Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
|
|
- Piotr Muszyński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach I najczęściej będzie zbiorem skończonym. Typem (lub sygnaturą) algebry A = (A, {F i : i I }) nazywamy układ τ A = ( F i : i I ). Algebry A i B są podobne, gdy τ A = τ B. Jeżeli σ : I N oraz τ : J N spełniają warunki 1. I J, 2. σ(a) = τ(a) dla a J, to σ nazywamy wzbogaceniem typu τ, a τ reduktem typu σ.
2 Niech A = (A, {F i : i I }). Kongruencją algebry A nazywamy relację R A A taką, że 1. R jest relacją równoważności, 2. dla każdego i I i dla dowolnych a 1,..., a n A, gdzie n = F i : jeżeli a 1 Rb 1,..., a n Rb n, to F i (a 1,..., a n )RG(b 1,..., b n ). Niech A = (A, {F i : i I }) i niech R będzie kongruencją algebry A. Algebrą ilorazową algebry A nazywamy algebrę gdzie A/R = (A/R, {F R i : i I }), F R i ([a 1 ],..., [a n ]) = [F i (a 1,..., a n )], dla każdego i I i dla dowolnych a 1,..., a n A, gdzie n = F i. Epimorfizm κ : A A/R dany wzorem κ(a) = [a] zwiemy epimorfizmem kanonicznym.
3 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: 1. x y = y x, x y = y x, 2. x (y z) = (x y) z, x (y z) = (x y) z, 3. x (x y) = x, x (x y) = x, 4. x (y z) = (x y) (x z), x (y z) = (x y) (x z), 5. x x = 1, x x = 0
4 Kratą nazywamy parę (K, ), gdzie K i jest porządkiem takim, że dowolny skończony podzbiór zbioru K ma kresy. Tradycyjnie oznaczamy inf {x, y} = x y oraz sup{x, y} = x y.
5 Kratę (K, ) nazywamy dystrybutywną (lub rozdzielczą), jeśli dla dowolnych x, y, z K mamy: x (y z) = (x y) (x z), x (y z) = (x y) (x z).
6 Kratą komplementarną nazywamy kratę (K, ) taką, że 1. w K istnieją element największy i element najmniejszy, 2. dla dowolnego x K istnieje y K taki, że x y = oraz x y =. Element y nazywamy wówczas dopełnieniem elementu x.
7 Stwierdzenie: Niech B będzie algebrą Boole a. Wówczas (B, ) jest kratą dystrybutywną i komplementarną.
8 Twierdzenie: Każda krata dystrybutywna i komplementarna spełnia aksjomaty algebry Boole a, gdzie interpretujemy jako, interpretujemy jako, interpretujemy jako operację tworzenia dopełnienia, 0 interpretujemy jako, 1 interpretujemy jako.
9 Dowód: Dowód jest w zasadzie trywialny jedyna część, jaka wymaga komentarza to sprawdzenie drugiego aksjomatu, który jest spełniony bo inf{x, inf{y, z}} = inf{inf{x, y}, z}.
10 Twierdzenie: W dowolnej algebrze Boole a spełnione są następujące związki: 1. x y = 0 x y, x y = 1 y x, 2. x y = 0 x y, x y = 1 y x, 3. ( x) = x, 4. (x y) = x y, (x y) = x y, 5. x y y x.
11 Dowód: Pokażemy dla przykładu (3): ( x) = ( x) 1 = ( x) (x x) a więc ( x) x. Podobnie = ( ( x) x) ( ( x) x) = ( x) x x = x 1 = x ( ( x) x) = (x ( x)) (x x) = x ( x), a więc x ( x). Tym samym ( x) = x.
12 Grafem skierowanym lub krótko grafem będziemy nazywać strukturę G = (G 0, G 1, src, tgt), gdzie G 0 jest zbiorem węzłów, G 1 zbiorem krawędzi, a src, tgt : G 1 G 0 są funkcjami. Graf o skończonej liczbie węzłów i krawędzi nazywamy grafem skończonym. Zapis x f y oznacza f G 1, x = src(f ), y = tgt(f ).
13 Podgrafem G grafu G nazywamy strukturę (G 0, G 1, src, tgt) taką, że 1. G 0 G 0, 2. G 1 G 1, 3. src G (f ) = src G (f ) G 0 dla każdej krawędzi f G 1, 4. tgt G (f ) = tgt G (f ) G 0 dla każdej krawędzi f G 1. Podgrafy oznaczamy przez G G.
14 Graf nazywamy grafem prostym gdy funkcja (src, tgt) : G 1 G 0 G 0 dana wzorem (src, tgt)(f ) = (src(f ), tgt(f )) jest injekcją. Oznacza to, że dwóch węzłów nie łączy podwójna krawędź.
15 Ścieżką skończoną w grafie G o długości n od x G 0 do y G 0 nazywamy ciąg krawędzi f x = x 1 f 0 2 x2 x3... fn x n = y Dwa węzły są połączone, jeśli istnieje w grafie G ścieżka skończona od x do y lub od y do x. Graf, w którym każde dwa węzły są połączone nazywamy grafem spójnym.
16 Ścieżkę, która zaczyna się i kończy w tym samym węźle nazywamy cyklem. Jeżeli żadna ścieżka nie jest cyklem, to mówimy o grafie acyklicznym. Dla wybranego węzła x G 0 oznaczamy: x + = {b G 0 istnieje krawędź x f b}, x = {a G 0 istnieje krawędź a f x},
17 Drzewem nazywamy graf prosty, spójny i acykliczny oraz taki, że 1. istnieje dokładnie jeden węzeł k taki, że k =, zwany korzeniem, 2. x = 1 dla każdego węzła innego od k.
18 Podgraf drzewa nazywamy poddrzewem. Zbiór wszystkich poddrzew drzewa D oznaczamy przez sub(d). Zbiór wszystkich ścieżek od korzenia oznaczamy przez adr(d). Zauważmy, że zbiory sub(d) i adr(d) można utożsamiać; poddrzewo odpowiadające ścieżce s oznaczać będziemy przez D/s. Węzły dla których x + = nazywać będziemy liściami.
19 Tradycyjnie przez [] oznaczać będziemy drzewo puste, przez [x] drzewo złożone tylko z jednego węzła x oraz przez [x T 1 ;... ; T n ] drzewo z korzeniem x i poddrzewami T 1,..., T n. Ponadto przez Trees ω oznaczamy klasę wszystkich drzew przeliczalnych. W tych oznanczeniach przyjmujemy definicję wysokości drzewa jako funkcji h : Trees ω N określonej rekurencyjnie jako 0, gdy T = [], h(t ) = 1, gdy T = [x], 1 + max{h(t i ) : 1 < i < n}, gdy T = [x T 1 ;... ; T n ]. Zdefiniujmy jeszcze zbiór okurencji drzewa T w T jako zbiór ścieżek ω(t, T ) = {s adr(t ) T = T /s}.
20 Definicja: Niepusty podzbiór F uniwersum algebry Boole a B nazywamy filtrem, gdy 1. x, y F (x y F ), 2. x F y B(x y F ).
21 Przykłady: 1. Uniwersum dowolnej algebry Boole a jest filtrem (filtrem niewłaściwym). 2. {1}. 3. Niech a B. Wtedy {x B : a x} jest filtrem (filtr generowany przez element a, filtr główny).
22 3. Niech φ : A B będzie homomorfizmem algebr Boole a. Wtedy: F φ = {a A : φ(a) = 1} jest filtrem w A.
23 Uwaga: Rozważamy wyłącznie filtry w algebrach Boole a.
24 Uwaga: F jest filtrem właściwym wtedy i tylko wtedy, gdy 0 / F.
25 Dowód: ( ) : Dowód prowadzimy przez kontrapozycję. Załóżmy, że 0 F. Wówczas a F dla każdego a, bo 0 a.
26 ( ) : Załóżmy, że F jest niewłaściwy. Wówczas, w szczególności, 0 F.
27 Definicja: Niech B będzie algebrą Boole a. Zbiór X B jest scentrowany (lub ma własność iloczynu skończonego), gdy dla dowolnych n N, a 1,..., a n X jest a 1... a n 0.
28 Twierdzenie: Każdy zbiór scentrowany można rozszerzyć do filtru właściwego.
29 Dowód: Niech X B będzie zbiorem scentrowanym algebry Boole a B. Rozważmy zbiór: F X = {a B : dla pewnych x 1,..., x n X, a x 1 x 2... x n }. Sprawdzamy, że F X jest filtrem. Filtr ten nazywamy filtrem generowanym przez X, czyli najmniejszym filtrem zawierającym X. Oczywiście X F X.
30 Pokażemy, że F X jest filtrem właściwym. Gdyby tak nie było, to 0 F X, czyli dla pewnych x 1,..., x n X, 0 x 1 x 2... x n co jest sprzeczne z założeniem scentrowania zbioru X.
31 Definicja: Filtr F algebry Boole a B nazywamy maksymalnym, gdy F jest elementem maksymalnym względem relacji w rodzinie filtrów właściwych algebry B.
32 Twierdzenie Tarskiego (1930, BPI theorem): Każdy filtr właściwy algebry Boole a można rozszerzyć do filtru maksymalnego.
33 Dowód: Niech F będzie filtrem właściwym algebry Boole a B. Rozważmy F = {G : G jest filtrem właściwym w B oraz F G}. Ponieważ F F, więc F.
34 Pokażemy, że każdy łańcuch w F ma ograniczenie górne w F. Niech L będzie łańcuchem w F. Rozważmy L. Pokażemy, że L F.
35 Istotnie, zauważmy, że L jest filtrem. Niech bowiem a, b L. Wtedy a G a, b G b, dla pewnych G a, G b L. Możemy zakładać, że G a G b. Wobec tego a, b G b. Stąd a b G b L. Dalej, niech a L i niech x B będzie takie, że a x. Ale a G a dla pewnego G a L, skąd x G a L.
36 Zauważmy następnie, że L B. Istotnie, gdyby 0 L, to wówczas 0 G a dla pewnego G a F, co jest sprzecznością.
37 Na koniec zauważmy jeszcze, że F L. Tym samym pokazaliśmy, że L F, więc na mocy lematu Kuratowskiego-Zorna w rodzinie (F, ) istnieje element maksymalny.
38 Wniosek: 1. Każdy zbiór scentrowany algebry Boole a B można rozszerzyć do filtru maksymalnego. 2. Każdy element a 0 należy do pewnego filtru maksymalnego. 3. Dla dowolnych a, b takich, że a b istnieje filtr maksymalny F taki, że (a F b / F ) (b F a / F ).
39 Lemat: W dowolnej algebrze Boole a: 1. x 0 = x, 2. x 1 = 1, 3. (x y) = x y.
40 Twierdzenie: Niech F będzie filtrem w algebrze Boole a B. Wówczas relacja F dana wzorem: jest kongruencją algebry. x F y istnieje u F : x u = y u
41 Dowód: Relacja F jest równoważnością, co łatwo sprawdzić: jest zwrotna, czyli x F x, bo x 1 = x 1 i 1 F ; jest symetryczna, czyli x F y y F x, bo x u = y u jest równoważne y u = x u; jest też przechodnia, załóżmy bowiem, że x F y oraz y F z, czyli że dla pewnych u, w F : Rozważmy element u w F. Mamy: x u = y u oraz y w = z w. x (u w) = (x u) w = (y u) w = (y w) u = (z w) u = z (u w), co kończy dowód przechodniości.
42 Załóżmy, że x F x i y F y. Pozostaje wykazać, że (x y) F (x y ), (x y) F (x y ) i x F x. Pokażemy, dla przykładu, ostatnią własność.
43 Istotnie: oznacza, że również x u = x u (x u) = (x u), czyli a stąd a więc x u = x u, u ( x u) = u ( x u), x u = x u.
44 Uwaga: Niech B będzie algebrą Boole a i niech będzie jej kongruencją. Wtedy F = {x B : x 1} jest filtrem. Ponadto F =.
45 Jeżeli F jest filtrem algebry Boole a B, to zamiast B/ F będziemy pisać po prostu B/F. Filtr F algebry Boole a B nazywamy pierwszym, gdy dla dowolnych a, b B, jeżeli a b F, to a F lub b F.
46 Twierdzenie: Niech F będzie filtrem maksymalnym algebry Boole a B. Wówczas następujące warunki są równoważne: 1. F jest maksymalny, 2. F jest pierwszy, 3. dla dowolnego a B albo a F, albo a F, 4. B/F = B 2.
47 Dowód: (1) (2) : Przypuśćmy, że F nie jest filtrem pierwszym. Niech a, b będą takie, że a b F oraz a / F, b / F. Rozważmy zbiór G = {x B : istnieje u F : x a u}. Oczywiście F G. Pokażemy, że G B, w szczególności b / G. Faktycznie, gdyby b G to mielibyśmy b a u, dla pewnego u F. Stąd b = b (a u) = (b a) }{{} F (b u) F, co jest sprzecznością. }{{} u F Zatem F nie może być filtrem maksymalnym, co również byłoby sprzecznością.
48 (2) (3) : Załóżmy, że F jest pierwszy. Wówczas a a = 1 F dla dowolnego a B, a stąd a F lub a F i nie może być jednocześnie a F oraz a F.
49 (3) (4) : Rozważmy algebrę ilorazową B/F, gdzie F jest filtrem mającym własność (3). W B/F mamy: 1 = F oraz 0 = { a : a F }.
50 Istotnie, zobaczmy, że 1 = F. Ustalmy a F. Wówczas a F 1, bo a a = a 1. Na odwrót, załóżmy, że a F 1. Wówczas dla pewnego u F zachodzi a u = u 1 = u, skąd u a, czyli a F. Dalej, sprawdźmy, że 0 = { a : a F }. Faktycznie: 0 = {x B : x f 0} = {x B : istnieje u F : x u = 0} = {x B : u x} = { x : x F }.
51 Ustalmy teraz a B. Mamy, że a F i wtedy [a] = 1, albo a F i wtedy [a] = 0.
52 (4) (1) : Przypuśćmy, że F nie jest maksymalny, czyli że istnieje filtr właściwy G taki, że F G. Niech a G \ F. Rozważmy B/F. Mamy: [a] 1 oraz [a] 0, bo gdyby [a] = 0, to a F G, ale a G i G jest filtrem właściwym. Stąd otrzymujemy sprzeczność.
53 Definicja: Dowolny filtr właściwy spełniający jeden z powyższych równoważnych warunków nazywamy ultrafiltrem.
54 Interesować nas będą głównie ultrafiltry w algebrach potęgowych. Niech I. Mówimy, że F jest filtrem nad zbiorem I, gdy F jest filtrem w algebrze potęgowej (2 I, ). Wprost z definicji filtrem głównym w algebrze potęgowej będzie F A = {X : A X }.
55 Uwaga: Niech F będzie filtrem głównym nad I. Wówczas F jest ultrafiltrem wtedy i tylko wtedy, gdy F jest generowany przez zbiór jednoelementowy.
56 Dowód: ( ) : Niech X generuje F i przypuśćmy, że x, y X dla x y. Rozważmy {x}. Ponieważ F jest ultrafiltrem, więc: {x} F albo {x} F. W pierwszym przypadku {x} X F, czyli {x} F, co daje sprzeczność. W drugim przypadku sprzeczność otrzymujemy wobec faktu, że X \ {x} F.
57 ( :) Załóżmy, że F = {Y I : {a} Y } = {Y : a Y }. Weźmy dowolny Z I. Mamy: a Z lub a / Z, czyli a Z. W pierwszym przypadku Z F, a w drugim Z F. Wobec tego F jest ultrafiltrem.
58 Uwaga: Jeśli F jest ultrafiltrem niegłównym nad I, to do F nie należy żaden zbiór skończony.
59 Dowód: Załóżmy, że F jest filtrem niegłównym w pewnej algebrze potęgowej nad I i przypuśćmy, że pewien zbiór skończony należy do F. Niech K będzie takim zbiorem o minimalnej liczbie elementów. Przypuśćmy ponadto, że dla x y mamy x, y K. Wówczas {x} / F, ponieważ K był minimalnym zbiorem skończonym należącym do F oraz {x} / F, ponieważ w przeciwnym razie {x} K F, co daje sprzeczność z minimalnością K. Oznacza to, że F nie mógłby być ultrafiltrem.
60 Uwaga: W dowolnej nieskończonej algebrze potęgowej istnieją ultrafiltry niegłówne.
61 Dowód: Niech I będzie zbiorem nieskończonym. Rozważmy F = {X I : X jest zbiorem koskończonym}. Z łatwością sprawdzamy, że F jest filtem. F jest filtrem właściwym, bo / F. F możemy rozszerzyć do ultrafiltru. Z kolei łatwo sprawdzamy, że każdy ultrafiltr rozszerzający F jest niegłówny.
(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Logika matematyczna w informatyce
Paweł Gładki Logika matematyczna w informatyce http://www.math.us.edu.pl/ pgladki/ Konsultacje: Piątek, 8:00-9:30 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany
Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Definicja: alfabetem. słowem długością słowa
Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc.
Zagadnienia: 1. Definicje porządku słabego i silnego. 2. Elementy minimalne, maksymalne, kresy, etc. 3. Porządki liniowe. Porządki gęste, ciągłe i dobre. dradamkolany,mailto:ynalok64@wp.pl,http://kolany.pl,gg:1797933,tel.(+48)602804128...
Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)
Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.
SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką
Filtry i nety w przestrzeniach topologicznych
Filtry i nety w przestrzeniach topologicznych Magdalena Ziębowicz Streszczenie W referacie zostaną przedstawione i scharakteryzowane pojęcia związane z filtrami i ultrafiltrami, ciągami uogólnionymi oraz
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Wokół pewnego zagadnienia z dziedziny półkrat górnych z jednością *
Przegląd Filozoficzny Nowa Seria R. 27: 2018, Nr 3 (107), ISSN 1230 1493 DOI: 10.24425/pfns.2018.125459 Jacek Hawranek, Jan Zygmunt Wokół pewnego zagadnienia z dziedziny półkrat górnych z jednością * Słowa
Rozdzia l 3. Elementy algebry uniwersalnej
Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
Systemy algebraiczne. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak
Systemy algebraiczne Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Struktury danych struktury algebraiczne Przykład Rozważmy następujący
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003
Zadania z forcingu Marcin Kysiak Semestr zimowy r. ak. 2002/2003 Dokument ten zawiera zadania omówione przeze mnie na ćwiczeniach do wykładu monograficznego dr. A. Krawczyka "Zdania nierozstrzygalne w
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Problemy Decyzyjne dla Systemów Nieskończonych
Problemy Decyzyjne dla Systemów Nieskończonych Ćwiczenia 1 17 lutego 2012 Na tych ćwiczeniach zajmiemy się pojęciem well quasi-ordering (WQO) bardzo przydatnym do analizy nieskończonych ciągów. Definicja
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Teoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Baza i stopień rozszerzenia.
Baza i stopień rozszerzenia. Uwaga Niech F będzie ciałem, L rozszerzeniem ciała F. Wówczas L jest przestrzenią liniową nad ciałem F. Definicja Niech F będzie ciałem, L rozszerzeniem ciała F. 1. Wymiar
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.
11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,
vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).
6. Wykład 6: Rachunek predykatów. Język pierwszego rzędu składa się z: symboli relacyjnych P i, i I, gdzie (P i ) oznaczać będzie ilość argumentów symbolu P i, symboli funkcyjnych f j, j J, gdzie (f j
i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
Wstęp do Matematyki (2)
Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga
Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.
Rozdzia l 1. Podstawowe elementy teorii krat
Rozdzia l 1. Podstawowe elementy teorii krat 1. Zbiory czȩściowo uporz adkowane Definicja. Relacjȩ binarn a określon a na zbiorze A nazywamy relacj a czȩściowo porz adkuj ac a, gdy jest zwrotna, antysymetryczna
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
020 Liczby rzeczywiste
020 Liczby rzeczywiste N = {1,2,3,...} Z = { 0,1, 1,2, 2,...} m Q = { : m, n Z, n 0} n Operacje liczbowe Zbiór Dodawanie Odejmowanie Mnożenie Dzielenie N Z Q Pytanie Dlaczego zbiór liczb wymiernych nie
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Definicja: zmiennych zdaniowych spójnikach zdaniowych:
Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1
4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Artur Piękosz. Matematyka dyskretna
Artur Piękosz Matematyka dyskretna Kraków, 5 marca 2009 Rozdział 1 Podstawowe pojęcia matematyki 1.1. Co to jest matematyka dyskretna? matematyka dyskretna matematyka ciągła zbiory skończone lub przeliczalne,
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Ilustracja S1 S2. S3 ściana zewnętrzna
Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
ciałem F i oznaczamy [L : F ].
11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem
Wstęp do Matematyki (1)
Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie
DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.
RELACJE Relacje 1 DEFINICJA Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B. Relacje 2 Przykład 1 Wróćmy do przykładu rozważanego
12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.
12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań
Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań 1 Struktury modelowe Przedstawimy teraz pewien
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. Przeprowadzimy obecnie skróconą klasyfikację skończonych grup prostych. 5.1.
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania