZDY SZYNOWE 2/2014

POJAZDY SZYNOWE 2/2014 ANALIZA PRZYCZYN I SKUTKÓW USZKODZEŃ (FMEA) W ZASTOSOWANIU DO POJAZDÓW SZYNOWYCH dr nż. Macej Szkoda, mgr nż. Grzegorz Kaczor Poltechnka Krakowska, Instytut Pojazdów Szynowych al. Jana Pawła II 37, 31-864

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze

Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH

OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012)

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012) 30/04! 2012 PON 13: 30! t FAX 22 55 99 910 PKPP Lewatan _..~._. _., _. _ :. _._..... _.. ~._..:.l._.... _. '. _-'-'-'"." -.-.---.. ----.---.-.~.....----------.. LEWATAN Pol~ka KonfederacJa Pracodawcow

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE 3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka

Bardziej szczegółowo

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł

ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Bogdan Supeł ZASTOSOWANIE DZIANIN DYSTANSOWYCH DO STREFOWYCH MATERACY ZDROWOTNYCH. Wstęp Bogdan Supeł W ostatnm czase obserwuje sę welke zanteresowane dzannam dystansowym do produkcj materaców. Człowek około /3 życa

Bardziej szczegółowo

Wykład IX Optymalizacja i minimalizacja funkcji

Wykład IX Optymalizacja i minimalizacja funkcji Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW

STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES

WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES Zbgnew SKROBACKI WYBRANE METODY TWORZENIA STRATEGII ZRÓWNOWAŻONEGO TRANSPORTU MIEJSKIEGO SELECTED METHODS FOR DEVELOPING SUSTAINABLE URBAN TRANS- PORT STRATEGIES W artykule przedstawone systemowe podejśce

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

FAZY KSZTAŁTOWANIA ZDOLNOŚĆ! KOORDYNACYJNYCH MAGAZYN TRENERA 5

FAZY KSZTAŁTOWANIA ZDOLNOŚĆ! KOORDYNACYJNYCH MAGAZYN TRENERA 5 M T FAZY KSZTAŁTOWANIA ZDOLNOŚĆ! KOORDYNACYJNYCH MAGAZYN TRENERA 5 Kształtowanu zdolnośc koordynacyjnych należy pośwęcć dużo mejsca już od najwcześnejszych lat oddzaływana trenngowego. Zdolnośc te należą

Bardziej szczegółowo

Zapytanie ofertowe nr 4/2016/Młodzi (dotyczy zamówienia na usługę ochrony)

Zapytanie ofertowe nr 4/2016/Młodzi (dotyczy zamówienia na usługę ochrony) Fundacja na Rzecz Rozwoju Młodzeży Młodz Młodym ul. Katedralna 4 50-328 Wrocław tel. 882 021 007 mlodzmlodym@archdecezja.wroc.pl, www.sdm2016.wroclaw.pl Wrocław, 24 maja 2016 r. Zapytane ofertowe nr 4/2016/Młodz

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM

BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM SRM Zeszyty Problemowe Maszyny Elektryczne Nr 88/2010 13 Potr Bogusz Marusz Korkosz Jan Prokop POLITECHNIKA RZESZOWSKA Wydzał Elektrotechnk Informatyk BADANIE DRGAŃ WŁASNYCH NAPĘDU ROBOTA KUCHENNEGO Z SILNIKIEM

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.

EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI. EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

MOŻLIWOŚCI KSZTAŁTOWANIA POWIERZCHNI OBRABIANYCH NA TOKARKACH CNC WYNIKAJĄCE ZE ZŁOŻENIA RUCHÓW TECHNOLOGICZNYCH

MOŻLIWOŚCI KSZTAŁTOWANIA POWIERZCHNI OBRABIANYCH NA TOKARKACH CNC WYNIKAJĄCE ZE ZŁOŻENIA RUCHÓW TECHNOLOGICZNYCH 4/1 Technologa Automatyzacja Montażu MOŻLIWOŚCI KSZTAŁTOWAIA POWIERZCHI OBRABIAYCH A TOKARKACH CC WYIKAJĄCE ZE ZŁOŻEIA RUCHÓW TECHOLOGICZYCH Robert JASTRZĘBSKI, Tadeusz KOWALSKI, Paweł OSÓWIAK, Anna SZEPKE

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO

ZASTOSOWANIE KLASYCZNEGO ALGORYTMU GENETYCZNEGO DO ROZWIĄZANIA ZBILANSOWANEGO ZAGADNIENIA TRANSPORTOWEGO Studa Materały. Mscellanea Oeconomcae Rok 6, Nr 2/22 Wydzał Zarządzana Admnstrac Unwersytetu Jana Kochanowskego w Kelcach Z a r z ą d z a n e f n a n s e Rafał Prońko ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

banków detalicznych Metody oceny efektywnoœci operacyjnej

banków detalicznych Metody oceny efektywnoœci operacyjnej Metody oceny efektywnoœc operacyjnej banków detalcznych Danuta Skora, mgr, doktorantka Wydza³u Nauk Ekonomcznych, Dyrektor Regonu jednego z najwêkszych banków detalcznych Adran Kulczyck, mgr, doktorant

Bardziej szczegółowo

Problem plecakowy (KNAPSACK PROBLEM).

Problem plecakowy (KNAPSACK PROBLEM). Problem plecakowy (KNAPSACK PROBLEM). Zagadnene optymalzac zwane problemem plecakowym swą nazwę wzęło z analog do sytuac praktyczne podobne do problemu pakowana plecaka. Chodz o to, by zapakować maksymalne

Bardziej szczegółowo

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU Studa Ekonomczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH ZASTOSOWANIA METOD MATEMATYCZNYCH W EKONOMII I ZARZĄDZANIU

Bardziej szczegółowo

Szkolimy z pasją. tel.(012)2623040; 0601457926; 0602581731 www.aiki-management.pl

Szkolimy z pasją. tel.(012)2623040; 0601457926; 0602581731 www.aiki-management.pl Szkolmy z pasją Warsztaty Samura Game Godność Przywództwo Integracja Komunkacja Budowane Zespołu Honor Samura Game www.samuragame.org jest unkalną rzucającą wyzwane symulacją z obszaru budowana zespołu

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne Magdalena OSIŃSKA Unwersytet Mkołaja Kopernka w Torunu Model oceny ryzyka w dzałalnośc frmy logstycznej - uwag metodyczne WSTĘP Logstyka w cągu ostatnch 2. lat stała sę bardzo rozbudowaną dzedzną dzałalnośc

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak

Model IS-LM-BP. Model IS-LM-BP jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak Ćwczena z Makroekonom II Model IS-LM- Model IS-LM- jest wersją modelu ISLM w gospodarce otwartej. Pokazuje on zatem jak gospodarka taka zachowuje sę w krótkm okrese, w efekce dzałań podejmowanych w ramach

Bardziej szczegółowo

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz

NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw MATERIAŁY I STUDIA Zeszyt nr 86 Analza dyskrymnacyjna regresja logstyczna w procese oceny zdolnośc kredytowej przedsęborstw Robert Jagełło Warszawa, 0 r. Wstęp Robert Jagełło Narodowy Bank Polsk. Składam

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Klasyczne miary efektywności systemu bonus-malus

Klasyczne miary efektywności systemu bonus-malus Klasyczne mary efektywnośc systemu bonus-malus Anna Jędrzychowska Ewa Poprawska Klasyczne mary efektywnośc systemu bonus-malus Głównym celem wprowadzena systemu bonus-malus w ubezpeczenach komunkacyjnych

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA

PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA InŜynera Rolncza 7/2005 Jan Radoń Katedra Budownctwa Weskego Akadema Rolncza w Krakowe PROGNOZOWANIE KSZTAŁTOWANIA SIĘ MIKROKLIMATU BUDYNKÓW INWENTARSKICH MOśLIWOŚCI I OGRANICZENIA Streszczene Opsano nawaŝnesze

Bardziej szczegółowo

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych

Problematyka walidacji metod badań w przemyśle naftowym na przykładzie benzyn silnikowych NAFTA-GAZ luty 013 ROK LXIX Zygmunt Burnus Instytut Nafty Gazu, Kraków Problematyka waldacj metod badań w przemyśle naftowym na przykładze benzyn slnkowych Wprowadzene Waldacja metody badawczej to szereg

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Piesi jako ofiary śmiertelnych wypadków analiza kryminalistyczna

Piesi jako ofiary śmiertelnych wypadków analiza kryminalistyczna Pes jako ofary śmertelnych wypadków analza krymnalstyczna Potr Kodryck, Monka Kodrycka Pozom bezpeczeństwa ruchu drogowego klasyfkuje Polskę na jednym z ostatnch mejsc wśród krajów europejskch. Wskaźnk

Bardziej szczegółowo

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Inżynera Rolncza 8(96)/2007 OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Jolanta Królczyk, Marek Tukendorf Katedra Technk Rolnczej Leśnej,

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2

Określanie mocy cylindra C w zaleŝności od ostrości wzroku V 0 Ostrość wzroku V 0 7/5 6/5 5/5 4/5 3/5 2/5 Moc cylindra C 0,5 0,75 1,0 1,25 1,5 > 2 T A R C Z A Z E G A R O W A ASTYGMATYZM 1.Pojęca ogólne a) astygmatyzm prosty (najbardzej zgodny z pozomem) - najbardzej płask połudnk tzn. o najmnejszej mocy jest pozomy b) astygmatyzm odwrotny (najbardzej

Bardziej szczegółowo

THE STATISTICAL MODEL OF ROAD TRAFFIC MONITORING

THE STATISTICAL MODEL OF ROAD TRAFFIC MONITORING ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 200909 Sera: TRANSPORT z. 65 Nr kol. 1807 Teresa PAMUŁA, Aleksander KRÓL STATYSTYCZNY MODEL MONITOROWANIA RUCHU DROGOWEGO Streszczene. W artykule przedstawono koncepcję

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej:

Model ISLM. Inwestycje - w modelu ISLM przyjmujemy, że inwestycje przyjmują postać funkcji liniowej: dr Bartłomej Rokck Ćwczena z Makroekonom I Model ISLM Podstawowe założena modelu: penądz odgrywa ważną rolę przy determnowanu pozomu dochodu zatrudnena nwestycje ne mają charakteru autonomcznego, a ch

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Instrukcja obsługi SYSTEM REJESTRACJI TEMPERATURY I WILGOTNOŚCI TRS

Instrukcja obsługi SYSTEM REJESTRACJI TEMPERATURY I WILGOTNOŚCI TRS Wspomagamy procesy automatyzacj od 1986 r. Instrukcja obsług SYSTEM REJESTRACJI TEMPERATURY I WILGOTNOŚCI TRS Instrukcja montażu uruchomena Przed rozpoczęcem użytkowana oprogramowana należy dokładne zapoznać

Bardziej szczegółowo

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS Anna Jędrzychowska Unwersytet Ekonomczny we Wrocławu Wydzał Zarządzana, Informatyk Fnansów Katedra Ubezpeczeń anna.jedrzychowska@ue.wroc.pl Ewa Poprawska Unwersytet Ekonomczny we Wrocławu Wydzał Zarządzana,

Bardziej szczegółowo

Zagadnienia do omówienia

Zagadnienia do omówienia Zarządzane produkcją dr nż. Marek Dudek Ul. Gramatyka 0, tel. 6798 http://www.produkcja.zarz.agh.edu.pl Zagadnena do omówena Zasady projektowana systemów produkcyjnych część (organzacja procesów w przestrzen)

Bardziej szczegółowo

P02. Zestaw norm CEN wspierających wdrażanie Dyrektywy EPBD w Krajach Członkowskich UE. [Information on standardisation] 11-04-2006

P02. Zestaw norm CEN wspierających wdrażanie Dyrektywy EPBD w Krajach Członkowskich UE. [Information on standardisation] 11-04-2006 [Informaton on standardsaton] P02 11-04- Jaap Hogelng ISSO Char CEN-BT WG173 on EPBD Holanda wwwbuldngsplatformeu Dyrektywa wymaga od Krajów Członkowskch UE wprowadzenu regulacj w następujących kwestach:

Bardziej szczegółowo

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej Łukasz Goczek * Regulacje sądownctwo przeszkody w konkurencj mędzy frmam w Europe Środkowej Wschodnej Wstęp Celem artykułu jest analza przeszkód dla konkurencj pomędzy frmam w Europe Środkowej Wschodnej.

Bardziej szczegółowo

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH

KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH KRÓTKIE WPROWADZENIE DO WIZUALIZACJI I ANALIZY FUNKCJONALNEJ DANYCH EKONOMICZNYCH Danel Kosorowsk Katedra Statystyk, UEK w Krakowe Posedzene Rady Wydzału Zarządzana Kraków, 23.05.2013 PLAN REFERATU 1.

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo