Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone



Podobne dokumenty
Rozdział 6. Ciągłość. 6.1 Granica funkcji

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

jest ciągiem elementów z przestrzeni B(R, R)

Analiza matematyczna. 1. Ciągi

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Finanse i Rachunkowość studia niestacjonarne Wprowadzenie do teorii ciągów liczbowych (treść wykładu z 21 grudnia 2014)

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

F t+ := s>t. F s = F t.

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

1 Działania na zbiorach

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

domykanie relacji, relacja równoważności, rozkłady zbiorów

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Teoria miary i całki

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Ciągi. Pojęcie granicy ciągu.

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Definicja odwzorowania ciągłego i niektóre przykłady

Funkcja wykładnicza kilka dopowiedzeń

Lista zagadnień omawianych na wykładzie w dn r. :

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

a 1, a 2, a 3,..., a n,...

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

4. Granica i ciągłość funkcji

ZALICZENIE WYKŁADU: 30.I.2019

1. Funkcje monotoniczne, wahanie funkcji.

Ciągłość funkcji f : R R

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Wykład z Analizy Matematycznej 1 i 2

Szeregi o wyrazach dodatnich. Kryteria zbieżności d'alemberta i Cauchy'ego

7. CIĄGI. WYKŁAD 5. Przykłady :

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

Indukcja matematyczna. Zasada minimum. Zastosowania.

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Wstęp do topologii Ćwiczenia

Ciągi liczbowe wykład 3

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

Ciągi komplementarne. Autor: Krzysztof Zamarski. Opiekun pracy: dr Jacek Dymel

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

1 Funkcje i ich granice

II. FUNKCJE WIELU ZMIENNYCH

Wykład 8. Informatyka Stosowana. 26 listopada 2018 Magdalena Alama-Bućko. Informatyka Stosowana Wykład , M.A-B 1 / 31

Zapisujemy to symbolicznie jako równość:. Mówimy też, że ciąg posiada granicę niewłaściwą (równą nieskończoności).

Krzysztof Rykaczewski. Szeregi

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Wykłady... b i a i. i=1. m(d k ) inf

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

LX Olimpiada Matematyczna

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

Funkcje rzeczywiste jednej. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Dekompozycje prostej rzeczywistej

Ciągi. Granica ciągu i granica funkcji.

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Wykład 21 Funkcje mierzalne. Kostrukcja i własności całki wzglȩdem miary przeliczalnie addytywnej

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Analiza Funkcjonalna - Zadania

Informacja o przestrzeniach Hilberta

1 Relacje i odwzorowania

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

Zastosowania twierdzeń o punktach stałych

020 Liczby rzeczywiste

Pochodna funkcji odwrotnej

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Algebry skończonego typu i formy kwadratowe

O pewnych związkach teorii modeli z teorią reprezentacji

1 Liczby rzeczywiste. 1.1 Dlaczego nie wystarczają liczby wymierne

Informacja o przestrzeniach Sobolewa

Indukcja matematyczna

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

Zasada indukcji matematycznej

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

8 Całka stochastyczna względem semimartyngałów

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Matematyka dyskretna. Andrzej Łachwa, UJ, a/15

Transkrypt:

Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy matematycznej. 4.1 Ciągi nieskończone Analogicznie jak ciągi skończone określamy ciągi nieskończone. Definicja ciągu nieskończonego. Niech X będzie niepustym zbiorem. Funkcję a : N X nazywamy ciągiem nieskończonym lub ciągiem. Parę uporządkowaną n, an)), gdzie n N, nazywamy n tym wyrazem ciągu, n wskaźnikiem tego wyrazu, an) wartością tego wyrazu. Piszemy zamiast an). Ciąg a : N X zapisujemy również a 1, a 2,...) lub ) n=1 lub ) n N lub krótko ), piszemy również, n = 1, 2,... Jeśli wszystkie wartości ciągu ) n N należą do R to ciąg ten nazywamy liczbowym. Uwaga 4.1.1. Ciągi można określiċ za pomocą wzoru, np. = 1 [ ) n 1 + 5 5 2 ) n ] 1 5, n N. 2 Można ciąg określić indukcyjnie, np. a 1 = 1, a 2 = 1 oraz = 1 + 2 dl > 2. Ciąg ten nazywamy ciągiem Fibonacci ego 1 ). Ciągi można określać przez podanie przepisu wyliczania jego wyrazów, np. jest sumą wszystkich liczb pierwszych mniejszych od n, gdzie przyjmujemy a 1 = a 2 = 0. Uwaga 4.1.2.Ponieważ ciągi są funkcjami, więc wszystkie pojęcia dotyczące funkcji przenoszą się na ciągi, w szczególności, pojęcie różnowartościowości ciągu i zbioru wartości. Dla ciągów liczbowych mamy określone pojęcia ograniczoności ciągu, ograniczoności z góry i z dołu, kresu górnego i dolnego, najmniejszej i największej wartości, pojęcia sumy, 1 Przyjmując X = R 2, x = 1, 1) oraz f : X N X określone wzorem fx, y, n) = x + y, x) dostajemy ciąg ϕ n =, b n ), n N określony indukcyjnie przez x i f. Wówczas ) jest szukanym ciągiem. 61

62 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE różnicy, iloczynu, ilorazu ciągów, iloczynu ciągu przez liczbę. Mamy również określone pojęcie monotoniczności ciągu w szczególności pojęcia ciągu ściśle rosnącego, rosnącego, malejącego, ściśle malejącego. Łatwo przez indukcję skończoną pokazujemy Własność 4.1.3. Niech ) będzie nieskończonym ciągiem liczbowym. a) Ciąg ) jest rosnący wtedy i tylko wtedy, gdy dla każdego n N zachodzi +1. b) Ciąg ) jest ściśle rosnący wtedy i tylko wtedy, gdy dla każdego n N zachodzi < +1. c) Ciąg ) jest malejący wtedy i tylko wtedy, gdy dla każdego n N zachodzi +1. d) Ciąg ) jest ściśle malejący wtedy i tylko wtedy, gdy dla każdego n N zachodzi > +1. Uwaga 4.1.4. Będziemy mówić, że prawie wszystkie wyrazy ciągu mają określoną własność, gdy własność tę mają wszystkie wyrazy ciągu z wyjątkiem skończonej ich ilości. Mówimy, że dla dostatecznie dużych liczb naturalnych zachodzi określona własność, gdy istnieje N R, że własność ta zachodzi dla wszystkich liczb naturalnych większych od N. W szczególności: prawie wszystkie wyrazy ciągu mają określoną własność wtedy i tylko wtedy, gdy mają tę własność dla dostatecznie dużych wskaźników. Na przykład ciąg = n ma prawie wszystkie wyrazy większe od 2 i dla dostatecznie dużych wskaźników, jego wartości są większe od 2. Nie można tego samego powiedzieć o ciągu = 1) n n. Ten ostatni ciąg mieskończenie wiele wyrazów dodatnich i nieskończenie wiele wyrazów ujemnych. 4.2 Granica ciągu Definicja granicy ciągu. Niech ) n N będzie ciągiem liczbowym nieskończonym oraz g R. Mówimy, że liczba g jest granicą tego ciągu, gdy dla każdego ε > 0 istnieje N R takie, że dla każdego n N spełniającego warunek n > N zachodzi g < ε. Fakt ten zapisujemy lim = g lub lim = g lub g lub g. Ciąg ) n N nazywamy zbieżnym do g, gdy ma granicę równą g. Ciąg nazywamy zbieżnym, gdy ma granicę, w przeciwnym przypadku ciąg nazywamy rozbieżnym. Uwaga 4.2.1. Niech ) n N będzie ciągiem liczbowym, g R. Wówczas lim = g wtedy i tylko wtedy, gdy ε>0 N R n N, n>n g < ε. Ponadto w definicji granicy ciągu można zmieniać dla każdego N R na dla każdego N należącego do zbioru nieograniczonego z góry oraz nierówności ostre <, >

4.2. GRANICA CIĄGU 63 odpowiednio nierówności nieostre, z wyjątkiem jednej nierówności ε > 0 i uzyskany warunek będzie równoważny definicji. W szczególności definicja granicy ciągu jest równoważnastępującej: ε>0 N N n N, n N g ε. Uwaga 4.2.2. Bezpośrednio z definicji granicy ciągu dostajemy, że jeśli ) n N jest ciągiem liczbowymi oraz a R, to a) lim = a wtedy i tylko wtedy, gdy lim a) = 0. b) lim = 0 wtedy i tylko wtedy, gdy lim = 0. Własność 4.2.3. Niech ) n N, b n ) n N będą nieskończonymi ciągami liczbowymi zbieżnymi odpowiednio do a, b R. Wówczas dla każdego ε > 0 istnieje N N takie, że dla każdego n N, n > N zachodzi a < ε oraz b n b < ε. Dowód. Istotnie, wobec uwagu 4.2.1 dla ustalonego ε > 0 istnieją N 1, N 2 N takie, że dl > N 1 mamy a < ε oraz dl > N 2 mamy b n b < ε. Zatem bioręc N = max{n 1, N 2 } dl > N mamy a < ε oraz b n b < ε. To daje tezę. Podamy teraz podstawowe własności ciągów zbieżnych. Własność 4.2.4. Niech ) n N, b n ) n N będą ciągami liczbowymi oraz a, b R. a) Jeśli lim = a i lim = b, to a = b. b) Jeśli lim = a, lim b n = b oraz b n dla prawie wszystkich n N, to a b. c) Jeśli = b n dla prawie wszystkich n N, to lim = a wtedy i tylko wtedy, gdy lim b n = a. d) Jeśli istnieje k N takie, ze = b n+k dla prawie wszystkich n N, to lim = a wtedy i tylko wtedy, gdy lim b n = a. Dowód. Ad. a) Wystarczy pokazać, że dla każdego η > 0 mamy a b < η 2 ). Weźmy dowolne η > 0. Niech ε = η/2. Z założenia i własności 4.2.3, istnieje N 1 R takie, że dl N, n > N 1 zachodzi a < ε oraz b < ε, więc mamy a), gdyż a b = a ) b ) a + b < ε + ε = η. Ad. b) Ponieważ dla prawie każdego n N zachodzi b n, więc istnieje N 2 N takie, że dl N, n > N 2 zachodzi b n. Wystarczy pokazać, że dla każdego η > 0 zachodzi a b < η. Weźmy dowolne η > 0. Niech ε = η/2. Wówczas istnieje N 3 R takie, że dl N, n > N 3 zachodzi a < ε 2 Wtedy a b jest ograniczeniem dolnym zbioru R +, więc musi być a b 0. Ponieważ a b 0, więc a b = 0.

64 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE oraz b n b < ε. W szczególności dl > max{n 2, N 3 } mamy 0 b n oraz a < ε i b n b < ε. Stąd wynika b), gdyż z powyższego mamy a b a b) + b n ) = a ) + b n b) < ε + ε = η. Ad. c) Ze względu na symetrię warunków, wystarczy udowodnić, że ze zbieżności lim = a wynika zbieżność lim b n = a. Podobnie jak w dowodzie punktu b) istnieje N 4 N takie, że dl > N 4 zachodzi = b n. Weźmy dowolne ε > 0. Wówczas istnieje N 5 R, że dl N takich, że n > N 5 zachodzi a < ε. W szczególności dl > max{n 4, N 5 } mamy b n a = a < ε. To, wobec dowolności ε > 0 oznacza, że lim b n = a i daje c). Ad. d) Załóżmy, że lim = a. Weźmy dowolne ε > 0 i niech N 6 R będzie takie, że dl N, n > N 6 zachodzi a < ε. Ponieważ dl > N 6 + k mamy n k > N 6, więc b n a = k a < ε. To daje, że lim b n = a. Załóżmy, że lim b n = a. Weźmy dowolne ε > 0 oraz N 7 R takie, że dl N, n > N 7 mamy b n a < ε. Wówczas dl N, n > N 7 mamy n + k N i n + k > N 7, więc a = b n+k a < ε. To daje, że lim = a i kończy dowód. Zmiana kolejności wyrazów ciągu nie wpływa istnienie granicy, świadczy o tym Własność 4.2.5. Niech ) n N będzie ciągiem liczbowymi, niech a R oraz niech f : N N będzie bijekcją. Wówczas lim = a wtedy i tylko wtedy, gdy lim a fn) = a. Dowód. Ponieważ f 1 : N N również jest bijekcją, więc wystarczy udowodnić, że ze zbieżności lim = a wynika zbieżność lim a fn) = a. Załóżmy, że lim = a. Weźmy dowolne ε > 0. Wtedy istnieje N N, że dl N, n > N zachodzi a < ε. Inaczej, dla każdego n N \ F N zachodzi a < ε. Niech A = f 1 F N ). Zbiór A jest skończony i niepusty, więc posiada maksimum patrz twierdzenie 2.6.4). Oznaczmy N 1 = max A. Wtedy dl N, n > N 1 mamy fn) N \ F N, zatem a fn) a < ε. To daje, że lim a fn) = a i kończy dowód. Twierdzenie 4.2.6. o trzech ciągach). Niech ) n N, b n ) n N, c n ) n N będą ciągami liczbowymi takimi, że b n c n dla prawie wszystkich n N. Jeśli g R oraz lim = g i lim c n = g, to lim b n = g. Dowód. Z założenia, że b n c n dla prawie wszystkich n N wynika, że istnieje N 1 R, że dl > N 1 zachodzi b n c n. Weźmy dowolne ε > 0. Z definicji granicy ciągu istnieje N 2 R, że dl > N 2 zachodzi g < ε oraz c n g < ε. Zatem dla n > max{n 1, N 2 } mamy ε < g oraz c n g < ε, więc ε < g b n g c n g < ε. To daje b n g < ε. Reasumując lim b n = g.

4.2. GRANICA CIĄGU 65 Własność 4.2.7. Każdy ciąg liczbowy zbieżny jest ograniczony. Dowód. Niech ) n N będzie ciągiem liczbowym zbieżnym do a R. Wtedy istnieje N N, że dl N, n > N zachodzi a < 1, w szczególności a 1 a+1. Zbiór { : n N, n N} jest skończony i niepusty, więc ma minimum i maksimum. Oznaczmy minimum tego zbioru przez m 1 a maksimum przez M 1. Kładąc m = min{m 1, a 1} oraz M = max{m 1, a + 1} dostajemy, że m jest ograniczeniem dolnym oraz M jest ograniczeniem górnym zbioru wartości ciągu ) n N. Twierdzenie 4.2.8. Każdy ciąg monotoniczny i ograniczony jest zbieżny. Dowód. Niech ) n N będzie ciągiem monotonicznym i ograniczonym. Rozważmy przypadek, gdy ciąg ten jest rosnący. W przypadku, gdy ciąg jest malejący, rozumowanie jest analogiczne. Z założenia mamy, że zbiór A = { : n N} jest ograniczony i oczywiście jest niepusty. Zatem istnieje a = sup A R. Pokażemy, że lim = a. Istotnie, weźmy dowolne ε > 0. Ponieważ a ε < a, więc z definicji sup A istnieje a k A, że a k > a ε. Zatem, z monotoniczności ciągu ) n N, dl > k mamy a ε < a k a < a + ε, czyli a < ε. To daje, że lim = a i kończy dowód. Twierdzenie 4.2.9. o działaniach na granicach ciągów). Niech ) n N, b n ) n N będą ciągami liczbowymi zbieżnymi oraz niech lim = a, lim b n = b, gdzie a, b R. Wówczas: a) lim + b n ) = a + b. b) lim b n ) = a b. c) Jeśli c R, to lim c ) = ca. d) lim b n ) = ab. e) Jeśli b 0 oraz b n 0 dl N, to lim an b n ) = a. b Dowód. Z założenia, że lim = a, lim b n = b oraz własności 4.2.3, dla każdego η > 0 istnieje Nη) N takie, że 4.1) dl N takich, że n > Nη) zachodzi a < η oraz b n b < η. Ad. a) i b) Weźmy dowolne ε > 0. Z 4.1) dl N, n > N ε 2 ) mamy + b n ) a + b) a + b n b < ε 2 + ε 2 = ε, co daje a). Ponadto b n ) a b) a + b n b < ε + ε = ε, co daje b). 2 2 Ad. c) Jeśli c = 0, to punkt c) jest oczywisty. Załóżmy, że c 0. Weźmy dowolne ε > 0. Z 4.1), dl > N ε ) mamy ca c n ca = c a < c ε = ε. To daje c). c

66 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE Ad. d) Weźmy dowolne ε > 0. Niech, w myśl własności 4.2.7, M > 0 będzie takie, że b n < M dla wszystkich n N. Wtedy, z własności 4.2.4b) dostajemy, że b M. Zwiększając ewentualnie M można założyć, że a < M. Wówczas, z 4.1) dl > N ε ), 2M b n ab = b n ab n ) + ab n ab) a b n + b n b a < ε 2M M + ε 2M M = ε. To daje d). 1 Ad. e) W myśl udowodnionej części d), wystarczy pokazać, że lim b n = 1 b. Ponieważ lim b n = b oraz b > 0, więc z 4.1) dl N, n > N b ) mamy b b 2 n < b, zatem 2 b b n b b n < b 2, czyli b n > b 2. W konsekwencji 4.2) 1 b n < 2 b dla n > N ) b. 2 Weźmy dowolne ε > 0. Wówczas dl N, n > N ε b 2 ) mamy b 2 n b < ε b 2, więc z 2 4.2) dl > max{n ε b 2 ), N b )}, 2 2 1 1 b n b = b n b b n b < ε b 2 2 2 b 2 = ε. To daje e) i kończy dowód. Własność 4.2.10. Jeśli ) n N jest ciągiem ograniczonym oraz b n ) n N ciągiem zbieżnym do zera, to b n ) n N jest ciągiem zbieżnym do zera. Dowód. Z założenia i uwagi 4.2.2 mamy lim b n = 0. Ponieważ ) n N jest ciągiem ograniczonym, więc istnieje M > 0 takie, że < M dl N. Stąd, M b n b n M b n, zarem z twierdzenia o trzech ciągach 4.2.6 dostajemy tezę. Własność 4.2.11. Niech ) n N będzie ciągiem liczbowym zbieżnym do a R. Wówczas lim = a. Dowód. Weźmy dowolne ε > 0. Wówczas istnieje N R takie, że dl > N zachodzi a < ε. Ponieważ a a, więc dl > N mamy a < ε. To, wobec definicji granicy ciągu, daje tezę. Wniosek 4.2.12. Jeśli lim = a, lim b n = b, gdzie a, b R, to lim max{, b n } = max{a, b}, Dowód. Z własnści 2.2.3 mamy max{, b n } = + b n 2 + b n 2 więc z własności 4.2.11 dostajemy tezę. oraz lim min{, b n } = min{a, b}. min{, b n } = + b n 2 b n, 2

4.3. GRANICA CIĄGU POTĘG 67 4.3 Granica ciągu potęg Lemat 4.3.1. a) Jeśli α R, α > 0, to lim 1/n α = 0. b) lim n n = 1. c) Jeśli a > 0, to lim n a = 1. Dowód. Ad. a) Weźmy dowolne ε > 0. Wówczas z zasady Archimedesa istnieje N N takie, że N 1/ε) 1/α Ponieważ α > 0, więc z twierdzenia 3.5.5d), dl > N mamy ) 1 1 α ) 1 α n 0 = < = 1 α n N N ε. α Stąd dostajemy a). Ad. b) Dl 2 mamy, [ ] n 2 N, gdzie [x] oznacza całość z x. Ponieważ n 1, więc n n 1 0. Zatem dl 2, z nierówności Bernoulliego, mamy n = n n) n 2 n n) [ n 2 ] = 1 + n n 1)) [ n 2 ] 1 + [ ] n 2 n n 1) 1 + n 2 1) n n 1). W konsekwencji dl > 2, 4.3) 1 n n 1 n 1 + 2 n 2. W myśl cząści a) i twierdzenia 4.2.9, n 1 lim 2 n 2 = lim 2 1 1 1 n n 1 2 n n Stąd i z twierdzenia o trzech ciągach twierdzenie 4.2.6), wobec 4.3) mamy lim n = 1. Ad. c) Jeśli a > 1, to z wniosku 3.3.6 dl > a mamy 1 n a < n n, więc z twierdzenia o trzech ciągach i części b) dostajemy lim n a = 1. Jeśli a = 1, to teza jest oczywista. Jeśli 0 < a < 1, to 1/a > 1, więc z wczaśniejszego przypadku mamy = 0. lim n a = lim 1 n 1/a = 1 1 = 1. To daje c) w tym przypadku i kończy dowód. Wniosek 4.3.2. Jeśli a, b R, a > 0 oraz b n ) n N jest ciągiem zbieżnym do b, to lim abn = a b.

68 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE Dowód. Pokażemy najpierw, że 4.4) lim a bn b = 1. Rozważmy przypadek a > 1. Weźmy dowolne ε > 0. Ponieważ, w myś lematu 4.3.1c) mamy lim n a = 1, więc lim 1/ n a = 1, zatem istnieje k N takie, że 4.5) 0 < a 1/k 1 < ε oraz 0 < 1 a 1/k < ε. Z założenia lim b n = b dostajemy, że istnieje N N takie, że dl N, n > N mamy b n b < 1/k. Weźmy dowolne n > N. Jeśli b n b 0, to b n b < 1/k i ponieważ a > 1, więc z 4.5) i twierdzenia 3.5.5c) mamy a bn b 1 = a bn b 1 < a 1/k 1 < ε. Jeśli b n b < 0, to 1/k < b n b. Ponieważ a > 1, więc a 1/k < a bn b, zatem z 4.5), a bn b 1 = 1 a bn b < 1 a 1/k < ε. W konsekwencji a bn b 1 < ε dl > N. To daje 4.4) w przypadku, gdy a > 1. W przypadku a = 1 równość 4.4) jest oczywista. W przypadku 0 < a < 1 mamy 1/a > 1, więc z wcześniejszego przypadku lim abn b = lim Reasumuj ac mamy 4.4). Z 4.4) i twierdzenia 4.2.9d) dostajemy = 1. 1/a) bn b 1 lim abn = lim a b a bn b = a b. To daje tezę i kończy dowód. Twierdzenie 4.3.3. Niech a, b R, a, b > 0 oraz a 1. Jeśli b n ) n N jest ciągiem takim, że b n > 0 dl N oraz lim b n = b, to lim log a b n = log a b. Dowód. Rozważmy najpierw przypadek a > 1. Oznaczmy c n = log a b n, n N oraz c = log a b. Przypuśćmy przeciwnie, że c nie jest granicą ciągu c n. Wówczas istnieje ε 0 > 0 takie, że dla każdego N R istnieje n N N, n N > N, że c nn c ε 0. Ponieważ b n = a cn oraz b = a c, więc b nn b = a cn N a c = a c a cn N c 1. Wówczas oraz b nn b a c a ε 0 1) > 0, gdy c nn c ε 0 b nn b a c 1 a ε 0 ) > 0, gdy c nn c ε 0.

4.4. GRANICE NIEWŁAŚCIWE CIĄGU 69 W konsekwencji bior ac ε = min{a c a ε 0 1), a c 1 a ε 0 )}, dla każdego N R istnieje n N, n > N, że b n b ε. To jest sprzeczne z założeniem lim b n = b. Otrzymana sprzeczność daje tezę w tym przypadku. Jeśli 0 < a < 1, to 1/a > 1 oraz z własności 3.6.3d) mamy log a b n = log 1/a b n, więc z pierwszej cząści dowodu mamy tezę. Twierdzenie 4.3.4. Niech ) n N, b n ) n N będą ciągami liczbowymi zbieżnymi oraz niech lim = a, lim b n = b, gdzie a, b R. a) Jeśli a > 0 oraz > 0 dl N, to lim a bn n = a b. b) Jeśli a = 0, b > 0 oraz > 0 dl N, to lim a bn n = 0. Dowód. Ad. a) Niech d R będzie takie, że d > 0, d 1. Wtedy a bn n = d bn log d an oraz a b = d b log d b, więc teza wynika z twierdzeń 4.3.3, 4.2.9d) i wniosku 4.3.2. Ad. b) Ponieważ b n ) jest ciągiem zbieżnym do b > 0, zaś ) jest zbieżny do 0, więc istnieje N R takie, że Stąd mamy b n > b/2 i 0 < < 1 dl > N. 4.6) 0 < a bn n < ) b/2 dl > N. Weźmy dowolne ε > 0. Z lematu 4.3.1a) mamy lim 1/n) b/2 = lim 1/n b/2 = 0, więc istnieje k N takie, że 0 < 1/k) b/2 < ε. Ponieważ lim = 0, więc istnieje N 1 R takie, że < 1/k dl > N 1. Wówczas z 4.6) dl > max{n, N 1 } mamy 0 < a bn n < 1/k) b/2 < ε. To daje tezę. 4.4 Granice niewłaściwe ciągu Definicja granicy niewłaściwej ciągu. Niech ) n N będzie ciągiem liczbowym. Mówimy, że ciąg ) n N ma granicę niewłaściwą + lub dąży do +, gdy dla każdego A R istnieje N R, że dla każdego n > N zachodzi > A. Fakt ten zapisujemy lim = + lub lim = + lub + lub +. Mówimy, że ciąg ) n N ma granicę niewłaściwą lub dąży do, gdy dla każdego A R istnieje N R, że dla każdego n > N zachodzi < A. Fakt ten zapisujemy lim = + lub lim = lub lub. Uwaga 4.4.1. Niech ) n N będzie ciągiem liczbowym. Wówczas lim = + wtedy i tylko wtedy, gdy A R N R n N, n>n > A.

70 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE Z definicji granicy niewłaściwej ciągu dostajemy, że powyższy warunek jest równoważny następującemu: A>0 N N n N, n>n > A. Ponadto w tej definicji granicy można zmieniać dla każdego N R na dla każdego N należącego do zbioru nieograniczonego z góry oraz nierówności ostre > odpowiednio na nierówności nieostre, i uzyskany warunek będzie równoważny definicji dążenia ciągu do +. Analogicznie mamy lim = wtedy i tylko wtedy, gdy A R N R n N, n>n < A. Z definicji granicy niewłaściwej ciągu dostajemy, że powyższy warunek jest równoważny następującemu: A<0 N N n N, n>n < A. Ponadto w tej definicji granicy można zmieniać dla każdego N R na dla każdego N należącego do zbioru nieograniczonego z dołu oraz nierówności ostre >, < odpowiednio nierówności nieostre,, i uzyskany warunek będzie równoważny definicji dążenia ciągu do. Dowód poniższego odpowiednika własności 4.2.4 dla granic niewłaściwych pozostawiamy czytelnikowi. Własność 4.4.2. Niech ) n N, b n ) n N będą ciągami liczbowymi oraz a R. a) Jeśli lim = a i lim = +, to a = +. a ) Jeśli lim = a i lim =, to a =. b) Jeśli = b n dla prawie wszystkich n N, to lim = + wtedy i tylko wtedy, gdy lim b n = +. b ) Jeśli = b n dla prawie wszystkich n N, to lim = wtedy i tylko wtedy, gdy lim b n =. c) Jeśli istnieje k N takie, ze = b n+k dla prawie wszystkich n N, to lim = + wtedy i tylko wtedy, gdy lim b n = +. c ) Jeśli istnieje k N takie, ze = b n+k dla prawie wszystkich n N, to lim = wtedy i tylko wtedy, gdy lim b n =. Podobnie jak własność 4.2.5 dowodzimy

4.4. GRANICE NIEWŁAŚCIWE CIĄGU 71 Własność 4.4.3. Niech ) n N będzie ciągiem liczbowymi oraz niech f : N N będzie bijekcją. Wówczas a) b) lim = + wtedy i tylko wtedy, gdy lim a fn) = +. lim = wtedy i tylko wtedy, gdy lim a fn) =. Zachodzi odpowiednik twierdzenia o trzech ciągach twierdzenie 4.2.6). Własność 4.4.4. Niech ) n N, b n ) n N będą ciągami liczbowymi takimi, że b n dla prawie wszystkich n N. a) Jeśli lim = +, to lim b n = +. b) Jeśli lim b n =, to lim =. Bezpośrednio z definicji granicy niewłaściwej dostajemy następujące własności granicy niewłaściwej. Własność 4.4.5. Niech ) n N, b n ) n N będą ciągami liczbowymi. a) Wówczas lim = + wtedy i tylko wtedy, gdy lim ) =. 1 b) Jeśli > 0 i lim = 0, to lim 1 c) Jeśli < 0 i lim = 0, to lim = +. =. d) Jeśli lim = + i lim b n = +, to lim + b n ) = +. e) Jeśli lim = i lim b n =, to lim + b n ) =. f) Jeśli ciąg ) n N jest ograniczony i lim b n = +, to lim + b n ) = +, lim b n ) =, lim = 0. b n g) Jeśli lim = a, a R, a > 0 i lim b n = +, to lim b n ) = +. Udowodnimy teraz Twierdzenie 4.4.6. Niech a R, a > 0, gdzie a 1 oraz niech b n ) n N będzie ciągiem takim, że b n > 0 dl N. a) Jeśli a > 1 i lim b n = +, to lim log a b n = +. b) Jeśli a < 1 i lim b n = +, to lim log a b n =. c) Jeśli a > 1 i lim b n = 0, to lim log a b n =. d) Jeśli a < 1 i lim b n = 0, to lim log a b n = +.

72 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE Dowód. Ad. a) Przypuśćmy przeciwnie, że istnieje A R takie, że dla każdego N R istnieje n N N, n N > N, że log a b nn A. Stąd i z równości A = log a a A, mamy b nn a A dla każdego N. Z założenia lim b n = +, więc istnieje N R takie, że dla każdego n > N zachodzi b n > a A. W szczególności n N > N, więc b nn a A < b nn, co jest niemożliwe. Otrzymana sprzeczność daje a). Ad. b) Ponieważ 0 < a < 1, więc 1/a > 1, zatem z części a), lim log 1/a b n = +. Z własności 3.6.3d), log a b n = log 1/a b n, więc z własności 4.4.5a) dostajemy b). Ad. c) i d) Z własności 3.6.3b) mamy log a b n = log a 1/b n ), więc z części a) i b) oraz własności 4.4.5a),b) dostajemy tezę. Twierdzenie 4.4.7. Niech ) n N, b n ) n N będą ciągami liczbowymi, > 0 dl N. a) Jeśli lim = a, a > 1 oraz lim b n = +, to lim a bn n = +. b) Jeśli lim = a, a < 1 oraz lim b n = +, to lim a bn n = 0. Dowód. Ad. a) Niech b R, 1 < b < a. Weźmy dowolne A R. Wówczas z zasady Archimedesa dla potęgowania, istnieje k R takie, że b k > A. Ponieważ lim = a i lim b n = +, więc istnieje N R, że dl > N zachodzi > b i b n > k. W konsekwencji z twierdzenia 3.5.5c) i d) dl > N mamy a bn n b bn b k > A. To daje a). Ad. b) Ponieważ 0 < a < 1, więc 1/a > 1. Z drugiej strony a bn n myśl części a) i własności 4.4.5f), daje tezę. = 1/1/ ) bn. To, w Uwaga 4.4.8. Niech ) n N będzie ciągiem liczbowym i g R. Wówczas z definicji granicy właściwej i niewłaściwej) ciągu dostajemy, że g = lim wtedy i tylko wtedy, gdy A>g N R n>n < A) B<g N R n>n > B). Twierdzenie 4.4.9. Stolza). Niech ) n N, b n ) n N będą ciągami liczbowymi. Jeśli lim b n = + i istnieje k N, że ciąg b n ) n=k jest ściśle rosnący, to 1 4.7) lim = lim b, n b n b n 1 jeśli tylko istnieje granica po prawej stronie skończona lub nieskończona). Dowód. Niech g = lim 1 b n b n 1. Rozważmy najpierw przypadek, gdy g R. Weźmy dowolne ε > 0. Wówczas istnieje N, że l ε 2 < 1 < l + ε dl > N. b n b n 1 2

4.4. GRANICE NIEWŁAŚCIWE CIĄGU 73 Można założyć, że N > k i wtedy b n b n 1 > 0 dl > N. Wówczas z powyższego, g ε 2 < 1 ) + + a N+1 a N ) b n b n 1 ) + + b N+1 b N ) < g + ε 2 dl > N, a więc dl > N mamy czyli 4.8) g ε 2 < a N b n b N < g + ε 2, a N g b n b < ε N 2. 4.9) Można założy, że b n > 0 dl > N. Łatwo sprawdzamy, że g = a N gb N + 1 b ) an N a N b n b n b n b n b N ) g, a więc g b a N gb N n b n + 1 b N a N b n b n b N g. Dl > N mamy 0 < b N < b n, więc 1 b N bn < 1. Ponieważ lim istnieje N N, że a N gb N b n < ε dl > N. 2 Reasumując z 4.9) i 4.8) dl > N mamy g b < ε n 2 + ε 2 = ε, a N gb N b n = 0, więc co dowodzi 4.7) w rozważanym przypadku. Załóżmy teraz, że g = +. Wówczas istnieje s N, że dl > s mamy 1 > b n b n 1 > 0, a więc ) n=s jest ciągiem ściśle rosnącym i lim = +. Można więc zastosować 4.7) w udowodnionym przypadku do ciągu bn ) n N, lim b n = lim b n b n 1 1 = 0. Stąd, ponieważ dla dostatecznie dużych n mamy bn a > 0, więc lim n bn = +. Rozważmy na koniec przypadek g =. Biorąc ã n = dl N, dostajemy lim ã i z poprzedniego przypadku, lim n bn ã n ã n 1 b n b n 1 = + = +. To daje lim bn = i kończy dowód.

74 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE ZADANIA Zadanie 4.4.1. Jeśli ciąg ) n N ma granicę skończoną lub nieskończon), to lim Zadanie 4.4.2. Niech k N. Wówczas lim 1 k + 2 k + + n k n k+1 = 1 k + 1, a 1 + + n lim = lim. 4.5 Liczba e, logarytm naturalny 1 k + 2 k + + n k n k+1 n k + 1 = 1 2. W punkcie tym określimy jedną z najważniejszych liczb w analizie. Zacznijmy od lematu. Stosując zasadę indukcji dostajemy natychmiast Lemat 4.5.1. Dla każdego x R, x 1 oraz każdego n N zachodzi n k=1 x k = x 1 xn 1 x. Twierdzenie 4.5.2. Ciąg e n ) n N określony wzorem 4.10) e n = jest zbieżny. Ponadto 2 < lim e n < 3. stąd 1 + 1 n) n, n N. Dowód. Z nierówności Bernoulliego dl N, n > 1 i własności potęgi mamy kolejno 1 1 n 1 1 ) n, więc 1 1 n 2 n 1 + 1 ) n 1 1 n, n n) 1 n) 1 n+1 1 + n) 1 n, czyli k=0 1 + 1 ) n 1 = 1 1 n+1 1 + n 1 n) n) 1 n. Z ostatniej nierówności dostajemy, że ciąg e n ) n N jest rosnący. Pokażemy, że dla każdego n > 1 zachodzi 2 < e n < 3 1. Istotnie, ze wzoru dwumiennego Newtona, dla każdego n N mamy 12 e n = 1 + n) 1 n ) n n 1 = k n = 1 + n nn 1) n k + 1) 1 k k! n 1 + n 1 k k!. k=1 Oczywiście 1 = 1 1. Łatwą indukcją pokazujemy, że dla każdego k N zachodzi 3! 2 2 12 2 k 1 k!, więc z lematu 4.5.1 mamy e n 1 + n 1 k! 1 1 n 12 + 1 11 n = k=1 2k 1 12 + 2 ) 1 k = 11 1 k=1 2 12 + 2 1 1 2 2 )n ) 1 1 < 3 1 12. 2 k=1 k=1

4.5. LICZBA E, LOGARYTM NATURALNY 75 Reasumując e n ) jest ciągiem rosnącym i ograniczonym z góry, zatem z twierdzenia 4.2.8 dostajemy zbieżność ciągu e n ). Ponadto dl > 1 zachodzi 2 < e 2 e n < 3 1, więc z 12 własności 4.2.4b) mamy 2 < lim e n < 3. To daje tezę. W świetle twierdzenia 4.5.2 poniższa definicja jest poprawna. Definicja liczby e. Liczbę e R określamy wzorem e = lim 1 + n) 1 n. Lemat 4.5.3. Dla każdego x R takiego, że x > 1 zachodzi 1 + 1 > 0. Ponadto dla x każdego ε > 0 istnieje K N, że 4.11) 1 + x) 1 x e < ε dla każdego x R, takiego, że x > K. Dowód. Pierwsza część tezy jest oczywista. Pokażemy drugą część tezy. Weźmy dowolne ε > 0. Zgodnie z definicją, granica ciągu e n = 1+ 1 n )n jest równa e. W szczególności lim [e n1 + 1 n )2 ] = e oraz lim [e n 1 + 1 n ) 1 ] = e. Zatem istnieje N N takie, że dla n > N zachodzi 4.12) e n 1 + n) 1 2 < e + ε oraz e ε < e n+1 1 + 1 ) 1. n + 1 Jeśli x > N + 1, to istnieje n N, n > N takie, że n x < n + 1. Wówczas. Zatem z 4.12) mamy 1 n+1 < 1 x 1 n 4.13) e ε < oraz 4.14) 1 + 1 ) 1 e n+1 = 1 + 1 ) n < 1 + 1 n 1 + n + 1 n + 1 x) 1 ) x x 1 + x) 1 x < 1 + x) 1 x+1 < 1 + 1 ) n+2 = e n 1 + 1 2 < e + ε. n n) Z 4.13) i 4.14) dostajemy 4.15) 1 + x) 1 x e < ε dla x > N + 1. Jeśli x < N 2, to x 1 > N + 1 oraz 1 + x) 1 x = x x + 1 ) x = 1 1 x + 1 ) x = 1 + ) 1 x 1 1 + x 1 ) 1. x 1 Zatem ) 1 x 1 1 + 1 + 1 x ) 1 x 1)+1 = 1 +. x 1 x) x 1 Stąd, z 4.13) i 4.14) mamy ) 1 x 1 4.16) e ε < 1 + 1 + 1 x ) 1 x 1)+1 = 1 + < e + ε. x 1 x) x 1 ) x To daje 1 + 1 x e < ε dla x < N 2. W konsekwencji, biorąc K = N + 2, z 4.15) i 4.16) dostajemy 4.11). To kończy dowód.

76 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE Wniosek 4.5.4. Niech x R oraz a n ) n N ) będzie ciągiem takim, że 0 dl N. an a) Jeśli lim = +, to lim 1 + 1 = e. ) an b) Jeśli lim = +, to lim 1 + x = e x. ) an c) Jeśli lim =, to lim 1 + 1 = e. d) Jeśli lim = 0, to lim 1 + ) 1 an = e. Dowód. Weźmy dowolne ε > 0 oraz niech, zgodnie z lematem 4.5.3, K N będzie takie, że zachodzi 4.11). Ad. a) Ponieważ lim = +, więc istniej N N takie, że > K dl > N. Wówczas z 4.11) mamy ) an 1 + 1 e < ε. Stąd i z dowolności ε > 0 dostajemy a). Ad. b) Jeśli x = 0, to b) jest oczywiste. Jeśli x 0, to lim x = +, więc z istnieje N N takie, że dl > N mamy an x ) an konsekwencji lim 1 + x x a [ n 1 ) ] an x lim + x x = e x. To daje b). Ad. c) Z założenia mamy lim dla x = 1 mamy lim 1 + 1 ) an = lim > K, więc z 4.11) mamy ) an 1 + x x e < ε. W = e oraz z twierdzenia 4.3.4a) mamy lim 1 + x ) an = ) = +, zatem z twierdzenia 4.3.4a) i części b) [ 1 ) ] an 1 + 1 = e 1 ) 1 = e. To daje c). 1 Ad. d) Ponieważ 0 i lim = 0, więc lim = +. Zatem istnieje N N takie, że 1 > K dl > N. Stąd i z 4.11) dl > N mamy 1 + ) 1 an e = 1 + 1 ) 1 an 1 e < ε. To daje c) i kończy dowód. Definicja logarytmu naturalnego. Niech x R, x > 0. Logarytmem naturalnym z liczby x nazywamy logarytm przy podstawie e z tej liczby i oznaczamy ln x. Logarytmem naturalnym nazywamy funkcję określoną wzorem fx) = ln x, x > 0. Uwaga 4.5.5. Z własności 3.8.7 oraz 3.8.8 mamy, że logarytm naturalny jest funkcją ściśle rosnącą, której zbiór wartości jest równy R. 4.6 Podciągi, granice częściowe Definicja podciągu. Niech ) n N będzie dowolnym ciągiem i niech n k ) k N będzie ściśle rosnącym ciągiem liczb naturalnych. Ciąg k ) k N będący złożeniem ciągów n k ) k N i ) n N nazywamy podciągiem lub ciągiem częściowym ciągu ) n N. Uwaga 4.6.1. Jeśli n k ) k N jest ściśle rosnącym ciągiem liczb naturalnych, to n k k dla wszystkich k N. Wynika to bezpośrednio z lematu 2.6.9.

4.6. PODCIĄGI, GRANICE CZĘŚCIOWE 77 Własność 4.6.2. Niech ) n N będzie ciągiem liczbowym, k ) k N jego podciągiem oraz g R. Jeśli lim = g, to lim k = g. k Dowód. Rozważmy przypadek g R. Weźmy dowolne ε > 0 i niech N R będzie takie, że g < ε dl > N. Ponieważ n k k dla k N, więc dla k > N mamy k g < ε. To daje, że lim k = g. k Jeśli g = +, to dla dowolnego A R istnieje N R, że > A dl > N. W szczególności k > A dla k > N. To daje, że lim k = +. Analogicznie rozważamy k przypadek g =. Lemat 4.6.3. Niech ) n N będzie ciągiem liczbowym oraz g R. Wóczas następujące warunki są równoważne: a) Istnieje podciąg k ) k N ciągu ) n N taki, że lim k k = g. b) Dla każdego ε > 0 zbiór X ε = {n N : g < ε} jest nieskończony. Dowód. Ad. a) b) Z definicji granicy ciągu mamy, że dla każdego ε > 0 istnieje K N takie, że dla k > K zachodzi k g < ε. W konsekwencji {n k : k > K} X ε, więc X ε jest nieskończony. Ad. b) a) Pokażemy, że istnieje podciąg k ) k N ciągu ) n N taki, że 4.17) k g < 1/k dla k N. Istotnie, z b) mamy, że istnieje n 1 X 1. Ponadto istnieje n 2 > n 1 takie, że n 2 X 1 2 Zakładając, że wybraliśmy już n k X 1 k., wobec b) istnieje n k+1 > n k, że n k+1 X 1. k+1 dla k N Istnieje, więc ściśle rosnący ciąg n k ) k N liczb naturalnych taki, że n k X 1 k 3 ). Wówczas z określenia zbiorów X ε dostajemy, że podciąg k ) k N ciągu ) n N spełnia 4.17). Z 4.17) dostajemy natychmiast a). Twierdzenie 4.6.4. Bolzano-Weierstrassa). Każdy ciąg ograniczony ma podciąg zbieżny. Dowód. Niech ) n N będzie ciągiem ograniczonym. Wówczas istnieje przedział domknięty P = [α, β] taki, że α β dl N. Pokażemy, że istnieje rodzina przedziałów domkniętych P k, k N spełniająca warunki: 1) P 1 P oraz P k+1 P k dla k N, 2) P k = P 2 k dla k N. 3) Dla każdego k N zbiór {n N : P k } jest nieskończony. Istotnie, biorąc przedziały [α, α+β α+β ], [, β], jako P 2 2 1 wybieramy ten z nich, który spełnia 3) oczywiście jeden z tych przedziałów spełnia ten warunek). Zakładając, że wybraliśmy 3 dokładniej, ciąg k ) k N można określić indukcyjnie przy pomocy x = n 1 X 1 i funkcji f : N N N określonej wzorem fk, n) = min{m N : a m g < 1 k m > k}.

78 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE przedział P k = [α k, β k ], dzielimy go na przedziały [α k, α k+β k ], [ α k+β k, β 2 2 k ] i jako P k+1 wybieramy ten z nich, który spełnia 3). Określiliśmy więc nieskończony ciąg przedziałów, który spełnia 1), 2), 3) 4 ). W myśl 1) i lematu 2.6.17 zbiór k N P k jest niepusty. Niech a k N P k. Weźmy dowolne ε > 0 oraz X ε = {n N : a < ε}. Z 2) mamy, że dla k > P zachodzi ε ε > P k, więc P k {x R : x a < ε}, a więc wobec 3) mamy, że zbiór X ε jest nieskończony. Stąd i z lematu 4.6.3b) a) dostajemy, że istnieje podciąg k ) k N ciągu ) n N zbieżny do a. To kończy dowód. Definicja granicy częściowej ciągu. Niech ) n N będzie dowolnym ciągiem liczbowym. Mówimy, że element a R jest granicą częściową ciągu ) n N, gdy istnieje jego podciąg k ) k N taki, że lim k k = a. Lemat 4.6.5. Niech ) n N będzie ciągiem liczbowym. a) Jeśli ciąg ) n N nie jest ograniczony z góry, to + jest jego granicą częściową. b) Jeśli ciąg ) n N nie jest ograniczony z dołu, to jest jego granicą częściową. Dowód. Ad. a). Zauważmy, że 4.18) dla każdego k N zbiór X k = {n N : > k} jest nieskończony. Istotnie, przypuśćmy przeciwnie, że dla pewnego k N, X k jest skończony. Jeśli X k =, to k dl N i k jest ograniczeniem górnym zbioru wartości ciągu ) n N, wbrew założeniu. Jeśli X k, to z twierdzenia 2.6.4 istnieje x = max{ : n X k } i wtedy x jest ograniczeniem górnym zbioru wartości ciągu ) n N, wbrew założeniu. W każdym przypadku doszliśmy do sprzeczności. Zatem zachodzi 4.18). Pokażemy, że istnieje podciąg k ) k N ciągu ) n N taki, że 4.19) k > k dla k N. Istotnie, niech n 1 X 1. Wtedy 1 > 1. Z 4.18) istnieje n 2 X 2 takie, że n 2 > n 1. Postępując dalej indukcyjnie znajdziemy podciąg spełniający 4.19) 5 ). Z 4.19) i własności 4.4.4a) dostajemy lim k = +, więc + jest granicą częściową ciągu ) n N. k Ad. b) Analogicznie jak w części a) pokazujemy, że dla każdego k N zbiór Y k = {n N : < k} jest nieskończony i dalej, że istnieje podciąg k ) k N ciągu ) n N taki, że k < k dla k N. Zatem lim k = i jest granicą częściową ciągu k ) n N. To kończy dowód. Wniosek 4.6.6. Zbiór granic częściowych dowolnego nieskończonego ciągu liczbowego jest niepusty. 4 dokładniej, ciąg przedziałów P n ) n N określamy indukcyjnie przy pomocy x = P oraz funkcji f[a, b], n) = [a, a+b 2 ], gdy zbiór {i N : a i [a, a+b a+b 2 ]} jest nieskończony oraz f[a, b], n) = [ 2, b], gdy zbiór {i N : a i [a, a+b 2 ]} jest skończony. 5 dokładniej ciąg n k ) k N można określić indukcyjnie przy pomocy x = min{n N : > 1} oraz funkcji f : N N N określonej wzorem fm, k) = min{n N : > m n > m}.

4.6. PODCIĄGI, GRANICE CZĘŚCIOWE 79 Dowód. Niech ) n N będzie ciągiem liczbowym. Jeśli ciąg ten jest ograniczony, to teza wynika z twierdzenia Bolzano-Weierstrassa 4.6.4. W przeciwnym przypadku teza wynika z lematu 4.6.5. Lemat 4.6.7. Niech ) n N będzie ciągiem liczbowym oraz A R. a) Jeśli zbiór X = {n N : A} jest nieskończony, to istnieje podciąg k ) k N ciągu ) n N taki, że k A dla k N. b) Jeśli zbiór Y = {n N : A} jest nieskończony, to istnieje podciąg k ) k N ciągu ) n N taki, że k A dla k N. Dowód. Ad. a) Biorąc dowolny n 1 X, z założenia istnieje n 2 = min{n X : n > n 1 }. Mając n k X, znajdziemy n k+1 = min{n X : n > n k }. Zatem z twierdzenia o definiowaniu przez indukcję mamy, że istnieje rosnący ciąg n k ) k N elementów zbioru X. Biorąc k ) k N dostajemy a). Część b) dowodzimy analogicznie. Twierdzenie 4.6.8. Niech ) n N będzie ciągiem liczbowym, E R jego zbiorem granic częściowych oraz g R. Wówczas lim = g wtedy i tylko wtedy, gdy E = {g}. Dowód. Jeśli lim = g, to z własności 4.6.2 mamy E = {g}. Załóżmy teraz, że E = {g}. Pokażemy, że lim = g. Jeśli g = +, to wobec lematu 4.6.5 mamy, że ciąg ) n N jest ograniczony z dołu. Zauważmy, że dla każdego A R zbiór {n N : A} jest skończony. Istotnie, w przeciwnym przypadku, wobec lematu 4.6.7 wybralibyśmy podciąg k ) k N ciągu ) n N ograniczony z góry przez A. Wtedy podciąg ten byłby ograniczony i w myśl twierdzenia Bolzano-Weierstrassa 4.6.4 istniałby jego podciąg zbieżny do granicy skończonej, a więc istniałby podciąg ciągu ) n N zbieżny do granicy skończonej. To przeczy założeniu, że E = {+ }. W konsekwencji dla każdego A R, prawie wszystkie wyrazy ciągu spełniają warunek > A, co oznacza, że lim = +. Analogicznie jak powyżej rozważamy przypadek g =. Jeśli g R, to wobec lematu 4.6.5, ciąg ) n N jest ograniczony. Zauważmy, że dla każdego ε > 0, zbiór {n N : g ε} jest skończony. Istotnie, w przeciwnym przypadku, wobec lematu 4.6.7 i powyższego, istniałby podciąg ograniczony k ) k N ciągu ) n N taki, że k g ε. Zatem z twierdzenia Bolzano-Weierstrassa, istniałby podciąg tego podciągu zbieżny do granicy różnej od g, co przeczy założeniu E = {g}. Reasumując dla każdego ε > 0, zbiór {n N : g ε} jest skończony, co oznacza, że lim = g i kończy dowód. Z twierdzenia 4.6.8 dostajemy natychmiast Wniosek 4.6.9. Ciąg liczbowy ) n N nie ma granicy wtedy i tylko wtedy, gdy istnieją dwa jego podciągi które mają różne granice.

80 ROZDZIAŁ 4. CIĄGI NIESKOŃCZONE Wniosek 4.6.10. Niech x R. a) Jeśli x < 1, to lim x n = 0. b) Jeśli x = 1, to lim x n = 1. c) Jeśli x > 1, to lim x n = +. d) Jeśli x 1, to granica ciągu x n ) n N nie istnieje. Dowód. Część a) i c) wynikatychmiast z twierdzenia 4.4.7. Część b) jest oczywista. Jeśli x 1, to podciągi x 2n ) n N oraz x 2n 1 ) n N ciągu x n ) n N mają różne granice. Mianowicie lim x 2n = 1 i lim x 2n 1 = 1, gdy x = 1 oraz lim x 2n = + i lim x2n 1 =, gdy x < 1. To wraz z wnioskiem 4.6.9 daje d). ZADANIA Zadanie 4.6.1. Niech ) n N będzie ciągiem liczbowym. Jeśli ciągi a 2n ) n N, a 3n ) n N, a 2n+1 ) n N mają granice, to ciąg ) n N ma granicę. Zadanie 4.6.2. Niech ) n N będzie ciągiem liczbowym. Wówczas następujące warunki są równoważne: a) Istnieje granica ciągu ) n N. b) Każdy podciąg ciągu ) n N ma granicę. Zadanie 4.6.3. Niech ) n N będzie ciągiem liczbowym oraz g R. Wówczas następujące warunki są równoważne: a) lim = g. b) Dla każdego podciągu k ) k N zachodzi lim k k = g. c) Dla każdego podciągu k ) k N posiadającego granicę zachodzi lim k k = g. Zadanie 4.6.4. Niech ϕ : N Q będzie bijekcją patrz twierdzenie 2.6.15). Wówczas zbiór granic częściowych ciągu ϕ jest równy R. 4.7 Ciągi Cauchy ego Definicja ciągu Cauchy ego. Ciąg liczbowy ) n N nazywamy ciągiem Cauchy ego, gdy dla każdego ε > 0 istnieje N R takie, że dla każdych k, n N takich, że k, n > N zachodzi a k < ε. Uwaga 4.7.1. Niech ) n N będzie ciągiem liczbowym. Ciąg ten jest ciągiem Cauchyego wtedy i tylko wtedy, gdy ε>0 N R k,n N, k,n>n a k < ε. Z definicji granicy ciągu dostajemy, że powyższy warunek jest równoważny następującemu: ε>0 N N k,n N, k,n N a k ε.