Giełdy Papierów Wartościowych w Warszawie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Giełdy Papierów Wartościowych w Warszawie"

Transkrypt

1 SZKOŁA GŁÓWNA HANDLOWA W WARSZAWIE STUDIUM DYPLOMOWE KIERUNEK: Meody Ilościowe i Sysemy Informacyjne Michał Rubaszek Nr alb Arbiraż cenowy na przykładzie Giełdy Papierów Warościowych w Warszawie Praca magiserska napisana w Insyucie Ekonomerii Pod kierunkiem naukowym Prof. dr hab. Aleksandra Welfe Warszawa 00

2 SPIS TREŚCI WSTĘP I. TEORIA ARBITRAŻU CENOWEGO 3.. Model analizy czynnikowej 3.. Teoria arbirażu cenowego 7 II. DYNAMICZNA TEORIA ARBITRAŻU CENOWEGO 5.. Modele klasy ARCH 6.. Wielowymiarowe modele ARCH.3. Dynamiczna eoria arbirażu cenowego 7 III. CZYNNIKI WPŁYWAJĄCE NA WYCENĘ AKCJI Rola rynku akcji w gospodarce Model zdyskonowanych dywidend Czynniki wpływające na wycenę akcji Sposoby usalania wpływu zmiennych na cenę akcji 36 IV. ZASTOSOWANIE DLA POLSKIEGO RYNKU KAPITALOWEGO Klasyczna APT Dynamiczna APT 46 ZAKOŃCZENIE 5 Załącznik. Źródła danych 53 LITERATURA 55

3 WSTĘP Klasyczna eoria arbirażu cenowego (ang. Arbirage Pricing Theory, APT, por. Ross S. [976]) sanowi jedną z podsawowych eorii rynku kapiałowego. Model arbirażu cenowego rakować można jako alernaywę lub rozszerzenie modelu CAPT (ang. Capial Asse Pricing Theory, por. Sharpe a W [964]). Obydwa modele należą do grupy eorii porfelowych objaśniających właściwości doyczące zysku (j. warości oczekiwanej sopy zwrou) i ryzyka (j. wariancji sopy zwrou) zespołu inwesycji w papiery warościowe. Podsawową różnicą między wspomnianymi eoriami jes określenie źródeł ryzyka. Model Sharpe a zakłada, że wspólna zmienność cen akcji wynika jedynie z chwiejności indeksu odzwierciedlającego ogólną koniunkurę na rynku. Zgodnie ze specyfikacją Rossa zmienność a może być kszałowana przez dowolną liczbę czynników. Począkowa, klasyczna wersja eorii arbirażu cenowego opiera się na założeniu, że sopy zwrou z inwesycji w akcje generowane są przez sacjonarny proces sochasyczny. Wyniki analizy empa wzrosu cen akcji (por. np. Keim D., Sambaugh R. [986], Danielsson J. [994], Hamilon J., Lin G. [996],) dowodzą zmienności wariancji ego procesu. Zmienność a jes uwzględniona w dynamicznej specyfikacji modelu arbirażu cenowego (por. Engle R., Ng V., Rohschild M [990]). Część badań doyczących eorii arbirażu cenowego (por. Chen N., Roll R., Ross S. [986], Cragg J. I Donald S. [99], Sokalska M. [996]) sanowi analizę zależności między cenami akcji a poziomem zmiennych makroekonomicznych. Wyniki wskazują, że ceny akcji reagują na informacje związane z koniunkurą na rynku, zmianami poziomu produkcji przemysłowej oraz oczekiwaniami doyczącymi kszałowania się sóp procenowych. Niesey, oprócz ych nielicznych prac nie ma wielu dowodów 3

4 wskazujących na isnienie sałych powiązań pomiędzy sferą realną gospodarki a cenami papierów udziałowych. Prezenowane opracowanie sanowi analizę zależności pomiędzy zmiennymi ekonomicznymi a kursami akcji noowanych na Giełdzie Papierów Warościowych w Warszawie. W pierwszym rozdziale pracy przedsawione zosały założenia eorii arbirażu cenowego, ogólna posać modelu oraz esy służące określeniu jego jakości. Nasępnie podana jes procedura, za pomocą kórej worzy się porfele inwesycyjne o usalonych właściwościach doyczących oczekiwanej sopy zwrou i ryzyka. Ponieważ eoria APT wykorzysuje procedury analizy czynnikowej (ang. facor analysis, FA) meoda a opisana jes na począku rozdziału. W rozdziale drugim omówiono modele klasy ARCH, ze szczególnym uwzględnieniem specyfikacji ARCH czynnikowego. Ponado przedsawiono meody esymacji paramerów dynamicznego modelu arbirażu cenowego. Rozdział rzeci zawiera analizę roli rynku kapiałowego w gospodarce narodowej oraz mechanizmów oddziaływania wybranych zjawisk ekonomicznych na ceny akcji. Kryerium wyboru zmiennych opare jes na bazie modelu zdyskonowanych dywidend. W osanim, czwarym rozdziale przedsawione są wyniki zasosowania eorii arbirażu cenowego do wyceny 6 akcji noowanych na Giełdzie Papierów Warościowych w Warszawie w okresie syczeń 997 lisopad 00. Inerpreacja orzymanych wyników oraz wskazanie możliwych zasosowań omówionej meody do podejmowania decyzji inwesycyjnych kończą pracę. 4

5 ROZDZIAŁ I TEORIA ARBITRAŻU CENOWEGO.. Model analizy czynnikowej Analiza czynnikowa zosała po raz pierwszy zasosowana do badania zależności pomiędzy ocenami, uzyskanymi przez uczniów, z sześciu różnych esów przedmioowych (por. Spearman C. [904]). Wyniki wskazywały, że każdy z uczniów uzyskiwał podobne noy ze wszyskich esów. Sformułowana zosała hipoeza, że zw. ukryy czynnik (kóry można inerpreować jako iloraz ineligencji ucznia) uwarunkowywał orzymane oceny. Zasosowanie analizy czynnikowej umożliwiło dokonanie charakerysyki każdego z uczniów za pomocą ylko jednej zmiennej ( ukryego czynnika ). Oczywiście redukcja badanych zmiennych z sześciu do jednej odbyła się koszem uray informacji. Analiza czynnikowa jes modelem za pomocą kórego można skonsruować grupę szucznych zmiennych, zwanych dalej czynnikami wspólnymi (ang. common facors, CF), kóre odzwierciedlają informację zawarą w macierzy obserwacji dużo liczniejszego zbioru zmiennych. Głównym kryerium w procesie esymacji warości czynników wspólnych jes minimalizacja uray informacji, kóra wynika z redukcji zmiennych. Analiza czynnikowa jes zazwyczaj sosowana w przypadku gdy ilość zaobserwowanych zmiennych jes zby duża, aby móc je przeworzyć do dalszych badań. Oznaczmy macierz obserwacji dla N zmiennych losowych w okresach =,,...,T przez Y=[y () y ()... y N() ]. Ponado niech y i() =[y i y i... y it ] T i y (i) =[y y... y N ] oznaczają odpowiednio i-ą kolumnę oraz -y wiesz macierzy Y. Analiza czynnikowa opiera się na założeniu, że niezależnie od momenu wekor T y (i) jes generowany przez proces o N- wymiarowym rozkładzie normalnym N(µ, Ω), gdzie µ=[µ µ... µ N ] T jes wekorem warości 5

6 ε = Μ ε oczekiwanych, naomias Ω jes macierzą kowariancji. Dodakowo dla każdego usalonego i=,,...,n każda ze zmiennych y i() jes funkcją K<N czynników wspólnych f k() =[f k f k... f kt ] T (k=,,...,k) oraz zmiennej losowej ε i() =[ε i ε i... ε it ] T, zwanej czynnikiem swoisym (ang. indiosyncraic facor, IF). W dalszej części zakłada się, że y i() są kombinacją liniową czynników wspólnych i czynników swoisych (por. Roll R. i Ross S. [980]), zn.: y i = µ β... i i f βi f βik f K ε i. (.) Paramery β ik zwane ładunkami czynnikowymi (ang. facor loadings, FL), reprezenują wpływ k-ego czynnika wspólnego na i-ą zmienną obserwowalną. Równanie (.) można zapisać akże w posaci macierzowej: gdzie: Y = FB, (.) F=[f () f ()... f K() ] jes macierzą warości czynników wspólnych, ε=[ε () ε ()... ε N() ] jes macierzą warości czynników swoisych, B=[β (k) β (k)... β N(k) ] jes macierzą ładunków czynnikowych, M=[µ () µ ()... µ N() ] jes macierzą wyrazów wolnych. Zakłada się, że warość zmiennej µ i nie zależy od okresu obserwacji, zn. µ i =µ i, Dalej przyjmuje się, że zmienne losowe f k() i ε i() spełniają nasępujące założenia (por. Laudański i Wójcik [989], s.5): a) warości oczekiwane czynników wspólnych i czynników swoisych są równe zeru, zn.: E f ] = 0 dla k=,,...,k (.3a) [ k() E [ i() ] 0 dla i=,,...,n (.3b) b) Czynniki wspólne są nawzajem oronormalne, zn.: 0 dla k l Cov[ f k(), fl() ] = dla k,l=,,...,k (.3c) dla k = l 6

7 , ε dla ε ψ ε ε ε ε ε Ψ c) Macierz kowariancji czynników swoisych, oznaczana jako Ψ, jes diagonalna, zn.: ε ψ0 dla i j Cov[ i(), j() ] = ij = i,j=,,...,n (.3d) i dla i = j = d) Czynniki swoise i czynniki wspólne są wzajemnie orogonalne, zn.: Cov [ i((), fk() ] 0 dla i=,,...,n ; k=,,...,k (.3e). Powyższe założenia pozwalają wyznaczyć elemeny macierzy Ω jako funkcję elemenów macierzy Β i macierzy Ψ: T T T T T T T T T = Var ( Y) = ( B F )( FB ) = B F FB B F = B B (.4) Tożsamość (.4) można zapisać oddzielnie dla każdego z elemenów macierzy Ω jako: ω = Var( ) = β β β ψ (.5a) ii y i i i... ik i ω = Cov y, y ] = β β β β... β β dla i j (.5b) ij [ i j i j i j ik jk Pierwszym eapem analizy czynnikowej jes esymacja elemenów macierzy Β i Ψ. Kryerium jes maksymalizacja roli czynników wspólnych przy równoczesnym eliminowaniu wpływu czynników swoisych w procesie określania zmienności cech Y. Dokonuje się ego poprzez odpowiedni dobór ładunków czynnikowych. Do najpowszechniejszych meod wyznaczania macierzy ładunków należą meoda cenroidalna (por. Plua W. [977] s.64-76), meoda głównych składowych (por. Laudański Z., Wójcik A. [989] s.50-53), meoda najmniejszych kwadraów (por. Fine J. [993]) oraz meoda największej wiarygodności (por. Joreskog K. [967]). W dalszej części pracy sosowana będzie osania z wymienionych meod, ponieważ najwięcej wiadomo na ema jej saysycznych właściwości. W przypadku gdy macierz kowariancji Ω dana przez (.4) jes nieosobliwa, do wyznaczenia szukanych paramerów wysarczające są informacje zaware w macierzy ˆ T T = ( y(i) (i) ) ( y(i) (i) ) (.6) T = 7

8 Ψ Ψ Β Μ Μ Μ Μ Β Μ Β Ψ Ψ Μ Β Β Ψ gdzie ^ oznacza esymaor Ω. Zakłada się, że esymaor ˆ należy do rozkładu Wishara. W rezulacie warość funkcji wiarygodności wynosi (por. Morrison D. [990], s.454): T N T ˆ ˆ T L( ) = c exp[ r( ˆ )], (.7) gdzie c jes pewną sałą. Podsawiając (.4) do (.7) i logarymując orzymuje się: ˆ T N ˆ T T T T l( ) = ln c ln ln r[( ) ˆ ]. (.8). Maksymalizując (.8) po elemenach macierzy Β i Ψ przy resrykcjach zerowych nałożonych na nie-diagonalne elemeny macierzy Ψ uzyskuje się esymaory macierzy Β i Ψ (szerzej w: Joreskog K. [967]). W nasępnym eapie analizy czynnikowej dokonuje się aproksymacji warości czynników wspólnych. W celu uproszczenia esymacji zakłada się, że oszacowania czynników wspólnych są kombinacją liniową odchyleń zmiennych obserwowalnych od ich warości oczekiwanej, a więc: Fˆ = (Y Μ)C, (.9) gdzie C jes macierzą esymowanych paramerów o wymiarach N K. Isnieje wiele meod wyznaczenia macierzy C (szerzej w: Fine J. [993]), z kórych przedsawiona zosanie meoda największej wiarygodności. Jeżeli przyjmie się, że Y jes Ψ generowane przez proces o rozkładzie normalnym, o esymaor MNW macierzy C uzyskuje się maksymalizując funkcję (por. Barle M.S. [937]): ΒΨ ˆ T ˆ l = r{ [ ( Y ) FB ] [ ( Y ) FB ] } = (.0) T = r{ [ ( Y ) ( Y ) CB ] [ ( Y ) ( Y ) CB ] } Powyższe wyrażenie osiąga maksimum dla (por. Fine J. [993]): ˆ T T C [( ) ] (.) = ΒΨ 8

9 Μ Β ΒΒ ΨΨ Β ΒΨ Wsawiając (.) do (.9) orzymuje się esymaor macierzy czynników wspólnych: ˆ T T F ( Y )[ ( ) ] (.) W kolejnym eapie należy sprawdzić, czy K czynnikowy model isonie odwarza Β macierz kowariancji daną przez (.6). Dokonuje się ego za pomocą esu Barle a. Sprawdzianem jes zespołu hipoez: H : = T 0 Ψ (.3a) H T : (.3b) jes saysyka: (por. Morrison D. [990] s.463): ˆ ˆ ˆ χ = [ T (N 5) K]ln, (.4) 6 3 ˆ = ΒΨ ΒTΒ o rozkładie χ o ν = [( N K) N K] sopniach swobody. Warości saysyki większe od warości kryycznej wskazują na przyjęcie hipoezy H... Teoria arbirażu cenowego W dalszej analizie przyjmować będziemy nasępujące założenia. Po pierwsze, że nie ma koszów ransakcji. Oznacza o, że składając zlecenia kupna lub sprzedaży nie płaci się prowizji od dokonanej ransakcji. Po drugie zakłada się doskonałą podzielność insrumenów finansowych. Pomimo iż najmniejszą jednoską jes akcja, kórej nie można sprzedawać w częściach, o jednak w przypadku dosaecznie dużych kapiałów można przyjąć, że dana lokaa jes doskonale podzielna. Po rzecie przyjmuje się, że nie ma podaków od dochodów uzyskanych na rynkach kapiałowych. Jes o nieprawdą w przypadku rynków rozwinięych. W Polsce isnieją jedynie plany opodakowania dochodów z inwesycji w akcje. 9

10 Po czware wymaga się aby ransakcje pojedynczego inwesora nie miały wpływu na cenę insrumenu finansowego. Dla spółek o największej kapializacji noowanych na naszym rynku dany wpływ jes zauważalny jedynie w przypadku poważnych inwesorów insyucjonalnych. Jednak w przypadku spółek o niskiej kapializacji i warości dziennego obrou nie przekraczającej kilku ysięcy złoych pojedyncze ransakcje mogą usalić kurs dnia. Spekakularnym przypadkiem jes zw. spirala poznańska, czyli zmowa kilku inwesorów indywidualnych, kórzy w laach 993/94 dzięki manipulacji spowodowali wzros kursu akcji spółki Efek o kilkase procen. Po piąe zakłada się, że wysępuje króka sprzedaż akcji. Oznacza o, że isnieje możliwość pożyczania akcji od innego inwesora. Nasępnie akcje są sprzedawane, a po upływie wyznaczonego erminu odkupywane oraz oddawane ich pierwonemu właścicielowi. Na rynkach rozwinięych całą ransakcję aranżuje dom maklerski. W Polsce króka sprzedaż jes już uregulowana prawnie i znajduje się w sadium rozwoju. Po szóse przyjmuje się nieograniczoną możliwość udzielania bądź zaciągania kredyu przy sopie wolnej od ryzyka. Sopa procenowa wolna od ryzyka może zosać wyznaczona przez oprocenowanie WIBOR M. W prakyce insyucje finansowe i inni inwesorzy zaciągając kredy muszą poencjalnemu pożyczkodawcy zapłacić premię za ryzyko. Jeżeli jednak przyjmie się, że inwesor posiada lokaę oprocenowaną według sopy WIBOR M, o jej likwidacja może być rakowana za ransakcję równoznaczną z zaciągnięciem kredyu po sopie wolnej od ryzyka. Na koniec zakłada się, że przy podejmowaniu decyzji inwesorzy biorą pod uwagę jedynie oczekiwaną sopę zwrou i ryzyko inwesycji w określone insrumeny finansowe. Z pewnością wielu inwesorów zwraca szczególną uwagę na dwa pierwsze momeny sóp zwrou. Jednakże nie można ze sanowczością swierdzić, że wszyscy kierują się jedynie powyższymi kryeriami przy podejmowaniu decyzji inwesycyjnych. 0

11 Oznaczmy sopę zwrou z i-ej akcji w okresie jako: ci di r i =, (.5) c i, gdzie c i jes ceną akcji na koniec okresu, zaś d i jes warością praw do dywidendy przypadających na jedną akcję, kóre zosały przyznane w okresie. Nasępnie zdefiniujmy nadzwyczajną sopę zwrou (ang. excess asse reurn, EAR) jako: y r r i 0, i =, (.6) r0, gdzie r 0, oznacza sopę zwrou z inwesycji w papiery warościowe o zerowym ryzyku (ang. risk free). W badaniach prowadzonych dla rynku kapiałowego w Sanach Zjednoczonych dokonanych przez Engle a, Ng oraz Rohschilda [99] przyjęo że akim insrumenem finansowym są jednomiesięczne bony skarbowe. Polskim odpowiednikiem, dla kórego isnieje szereg czasowy w okresie syczeń 997-lisopad 00, może być sopa procenowa WIBOR M. W rezulacie warość y i jes równa różnicy sopy zwrou z inwesycji w i-ą akcję i lokay oprocenowanej według sopy WIBOR M. Model APT jes zaliczany do klasy modeli czynnikowych i w związku z ym nadzwyczajne sopy zwrou generowane są przez proces (por. Ross S. [976]): y i = µ β f β f... β f ε. (.7) i i i ik K i Należy zauważyć, że (.8) jes idenyczne z (.). Isnieją dwie możliwości wyznaczania wekorów f (),f (),...,f K(), czyli regresorów modelu (.7). Zgodnie z klasyczną eorią arbirażu cenowego używana jes analiza czynnikowa. Druga z meod polega na odgórnym wyznaczeniu zbioru zmiennych makroekonomicznych mających wpływ na kszałowanie się kursów akcji. Przykładami zasosowania są prace Sokalskiej [996] dla rynku polskiego oraz Chena, Rolla i Rossa [986] dla rynku amerykańskiego.

12 Β Decydując się na wybór klasycznej APT należy arbiralnie określić ilość czynników (np. w badaniach prowadzonych przez Rolla i Rossa [980] dla rynku amerykańsiego model APT szacowano dla pięciu czynników wspólnych). Nasępnie sosując analizę czynnikową orzymuje się esymaory macierzy czynników wspólnych, ładunków czynników oraz czynników swoisych. Powyższe esymaory są wykorzysywane w celu sworzenia porfeli o właściwościach wymaganych przez inwesora. Przykładowo, aby sworzyć porfel wrażliwy jedynie na k-y czynnik wspólny ze współczynnikiem wrażliwości równym (dalej nazywany k-ym porfelem reprezenaywnym), należy rozwiązać układ równań: N i= N i= w ik ik β = ik w β = 0 ij dla j k dla k=,,...,k (.8) Wagi w ik oznaczają warość ransakcji zamiany lokay oprocenowanej według sopy WIBOR M na akcje i-ej spółki (przy konsrukcji porfela wrażliwego jedynie na k-y czynnik). Układ (.8) można zapisać akże w posaci macierzowej: WΒT = I K K, (.9) gdzie: W=[w (k) w (k)... w N(k) ] jes macierzą wag, I K K ΒΒ macierzą jednoskową o wymiarach K K. Przykładem macierzy wag, dla kórej zachodzi (.9) jes: W T = ( ). (.0) Dla usalonej macierzy wag nadzwyczajną sopę zwrou dla k-ego porfela reprezenaywnego w okresie oblicza się za pomocą wzoru: p = w y w y... w k y k k Nk N. (.) W posaci macierzowej równość (.) można zapisać nasępująco:

13 T P = YW, (.) gdzie P=[p () p ()... p K() ] jes macierzą nadzwyczajnych sóp zwrou z inwesycji w porfele reprezenaywne. gdzie: Podsawiając (.) oraz (.9) do (.) orzymuje się: P=(MFBε)W T =MW T FBW T εw T =MW T FεW T, (.3) MW T jes macierzą warości oczekiwanych porfeli, F jes zmiennością objaśnianą przez czynniki wspólne, εw T jes macierzą czynników swoisych porfeli. Dla zdywersyfikowanych porfeli dowodzi się, że IF charakerysyczne dla pojedynczych T akcji wzajemnie znoszą się (por. Roll R., Ross S. [980]), zn. limvar( εw ) = 0. Warości oczekiwane nadzwyczajnej sopy zwrou dwóch porfeli reprezenaywnych zależnych od ego samego czynnika wspólnego muszą przyjmować ę samą warość. Wynika o z prawa jednej ceny, zgodnie z kórym dwa insrumeny finansowe o jednakowym ryzyku nie mogą mieć różnych sóp zwrou. Gdyby aka syuacja zaisniała, pojawiliby się arbirażyści, kórzy zamieniając gorszą lokaę na lepszą osiągaliby zyski bez ponoszenia ryzyka. Ponieważ porfele zależne jedynie od k-ego czynnika wspólnego N są inwesycjami o jednakowym ryzyku, zaem ich sopy zwrou są sobie równe. Oznaczmy przez λ k warość premii za ryzyko związane z k-ym czynnikiem wspólnym (czyli λ k =E[p k ]). Warość oczekiwana nadzwyczajnej sopy zwrou dla i-ej akcji powinna równać się łącznej warości premii za ryzyko związanych ze wszyskimi czynnikami wspólnymi, czyli: E [ y i ] = µ i = λ βi λβi... λk βik ui dla i=,,...,n, (.4) gdzie u i jes składnikiem losowym. 3

14 Β Oszacowania paramerów λ k można uzyskać w na dwa sposoby. Po pierwsze, można λskonsruować ΒΒ porfele reprezenaywne i nasępnie obliczyć λ k =E[p k ] dla k=,,...,k. Drugi ze sposobów polega na zasosowaniu meody najmniejszych kwadraów do opymalizacji modelu (.4). Wówczas esymaor MNK jes dany przez: ˆ T = ( ), (.5) gdzie µ=[µ µ... µ N ] T, zaś λ=[λ λ... λ K ] T oznacza wekor poszukiwanych paramerów. W celu sprawdzenia jakości dopasowania modelu do zaobserwowanych szeregów czasowych sosuje się rzy esy. Pierwszy z nich weryfikuje, czy warość oczekiwana nadzwyczajnej sopy zwrou z inwesycji w akcję jes zależna od warości ładunków czynnikowych charakerysycznych dla danej akcji. Zespół hipoez: H H 0 : λ = λ =... = λ : i {,,..., K} i λ 0 K = 0 (.6) esuje się za pomocą saysyki mnożników Lagrange a posaci: LM = NR, (.7) gdzie R jes współczynnikiem deerminacji modelu (.4). Saysyka LM ma rozkład χ o ν=k sopniach swobody. Warości saysyki mniejsze od poziomu kryycznego wskazują na przyjęcie hipoezy zerowej, kóra oznacza, że APT nie wyjaśnia zmian cen akcji. Drugi z esów, zwany esem Chowa (por. Chow G. [985]), sosuje się do weryfikacji hipoezy o sabilności paramerów λ k. Zgodnie z procedurą zbiór akcji dzieli się na dwa rozdzielne zbiory, a nasępnie dla każdego z nich dokonuje się esymacji paramerów meodą MNK. Oznaczając przez RSS, RSS oraz RSS sumy kwadraów resz odpowiednio dla pierwszej i drugiej grupy oraz dla całej próby oblicza się saysykę: ( RSS RSS RSS) ( N K) F = (.8) RSS RSS K 4

15 należącą do rozkładu F-Snedecora o ν =K i ν =N-K sopniach swobody. Saysyka a sosowana jes do weryfikacji hipoezy o sabilności paramerów. Warości należące do przedziału kryycznego wskazują na niesabilność paramerów modelu APT. W wielu pracach zosała udokumenowana dodania zależność oczekiwanej sopy zwrou od odchylenia sandardowego (por. np.: Fama E. [993], Roll R., Ross S. [980]). W celu sprawdzenia czy odchylenie sandardowe i ej akcji: s i = T = ( y i µ ) T i (.9) wnosi dodakową informację do modelu (.4) esuje się nasępujący zespół hipoez: H H 0 : µ i = λβ i λβi... λk βik. (.30) : µ = λ β λ β... λ β γs i i i K ik i Ich sprawdzianem jes saysyka mnożników Lagrange a (por..7), gdzie R jes współczynnikiem deerminacji modelu: u i = φ βi φβi... φk βik φksi ηi (.3) (u i są reszami modelu (.4)). Saysyka LM ma rozkład χ o ν= sopniu swobody. Niskie warości saysyki świadczą, że odchylenie sandardowe nie wnosi dodakowej informacji do modelu APT. Model arbirażu cenowego jes arakcyjną alernaywą w sosunku do innych modeli porfelowych. Po pierwsze, przyczyny ryzyka inwesycynego nie są ograniczone ylko do jednego czynnika jak ma o miejsce w przypadku modelu CAPT. Po drugie, zasosowanie procedur analizy czynnikowej umożliwia opymalne wykorzysanie informacji zawarej w macierzy kowariancji nadzwyczajnych sóp zwrou. 5

16 6

17 ROZDZIAŁ II DYNAMICZNA TEORIA ARBITRAŻU CENOWEGO Klasyczna eoria arbirażu cenowego opiera się na założeniu, że nadzwyczajne sopy zwrou z inwesycji w akcje są generowane przez sacjonarny proces sochasyczny o wielowymiarowym rozkładzie normalnym: y T (i) N(, ) dla =,,...,T (.) Badania zmienności kursów giełdowych dowodzą wysępowania szeregu zjawisk świadczących o zmienności w czasie paramerów procesu generującego nadzwyczajne sopy zwrou (por. Bollerslev T., Engle R., Nelson D. [994], Welfe A. [000] s.). Po pierwsze, duże zmiany mają endencję do nasępowania po dużych zmianach, naomias zmiany mniejsze nasępują po mniejszych zmianach. Zjawisko o nazywane jes grupowaniem wariancji (ang. volailiy clusering). Po drugie, noowania akcji firm sosujących finansowanie zewnęrzne, czyli zw. dźwignię finansową, są bardziej wahliwe w momencie spadku warości kapiału własnego danej spółki. Dane zjawisko zosało nazwane jako efek dźwigni (ang. leverage effec). Po rzecie, prognozowalne wydarzenia (ang. forecasable evens) czyli np. ogłoszenie wyniku finansowego, plany fuzji id. powodują ex-ane zwiększoną wahliwość sóp zwrou. Po czware, noowania spółek na giełdzie są zależne od ogólnego sanu gospodarki. Zauważalna jes zwiększona wahliwość w okresach recesji, zaś zmniejszona w okresie wzrosu. Wynika z ego, że na rozkład sóp zwrou ma wpływ niepewność makroekonomiczna. 7

18 α W wyniku przyjmuje się, że nadzwyczajne sopy zwrou są generowane przez dynamiczny proces sochasyczny (por. Hamilon J., Lin G. [996], Keim D., Sambaugh R. [986]): y T (i) N, ). (.) ( W celu uwzględnienia w modelu zmienności paramerów µ i Ω oraz ewenualnego wpływu Ω na µ sosuje się modele z auoregresyjną wariancją warunkową (ang. auoregressive condiional heeroskedasic, ARCH)... Modele klasy ARCH Model ARCH zosał po raz pierwszy zasosowany do badania inflacji Wielkiej Bryanii (por. Engle R. [98]). Specyfikacja ARCH polega na dodaniu do modelu ekonomerycznego równania pomocniczego opisującego zmienność wariancji warunkowej (heeroskedasyczność) składnika losowego. Zakłada się, że kwadray resz są generowane przez proces AR(P): y I h = h( e e = y N( x x, e (l) b (l) b; h ),..., e P, ), (.3) gdzie: y zmienna objaśniana x (l) wekor L zmiennych objaśniających, w ym opóźnione zmienne objaśniane h wariancja warunkowa składnika losowego I zasób informacji w okresie α,b wekory paramerów. Przyjmując liniowość funkcji h() układ (.3) można sprowadzić do posaci: 8

19 9 b x b x (l) 0 (l)... ) ; ( = = P p y e e e e h h N I y α α α α (.4) Jeżeli oznaczymy kwadray resz jako sumę wariancji warunkowej h oraz składnika losowego ) 0, ( ν σ ν N, czyli h e ν =, o układ (.4) można przekszałcić do: b x b x (l) 0 (l)... ) ; ( = = P p y e e e e e h N I y ν α α α α (.5) Badania empiryczne wykazały, że modele ARCH(P) częso wymagają wprowadzenia wysokich opóźnień (wysoka warość P), co powoduje zmniejszenie liczby sopni swobody. Dany problem można rozwiązać poprzez zasosowanie uogólnionego modelu z auoregresyjną wariancją warunkową (ang. generalized auoregressive condiional heeroskedasic, GARCH) (por. Bollersleva T. [986]), w kórym w równaniu pomocniczym dodaje się opóźnienia wariancji warunkowej (h -, h -,...,h -Q ): b x b x (l) 0 (l) ) ; ( = = Q Q P P y e h h h e e e e h N I y ν γ γ γ α α α α (.6) Podsawiając wyrażenie e ν w miejsce h orzymuje się (por. Bollerslev T., Engle R., Nelson D.[994]): Q Q S S S e e e = ν γ ν γ ν γ α γ α α... ) (... ) ( 0, (.7) czyli reprezenację ARMA(S,Q) procesu generującego kwadray resz (S=max(P,Q)). W eorii finansów wiele modeli, w ym APT, opiera się na założeniu że wariancja emp wzrosu cen papierów warościowych (nazywana ryzykiem) w znacznej mierze objaśnia empa wzrosu cen akcji. Zasosowanie modeli klasy ARCH do badania danej zależności dokonuje się poprzez wprowadzenie wariancji warunkowej h jako dodakowego regresora w równaniu opisującym zmienność nadzwyczajnych sóp zwrou (por. Engle R.,

20 Lilien D., Robins R. [987]). Dana specyfikacja o model GARCH-M(p,q), sanowi układ równań: y I e e = y 0 N ( x = α α e x (l) b (l) b δh ; h ) α e... α e P P γ h γ h... γ h Q Q ν (.8) W przypadku nieliniowej zależności pomiędzy y i h równanie podsawowe może mieć przykładowo nasępującą posać: y y N( x b δ h ; h ) (.9) I (l) N ( x b δ ln h ; h ) (.0) I (l) Pozosałe modele ARCH zosały przedsawione między innymi w Welfe A. [000]. s.5-3. W procesie esymacji modeli klasy ARCH należy pamięać o dwóch ograniczeniach. Po pierwsze, wymaga się aby bezwarunkowa wariancja składnika losowego (por. Bollerslev T., Engle R., Nelson D.[994]): α0 Var( ε ) σ = (.) P Q ( γ ) α p p= q= q była dodania i skończona, czyli aby proces {y } miał sacjonarną wariancję (ang. covariance saionary). Po drugie, wymaga się aby proces {y } był regularny, czyli aby wariancja warunkowa była dodania dla każdego okresu (por. Engle R. [98]): h 0 dla każdego =,,...,T (.) W ym celu na paramery modeli ARCH narzuca się nasępujące resrykcje (por. Bollerslev T., Engle R., Nelson D. [994]): P Q p α γ < (.3a) p= q= q α 0 > 0 (.3b) 0

21 γ α 0 dla p=,,...,p (.3c) p γ 0 dla q=,,...,q. (.3d) q Decydując się na wybór modelu ARCH przed przysąpieniem do esymacji należy sprawdzić, czy składnik losowy jes heeroskedasyczny. Dokonuje się ego za pomocą esu mnożnika Lagrange a (por. wzór.7) isoności paramerów modelu: e = a0 ae ape P... ς, (.4) gdzie e jes reszą regresji y względem x (l). Saysyka (.7) ma rozkład χ o P sopniach swobody. Wysokie warości saysyki świadczą o wysępowaniu efeku ARCH. Inuicja powyższego esu jes dosyć prosa. Jeżeli kwadray resz są od siebie niezależne, czyli składnik losowy jes homoskedasyczny, wedy współczynnik deerminacji i warość saysyki (.7) są niskie. Nasępnym eapem jes esymacja paramerów układu (.5), (.6) lub (.8) w zależności od wybranego modelu. Najczęściej używanym jes esymaor meody największej wiarygodności. Sosując MNW należy założyć, że dla każdego okresu zmienna objaśniana ma rozkład normalny o paramerach y N x b; h ) dla modeli ( (l) ARCH i GARCH lub y N x b δh ; h ) dla modelu GARCH-M. W akim przypadku ( (l) warość funkcji wiarygodności dla pojedynczego okresu wynosi: L 0,5 e = (π h ) exp{ ) (.5) h gdzie e jes reszą daną przez (.5), (.6) lub (.8). W rezulacie, logarym funkcji wiarygodności dla całego okresu próby przyjmuje warość: T T T e l( y α, b,, δ ) = ln(π ) ln h (.6) h = = W celu uzyskania esymaorów paramerów α, b, γ, δ należy znaleźć maksimum wyrażenia (.6). Algorymem za pomocą kórego dokonuje się maksymalizacji, sugerowanym przez

22 Engle R., Lilien D., Robins R. [987] jes algorym BHHH przedsawiony przez Brend E., Hall B., Hall R., Hausman J. [974]. W rakcie esymacji sosuje się między innymi nasępujące rzy esy. Pierwszym z nich jes współczynnik deerminacji modelu (por. Welfe A. [000], s.3): e φ φ ς = 0 h (.7) Drugim miernikiem jes współczynnik kierunku zmian: (por. Welfe A. [000], s.4-5): N{ y ˆ y > 0} Q =. (.8) N{ y yˆ 0) Mianownik wyrażenia (.8) oznacza ilość obserwacji dla kórych warość eoreyczna i obserwowana były idenycznego znaku, naomias licznik wskazuje na ilość obserwacji dla kórych warość obserwowana lub eoreyczna były różne od zera. Warości danej saysyki dla niezależnych y i yˆ przyjmują warość 50%. Warości większe od 70% świadczą o dobrym dopasowaniu. Osani z esów jes sosowany do weryfikacji hipoezy, że wysandaryzowane składniki losowe: e z = (.9) h należą do niezależnego rozkładu normalnego N(0,). W ym celu sosuje się saysykę: MR = T z = (.0) należącą do rozkładu χ o T sopniach swobody. Zby niskie lub zby wysokie warości świadczą, że wysandaryzowany składnik losowy nie należy do rozkładu normalnego N(0,).

23 Α.. Wielowymiarowe modele ARCH Wiele modeli z zakresu eorii finansów, w ym APT, opisuje zachowanie wielowymiarowych zmiennych losowych. Przyczyną są wzajemne relacje cen insrumenów finansowych. Przykładowo Diebold F. I Nerlove M. [989] dowiedli, że pojawiające się informacje mają jednoczesny wpływ na noowania dolara w sosunku do siedmiu różnych walu. Podobne wnioski doyczące wspólnej zmienności cen akcji można uzyskać poprzez analizę noowań giełdowych. Uwzględnienie w modelu zależności wysępujących pomiędzy zmiennymi, czyli niezerowych kowariancji, prowadzi do uzyskania większej efekywności szacowanych paramerów. Co więcej, jeżeli macierz kowariancji badanych zmiennych nie jes sała w czasie, o uwzględnienie ej informacji pozwala na dalsze zwiększenie precyzji szacunku. Precyzyjny esymaor macierzy kowariancji jes cenną informacją dla insyucji finansowych, gdyż umożliwia im zopymalizować posiadany porfel (por. King M., Senana E., Wadhwani S.[994]). Modelowanie zmienności macierzy kowariancji jes możliwe za pomocą wielowymiarowej specyfikacji ARCH. Analogicznie do przypadku jednowymiarowego (parz równanie (.3)) definiuje się wielowymiarowy model ARCH: y(i) I N( x(l) ; ) = ( e(i), e(i),..., e(i) P, ), (.) e = y x (i) (i) (l) gdzie: y (i) wekor N zmiennych objaśnianych x (l) wekor L zmiennych objaśniających, w ym opóźnione zmienne objaśniane Ω warunkowa macierz wariancji-kowariancji składnika losowego I zasób informacji w okresie 3

24 A, macierze esymowanych paramerów. Aby proces ARCH był regularny (parz definicja.), czyli aby wariancje warunkowe były dodanie oraz aby dodakowo zachodziła nierówność ω, ij, ωii, ω jj, funkcja Ω musi być określona półdodanio. W celu uproszczenia wnioskowania zazwyczaj przyjmuje się, że funkcja Ω ma posać liniową i ylko akie przypadki będą rozparywane w dalszej części pracy. Przy doborze specyfikacji funkcji szczególną uwagę należy zwrócić na rzy aspeky. Po pierwsze, rzeba zasanowić się jakie są rudności w urzymaniu założenia o półdodaniej określoności macierzy kowariancji Ω. Po drugie, powinno się zadbać aby ilość esymowanych elemenów macierzy Α i była możliwie najmniejsza. Po rzecie, należy uwzględnić przyczynowość kowariancyjną, czyli wzajemną przyczynowość pomiędzy zmiennymi będącymi elemenami macierzy Ω dla =,,...,T. W lieraurze ekonomicznej (por. Bollerslev T., Engle R., Nelson D. [994]) pojawiają się rzy specyfikacje wielowymiarowe. Pierwszą z nich jes wekorowy ARCH, kóry jes bezpośrednim uogólnieniem modelu ARCH na przypadek wielowymiarowy. Oznacza o, że każdy elemen macierzy wariancji kowariancji Ω modelu (.) jes kszałowany przez proces (por. Diebold F., Nerlove M. [989]): ω α, (.) T T T ij, = ij,0 e(i) Aij,e (i) e(i) Aij, e(i)... e(i) PAij, pe(i) P gdzie A ij,p jes macierzą symeryczną o wymiarach N N. Wielką zaleą specyfikacji (.) jes o, że pozwala ona na uwzględnienie w modelu zjawiska przyczynowości kowariancyjnej. Pomimo ego wekorowy ARCH nie zyskał popularności, ponieważ ilość esymowanych paramerów jes zasraszająco wielka i wynosi N( N ) N ( N ) n = ( P). Pierwsza część wyrażenia oznacza ilość elemenów ω ij macierzy Ω, kóre są szacowane za pomocą (.), naomias liczba w nawiasie jes 4

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Anna Krauze Uniwersye Warmińsko-Mazurski

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Zerowe stopy procentowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR

Zerowe stopy procentowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR Zerowe sopy procenowe nie muszą być dobrą odpowiedzią na kryzys Andrzej Rzońca NBP, SGH, FOR 111 seminarium BRE-CASE Warszaw awa, 25 lisopada 21 Plan Wprowadzenie Hipoezy I, II, III i IV Próba (zgrubnej)

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele:

BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW. W tym krótkim i matematycznie bardzo prostym artykule pragnę osiągnąc 3 cele: 1 BEZRYZYKOWNE BONY I LOKATY BANKOWE ALTERNATYWĄ DLA PRZYSZŁYCH EMERYTÓW Leszek S. Zaremba (Polish Open Universiy) W ym krókim i maemaycznie bardzo prosym arykule pragnę osiągnąc cele: (a) pokazac że kupowanie

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ

ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ Ryszard Barczyk ROZDZIAŁ 10 WPŁYW DYSKRECJONALNYCH INSTRUMENTÓW POLITYKI FISKALNEJ NA ZMIANY AKTYWNOŚCI GOSPODARCZEJ 1. Wsęp Organy pańswa realizując cele poliyki sabilizacji koniunkury gospodarczej sosują

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów dr Dariusz Sańko Kaedra Ubezpieczenia Społecznego Szkoła Główna Handlowa dariusz.sanko@gmail.com lisopada 006 r., akualizacja i poprawki: 30 sycznia 008 r. U b e zpieczenie w eo r ii użyeczności i w eo

Bardziej szczegółowo

Reakcja banków centralnych na kryzys

Reakcja banków centralnych na kryzys Reakcja banków cenralnych na kryzys Andrzej Rzońca Warszawa, 18 lisopada 2011 r. Plan Podsawowa lekcja z kryzysu dla poliyki pieniężnej Jak wyglądała reakcja poliyki pieniężnej na kryzys? Dlaczego reakcja

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

REGULAMIN FUNDUSZU ROZLICZENIOWEGO

REGULAMIN FUNDUSZU ROZLICZENIOWEGO REGULAMIN FUNDUSZU ROZLICZENIOEGO przyjęy uchwałą nr 10/60/98 Rady Nadzorczej Krajowego Depozyu Papierów arościowych S.A. z dnia 28 września 1998 r., zawierdzony decyzją Komisji Papierów arościowych i

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO 120 Krzyszof STOWARZYSZENIE Gajowniczek, Tomasz Ząbkowski, EKONOMISTÓW Michał Goskowski ROLNICTWA I AGROBIZNESU Roczniki Naukowe om XVI zeszy 6 Krzyszof Gajowniczek, Tomasz Ząbkowski, Michał Goskowski

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

Mechanizm transmisji polityki pieniężnej-współczesne ramy teoretyczne, nowe wyniki empiryczne dla Polski

Mechanizm transmisji polityki pieniężnej-współczesne ramy teoretyczne, nowe wyniki empiryczne dla Polski Mechanizm ransmisji poliyki pieniężnej-współczesne ramy eoreyczne, nowe wyniki empiryczne dla Polski Ryszard Kokoszczyński, Tomasz Łyziak 2, Małgorzaa Pawłowska 3, Jan Przysupa 4, Ewa Wróbel 5 Wrzesień

Bardziej szczegółowo

Ocena wpływu zmian poziomu rezerw walutowych na premię za ryzyko kredytowe Polski wykorzystanie metody roszczeń warunkowych

Ocena wpływu zmian poziomu rezerw walutowych na premię za ryzyko kredytowe Polski wykorzystanie metody roszczeń warunkowych Bank i Kredy 455, 04, 467 490 Ocena wpływu zmian poziomu rezerw waluowych na premię za ryzyko kredyowe Polski wykorzysanie meody roszczeń warunkowych Michał Konopczak* Nadesłany: 5 kwienia 04 r. Zaakcepowany:

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski

Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski Maeriały i Sudia nr 312 Sały czy płynny? Model PVEC realnego kursu waluowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski Pior Kębłowski Maeriały i Sudia nr 312 Sały czy płynny? Model PVEC

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1

Analiza danych DRZEWA DECYZYJNE. Drzewa decyzyjne. Entropia. http://zajecia.jakubw.pl/ test 1 dopełnienie testu 1 Analiza danych Drzewa decyzyjne. Enropia. Jakub Wróblewski jakubw@pjwsk.edu.pl hp://zajecia.jakubw.pl/ DRZEWA DECYZYJNE Meoda reprezenacji wiedzy (modelowania ablic decyzyjnych). Pozwala na przejrzysy

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

MODELOWANIE PREFERENCJI A RYZYKO 11

MODELOWANIE PREFERENCJI A RYZYKO 11 MODELOWANIE PREFERENCJI A RYZYKO Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH MODELOWANIE PREFERENCJI A RYZYKO Kaowice 20 Komie Redakcyjny Tadeusz Trzaskalik (redakor

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 258. Podatność polskich rynków finansowych na niestabilności wewnętrzne i zewnętrzne

MATERIAŁY I STUDIA. Zeszyt nr 258. Podatność polskich rynków finansowych na niestabilności wewnętrzne i zewnętrzne MATERIAŁY I STUDIA Zeszy nr 58 Podaność polskich rynków finansowych na niesabilności wewnęrzne i zewnęrzne Wojciech Bieńkowski, Bogna Gawrońska-Nowak, Wojciech Grabowski Warszawa, 0 r. Wojciech Bieńkowski

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr (01) 161 181 Pierwsza wersja złożona 9 marca 01 ISSN Końcowa wersja zaakcepowana 15 grudnia 01 080-0339 Anna Michałek

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

MODEL GOSPODARKI POLSKIEJ ECMOD

MODEL GOSPODARKI POLSKIEJ ECMOD WYDZIAŁ PROJEKCJI MAKROEKONOMICZNYCH DAMS 25 KWIETNIA 2007 R. MODEL GOSPODARKI POLSKIEJ ECMOD WERSJA Z KWIETNIA 2007 R. 1 PODSUMOWANIE ZMIAN WPROWADZONYCH DO MODELU ECMOD OD MAJA 2005 R. DO KWIETNIA 2007

Bardziej szczegółowo

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW

PROPOZYCJA NOWEJ METODY OKREŚLANIA ZUŻYCIA TECHNICZNEGO BUDYNKÓW Udosępnione na prawach rękopisu, 8.04.014r. Publikacja: Knyziak P., "Propozycja nowej meody określania zuzycia echnicznego budynków" (Proposal Of New Mehod For Calculaing he echnical Deerioraion Of Buildings),

Bardziej szczegółowo

Klasyfikacja modeli. Metoda najmniejszych kwadratów

Klasyfikacja modeli. Metoda najmniejszych kwadratów Konspek ekonomeria: Weryfikacja modelu ekonomerycznego Podręcznik: Ekonomeria i badania operacyjne, red. nauk. Marek Gruszczyński, Maria Podgórska, omasz Kuszewski (ale można czyać dowolny podręcznik do

Bardziej szczegółowo

1.2.1 Ogólny algorytm podejmowania decyzji... 18. 1.2.2 Algorytm postępowania diagnostycznego... 23. 1.2.3 Analiza decyzyjna... 27

1.2.1 Ogólny algorytm podejmowania decyzji... 18. 1.2.2 Algorytm postępowania diagnostycznego... 23. 1.2.3 Analiza decyzyjna... 27 3 Spis reści Spis reści... 3 Użye oznaczenia... 7 Wsęp i założenia pracy... 9 1. Akualny san wiedzy medycznej i echnicznej związanej zagadnieniami analizy decyzyjnej w chorobach górnego odcinka przewodu

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH

ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH ZASTOSOWANIE FUNKCJI KOPULI W MODELOWNIU INDEKSÓW GIEŁDOWYCH Jacek Leśkow, Jusyna Mokrzycka, Kamil Krawiec 1 Sreszczenie Współczesne zarządzanie ryzykiem finansowanym opiera się na analizie zwroów szeregów

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzystaniem instrumentów SWAP na POLONIĘ

Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzystaniem instrumentów SWAP na POLONIĘ Agaa Kliber * Pior Płuciennik ** Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzysaniem insrumenów SWAP na POLONIĘ Wsęp Problemem polskiej bankowości jes duża nadpłynność. Banki niechęnie

Bardziej szczegółowo

ZAŁOŻENIA NEOKLASYCZNEJ TEORII WZROSTU EKOLOGICZNIE UWARUNKOWANEGO W MODELOWANIU ZRÓWNOWAŻONEGO ROZWOJU REGIONU. Henryk J. Wnorowski, Dorota Perło

ZAŁOŻENIA NEOKLASYCZNEJ TEORII WZROSTU EKOLOGICZNIE UWARUNKOWANEGO W MODELOWANIU ZRÓWNOWAŻONEGO ROZWOJU REGIONU. Henryk J. Wnorowski, Dorota Perło 0-0-0 ZAŁOŻENIA NEOKLASYCZNEJ TEORII WZROSTU EKOLOGICZNIE UWARUNKOWANEGO W MODELOWANIU ZRÓWNOWAŻONEGO ROZWOJU REGIONU Henryk J. Wnorowski, Doroa Perło Plan wysąpienia Cel referau. Kluczowe założenia neoklasycznej

Bardziej szczegółowo

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1

TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 59 69 TESTOWANIE STABILNOŚCI PARAMETRÓW WIELOCZYNNIKOWYCH MODELI MARKET TIMING Z OPÓŹNIONĄ ZMIENNĄ RYNKOWĄ 1 Joanna Olbryś Wydział Informayki,

Bardziej szczegółowo

GRZEGORZ KOWALEWSKI 1 JAKOŚĆ DANYCH FINANSOWO-KSIĘGOWYCH. 1. Dane finansowo-księgowe jako źródło informacji o przedsiębiorstwie

GRZEGORZ KOWALEWSKI 1 JAKOŚĆ DANYCH FINANSOWO-KSIĘGOWYCH. 1. Dane finansowo-księgowe jako źródło informacji o przedsiębiorstwie GRZEGORZ KOWALEWSKI 1 JAKOŚĆ DANYCH FINANSOWO-KSIĘGOWYCH 1. Dane finansowo-księgowe jako źródło informacji o przedsiębiorstwie Dane finansowo-księgowe mają za zadanie informować o obecnej sytuacji finansowej

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

Determinanty oszczêdzania w Polsce P r a c a z b i o r o w a p o d r e d a k c j ¹ B a r b a r y L i b e r d y

Determinanty oszczêdzania w Polsce P r a c a z b i o r o w a p o d r e d a k c j ¹ B a r b a r y L i b e r d y Deerminany oszczêdzania w Polsce P r a c a z b i o r o w a p o d r e d a k c j ¹ B a r b a r y L i b e r d y W a r s z a w a, 1 9 9 9 nr 28 Prezenowane w serii Rapory CASE sanowiska meryoryczne wyra aj¹

Bardziej szczegółowo

Anna Bechler PORÓWNANIE EFEKTYWNOŚCI SIECI NEURONOWYCH I MODELI EKONOMETRYCZNYCH WE WSPOMAGANIU DECYZJI KREDYTOWYCH

Anna Bechler PORÓWNANIE EFEKTYWNOŚCI SIECI NEURONOWYCH I MODELI EKONOMETRYCZNYCH WE WSPOMAGANIU DECYZJI KREDYTOWYCH PORÓWNANIE EFEKTYWNOŚCI SIECI NEURONOWYCH I MODELI EKONOMETRYCZNYCH WE WSPOMAGANIU DECYZJI KREDYTOWYCH Anna Bechler Kaedra Badań Operacyjnych, Uniwersye Łódzki, Łódź WPROWADZENIE W świele obowiązującego

Bardziej szczegółowo

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I)

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) dr Jacek, M. Kowalski Wyższa Szkoła Bankowa w Poznaniu jakowalski@op.pl Absrak Jes o pierwsza część, drugiego z cyklu

Bardziej szczegółowo

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK Jan M. KELNER, Cezary ZIÓŁKOWSKI Wojskowa Akademia Techniczna, Wydział Elekroniki, Insyu Telekomunikacji doi:1.15199/48.15.3.14 Zasosowanie echnologii SDF do lokalizowania źródeł emisji BPSK i QPSK Sreszczenie.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo