Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)
|
|
- Seweryna Brzezińska
- 10 lat temu
- Przeglądów:
Transkrypt
1 Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem najmniejszym, a więc o randze 0, jest zbiór pusty - jako zawarty w każdym innym podzbiorze zbioru Y. Elementami o randze 1 będą wszystkie podzbiory jednoelementowe, elementami o randze 2 będą podzbiory dwuelementowe. Ogólnie elementami o randze k będą te podzbiory zbioru Y, których moc jest równa k. Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Elementem o randze 0 będzie oczywiście element najmniejszy, czyli para (0, 0). Dalej, zgodnie z definicją porządku, elementami o randze 1 będą elementy (0, 1) i (1, 0). Elementami o randze 2 będą pary postaci (0, 2), (2, 0) oraz (1, 1). Ogólnie ranga dowolnej pary (a, b) N 0 N 0 jest równa: a + b. Zadanie 3 Pokazać, że zbiór elementów ustalonej rangi jest antyłańcuchem. Niech (X, ) będzie zbiorem uporządkowanym. Niech T X będzie zbiorem elementów o ustalonej randze k. Weźmy dwa dowolne elementy a i b tego zbioru. Gdyby a i b należały do jednego łańcucha, to byłoby a b lub b a, ale to znaczyłoby, że elementy a i b nie są tej samej rangi. Więc a i b są nieporównywalne. Wobec dowoloności wyboru elementów a i b wnioskujemy, że każde dwa elementy ze zbioru T są nieporównywalne, ale to oznacza, że zbiór T jest antyłańcuchem. Zadanie 4. Pokazać, że jeśli (L, <) jest kratą, to działania i są łączne, przemienne oraz a a = a i a a = a. Jeśli krata jest skończona, to istnieją elementy najmniejszy i największy i są one elementami neutralnymi względem działań w tej kracie. Działania i są przemienne, gdyż a b = sup{a, b} = sup{b, a} = b a oraz a b = inf{a, b} = inf{b, a} = b a. Działania i są łączne, gdyż a (b c) = sup{a, sup{b, c}} = sup{a, b, c} oraz a (b c) = inf{a, inf{b, c}} = inf{a, b, c}. Ponadto a a = sup{a, a} = a oraz a a = inf{a, a} = a. Zakładamy, że krata jest skończona, czyli L <. Niech L = {x 1,..., x n }. Elementem najmniejszym jest element 0 = x 1... x n, elementem największym - 1 = x 1... x n. Niech teraz x i L. Wówczas: 0 = x 1... x n x i x i x i x 1... x n x i x i = x i a więc x i x 1... x n = x i. Analogicznie dla działania : x i x 1... x n = 1 x i = x i x i x i (x 1... x n ) x i bo a b a. A więc x i (x 1... x n ) = x i.
2 Zadanie 5. Pokazać, że jeśli (L, <) jest kratą rozdzielną, to każdy element może mieć co najwyżej jedno uzupełnienie. Załóżmy, że krata jest skończona. Niech a L i niech elementy e, f będą uzupełnieniami elementu a, czyli: a e = 1, a e = 0, a f = 1, a f = 0. e = e 0 = e (a f) = (e a) (e f) = 1 (e f) = e f f = f 0 = f (a e) = (f a) (f e) = 1 (f e) = f e skąd wynika, że e = f. Zadanie 6. Pokazać, że krata (30) jest izomorficzna (jako zbiór uporządkowany) z kratą P (3). (30) = {1, 2, 3, 5, 6, 10, 15, 30} P (3) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Aby pokazać izomorficzność obu zbiorów należy określić odpowiednią funkcję zachowującą porządki w obu zbiorach. Funkcję f: (30) P (3) definujemy następująco: f(1) = Ø, f(2) = {1}, f(3) = {2}, f(5) = {3}, f(6) = {1, 2} f(10) = {1, 3}, f(15) = {2, 3}, f(30) = {1, 2, 3} Zadanie 7. Wyznaczyć wartości funkcji Möbiusa zbioru (12) = {1, 2, 3, 4, 6, 12} µ(i, i) = 1, i {1, 2, 3, 4, 6, 12}, µ(1, 2) = µ(2, 2) = 1 µ(1, 3) = µ(3, 3) = 1, µ(2, 6) = µ(3, 6) = µ(6, 6) = 1 µ(1, 6) = (µ(2, 6) + µ(3, 6) + µ(6, 6)) = 1 µ(2, 4) = µ(4, 4) = 1, µ(1, 4) = (µ(2, 4) + µ(4, 4)) = 0 µ(4, 12) = µ(12, 12) = 1, µ(6, 12) = µ(12, 12) = 1 µ(2, 12) = (µ(4, 12) + µ(6, 12) + µ(12, 12)) = 1 µ(3, 12) = (µ(6, 12) + µ(12, 12)) = 0 µ(1, 12) = (µ(2, 12) + µ(3, 12) + µ(4, 12) + µ(6, 12) + µ(12, 12)) = 0 Zadanie 8. Ile jest liczb naturalnych niepodzielnych przez 2, 3 i 5 w przedziałach: (0, 901), (0, 1001), (16, 1219) A = {x (0, 901): 2 x}, B = {x (0, 901): 3 x}, C = {x (0, 901): 5 x}. Wówczas: A = 450, B = 300, C = 180, A B = 150, A C = 90, B C = 60, A B C = 30. Stąd {x (0, 901): (x A B C)} = 240 Dla pozostałych przedziałów postępujemy analogicznie. A więc {x (0, 1001): (x A B C)} = 266 oraz {x (16, 1219): (x A B C)} = 321
3 Zadanie 9. Pokazać, że zbiór (n) wszystkich dzielników naturalnych liczby naturalnej n, uporządkowany przez relację podzielności jest kratą rozdzielną. Pokazać, że (n) jest algebrą Boole a wtedy i tyklo wtedy, gdy n jest liczbą bezkwadratową (tzn. niepodzielną przez kwadrat żadnej liczby pierwszej). 1 Mamy pokazać, że zbiór ( (n), ) jest kratą rozdzielną. Zauważmy, że w tej kracie a b = NW W (a, b) oraz a b = NW D(a, b). Niech a, b, c (n) = {k N: k n}. Wówczas: a (b c) = NW D(a, NW W (b, c)) = = NW W (NW D(a, b), NW D(a, c)) = (a b) (a c) a (b c) = NW W (a, NW D(b, c)) = = NW D(NW W (a, b), NW W (a, c)) = (a b) (a c) 2 ( ) Załóżmy, że (n) jest algebrą Boole a i przypuśćmy, że n nie jest liczbą bezkwadratową, tzn: p n p 2 n P zbiór liczb pierwszych p P Ponieważ (n) jest algebrą Boole a, to każdy element ma swoje uzupełnienie, a więc istnieje taki element a (n), że a p = 1 oraz a p = 0. A więc (NW W (p, a) = n oraz NW D(p, a) = 1, skąd wynika następujący fakt: NW W (p, a) = pa = n a = n p = pk gdzie k jest liczbą naturalną (ostatnia równość wynika z faktu, że p 2 n). A więc NW D(p, a) = NW D(p, n/p) = p i dostajemy sprzeczność, gdyż NW D(p, a) 1 ( ) Załóżmy, że n jest liczbą bezkwadratową, czyli n = p 1... p s. Niech k (n) co oznacza, że k n. Pokażemy, że uzupełnieniem elementu k jest element k = n/k. Oczywiście NW D(k, k ) = 1, gdyż liczby pierwsze wystepujące w rozkładzie liczby k są różna (żadna się nie powtarza) od liczb z rozkładu k (co wynika z faktu, że n jest liczbą bezkwadratową). A więc NW W (k, k ) = k k = n. Zadanie 10. Łańcuch (C i ), i = 1,..., n podzbiorów pewnego skończonego zbioru nazywamy zupełnym, jeśli C i = i. Wyznaczyć liczbę łańcuchów zupełnych zawartych w P (n). Wyznaczyć liczbę łańcuchów zupełnych w P (n) zawierających ustalony zbiór k- elementowy. Dla n = 3, P = {0, 1, 2} przykładem łańcucha zupełnego jest: {0}, {0, 1}, {0, 1, 2}. Łatwo zauważyć, że ilość wszystkich łańcuchów zupełnych w zbiorze P (n) wynosi n!. Ilość wszystkich łańcuchów zupełnych zawierających ustalony zbiór k-elementowy wynosi k!(n k)!.
4 Zadanie 11. Udowodnić, że jeżeli przedziały [a, b] i [c, d] zawarte w pewnym lokalnie skończonym zbiorze uporządkowanym są izomorficzne, to µ(a, b) = µ(c, d) Załóżmy, że [a, b] = [c, d]. Niech f: [a, b] [c, d] będzie izomorfizmem. A więc dla każdych x, y [a, b] prawdziwa jest równoważność: x [a,b] y f(x) [c,d] f(y) Niech k = [a, b] = [c, d]. Indukcja względem k. Jeśli k = 1, to a = b i c = d. A więc µ(a, a) = µ(c, c) = 1. Załóżmy, że dowodzona implikacja zachodzi dla k = n 1. Niech [a, b] = [c, d] = n. A więc µ(a, b) = µ(a, z) = µ(c, f(z)) = µ(c, d) a z<b gdyż [a, z] < n i [c, f(z)] < n. c f(z)<d Zadanie 12. Wskazać pokrycie minimalną liczbą łańcuchów zbioru uporządkowanego: a) P (5) b) I 4 I 5, gdzie I n = {1,..., n} z naturalnym porządkiem. (a) Minimalna ilość łańcuchów potrzebna do pokrycia zbioru P (5) wynosi 10, gdyż taka jest ilość elementów w maksymalnym antyłańcuchu zbioru P (5) (b) Minimalna ilość łańcuchów potrzebna do pokrycia zbioru I 4 I 5 wynosi 4: ((1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 5), (3, 5), (4, 5)) ((1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5)) ((1, 1), (2, 1), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 5)) ((1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5)) Zadanie 13. Czy każdy łańcuch w zbiorze A = {(x, y) Z Z: x 0 x + y 0} jest skończony. Czy długości łańcuchów w tym zbiorze są wspólnie ograniczone. Dla każdej liczby naturalnej n podać przykład nieskończonego podzbioru zbioru A, w którym maksymalna długość łańcucha wynosi n. Nie każdy łańcuch w zbiorze A jest skończony, np. nieskończony jest łańcuch (0, 0), ( 1, 0), ( 2, 0),.. Wobec tego długość łańcuchów w zbiorze A nie może być wspólnie ograniczona. Nieskończony podzbiór zbioru A, w ktorym maksymalna długość łańcucha wynosi 1, to na przykład: P 1 = ((0, 1), (1, 2),..., (n, n 1),...) Nieskończony podzbiór zbioru A, w ktorym maksymalna długość łańcucha wynosi 2, to na przykład: P 2 = P 1 (0, 2), (1, 3),..., (n, n 2),...) Ostatecznie nieskończony podzbiór P n A, w ktorym maksymalna długość łańcucha wynosi n, to na przykład: P n = P 1... P n 1 (0, n), (1, n 1),..., (n, 2n),...)
5 Zadanie 14. Niech (P, ) będzie zbiorem uporządkowanym. Określmy dwie funkcje: η(a, b) = ζ(a, b) = Wyznaczyć wartości funkcji η ζ oraz ζ η Rozwiązanie. Załóżmy, że a b. Niech a = b, wtedy: Jeśli [a, b] = 2, to { 1, [a, b] = 2 0, ( [a, b] = 2) { 1, a b 0, (a b) η ζ(a, b) = η(a, a)ζ(a, a) = 0 ζ η(a, b) = ζ(a, a)η(a, a) = 0 η ζ(a, b) = η(a, a)ζ(a, b) + η(a, b)ζ(b, b) = 1 ζ η(a, b) = ζ(a, a)η(a, b) + ζ(a, b)η(b, b) = 1 Niech teraz [a, b] > 2. Zauważmy, że dla wszystkich c [a, b] jest c b, a więc dla wszystkich c jest ζ(c, b) = 1. Stąd η(a, c)ζ(c, b) = η(a, c) W przedziale [a, b] istnieje co najmniej jeden element c, taki że [a, c] = 2. Stąd wartość powyższej sumy jest równa mocy zbioru: {c [a, b]: [a, c] = 2} Rozpatrzmy teraz splot ζ η. Dla wszystkich c [a, b] mamy a c, a więc ζ(a, c) = 1, dla c [a, b]. Stąd ζ(a, c)η(c, b) = η(c, b) W przedziale [a, b] istnieje co najmniej jeden element c, taki że [c, b] = 2. Stąd wartość powyższej sumy jest równa mocy zbioru: {c [a, b]: [c, b] = 2}
6 Zadanie 15. Pokazać, że krata X = (a k(1) 1... a k(n) n ), jako zbiór uporządkowany przez relację podzielności (a 1,..., a n są liczbami pierwszymi), jest izomorficzna z iloczynem kartezjańskim Z = (a k(1) 1 )... (a k(n) n ). Niech Zauważmy najpierw, że ilość elementów w obu zbiorach jest taka sama. Ponadto jeśli x X, to x = a u(1) 1... a u(n). Określmy funkcję f: X Z następująco: n f(x) = f(a u(1) 1... a u(n) n ) = (a u(1) 1,..., a u(n) n ) Tak określona funkcja zachowuje porządki w obu zbiorach. Niech x, y X i niech x = a u(1) 1... a u(n) n, y = a v(1) 1... a v(n) n. Załóżmy, że x y. Wtedy u(1) v(1),..., u(n) v(n). Zatem f(x) f(y). Copyright c Grzegorz Gierlasiński
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA Lekcja 17 Relacje częściowego porządku. Diagramy Hassego. ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH
ALGEBRA Z GEOMETRIĄ 1/10 BAZY PRZESTRZENI WEKTOROWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 11, 18.12.2013 Typeset by Jakub Szczepanik. Istnienie bazy Tak jak wśród wszystkich pierścieni wyróżniamy
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Rozdział 6. Ciągłość. 6.1 Granica funkcji
Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone
Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy
Matematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Matematyka dyskretna. Wykład 5: Funkcje multiplikatywne. Gniewomir Sarbicki
Matematyka dyskretna Wykład 5: Funkcje multiplikatywne Gniewomir Sarbicki Definicja: Funkcję f : N Z nazywamy: multiplikatywną, jeżeli n, m NW D(n, m) = 1 = f(nm) = f(n)f(m) całkowicie multiplikatywną,
Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.
Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu
Algebra liniowa z geometrią. wykład I
Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych
(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x
2. Wykład 2: algebry Boole a, kraty i drzewa. 2.1. Algebra Boole a. 1 Ważnym dla nas przykładem algebr są algebry Boole a, czyli algebry B = (B,,,, 0, 1) typu (2, 2, 1, 0, 0) spełniające własności: (1)
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017
Indukcja matematyczna, zasada minimum i maksimum 17 lutego 2017 Liczby naturalne - Aksjomatyka Peano (bez zera) Aksjomatyka liczb naturalnych N jest nazwą zbioru liczb naturalnych, 1 jest nazwą elementu
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:
Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach
Skończone rozszerzenia ciał
Skończone rozszerzenia ciał Notkę tę rozpoczniemy od definicji i prostych własności wielomianu minimalnego, następnie wprowadzimy pojecie rozszerzenia pojedynczego o element algebraiczny, udowodnimy twierdzenie
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi
Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
KONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego
Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej Twierdzenie Li-Yorke a Twierdzenie Szarkowskiego Autor: Kamil Jaworski 11 marca 2012 Spis treści 1 Wstęp 2 1.1 Podstawowe pojęcia........................
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie
1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
F t+ := s>t. F s = F t.
M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
ALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH
ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Podstawowe pojęcia teorii podzielności.
Podstawowe pojęcia teorii podzielności. Definicja Niech pr, `, q będzie pierścieniem 1 całkowitym. Mówimy, że element a dzieli b, a, b P R, (lub że a jest dzielnikiem b, lub że b jest wielokrotnością a)
Problemy Decyzyjne dla Systemów Nieskończonych
Problemy Decyzyjne dla Systemów Nieskończonych Ćwiczenia 1 17 lutego 2012 Na tych ćwiczeniach zajmiemy się pojęciem well quasi-ordering (WQO) bardzo przydatnym do analizy nieskończonych ciągów. Definicja
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Teoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
Wyk lad 14 Cia la i ich w lasności
Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności
Teoria miary. Matematyka, rok II. Wykład 1
Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien
LV Olimpiada Matematyczna
LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk
MNRP 18.03.2019r. Grzegorz Kowalczyk 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Definicja (σ - ciało) Niech Ω - dowolny zbiór. Rodzinę F P (Ω), gdzie P (Ω) jest rodziną wszystkich podzbiorów
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
Kongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Wykładowcy. Podstawy matematyki dla informatyków. Różne książki dla dociekliwych. Materiały. Books in English. Zaliczenie. Klasówka.
Wykładowcy Podstawy matematyki dla informatyków Semestr zimowy 2017-18 Jacek Chrząszcz, chrzaszcz@mimuw.edu.pl, pokój 5710. Paweł Urzyczyn, urzy@mimuw.edu.pl, pokój 5700. Materiały Różne książki dla dociekliwych
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 9 Relacje 9.1 Podstawowe pojęcia 9.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
Indukcja matematyczna. Matematyka dyskretna
Indukcja matematyczna Matematyka dyskretna Indukcja matematyczna Indukcja matematyczna będzie przez nas używana jako metoda dowodzenia twierdzeń. Zazwyczaj są to twierdzenia dotyczące liczb naturalnych,
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))
Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Łatwy dowód poniższej własności pozostawiamy czytelnikowi.
Rozdział 3 Logarytm i potęga 3.1 Potęga o wykładniku naturalnym Definicja potęgi o wykładniku naturalnym. Niech x R oraz n N. Potęgą o podstawie x i wykładniku n nazywamy liczbę x n określoną następująco:
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.
Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna