Wprowadzenie do badań operacyjnych - wykład 2 i 3

Podobne dokumenty
Elementy Modelowania Matematycznego

TOZ -Techniki optymalizacji w zarządzaniu

Programowanie liniowe. Tadeusz Trzaskalik

Rozdział 1 PROGRAMOWANIE LINIOWE

Standardowe zadanie programowania liniowego. Gliwice 1

METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0

Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.

Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE

BADANIA OPERACYJNE pytania kontrolne

Metoda simpleks. Gliwice

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Rozdział 1 PROGRAMOWANIE LINIOWE

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Badania Operacyjne Ćwiczenia nr 2 (Materiały)

Definicja problemu programowania matematycznego

Programowanie liniowe

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

PROGRAMOWANIE KWADRATOWE

Algorytm simplex i dualność

Dualność w programowaniu liniowym

Programowanie liniowe

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe metoda sympleks

Teoretyczne podstawy programowania liniowego

Programowanie liniowe

Programowanie liniowe

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

Programowanie liniowe metoda sympleks

PRZEWODNIK PO PRZEDMIOCIE

Wykład 6. Programowanie liniowe

Programowanie liniowe

( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa

A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1

Programowanie liniowe metoda sympleks

PRZEWODNIK PO PRZEDMIOCIE

Elementy Modelowania Matematycznego

Wprowadzenie do badań operacyjnych

Programowanie liniowe

ZAGADNIENIE DUALNE Rozważmy zagadnienie liniowe(zagadnienie to nazywamy prymalnym) o postaci kanonicznej:

Algebra liniowa. Macierze i układy równań liniowych

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

Programowanie liniowe

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Lokalna odwracalność odwzorowań, odwzorowania uwikłane

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Metody wielokryterialne. Tadeusz Trzaskalik

ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8

Wykład 5. Metoda eliminacji Gaussa

Programowanie matematyczne

Wielokryteriowa optymalizacja liniowa

3. Macierze i Układy Równań Liniowych

Rozwiązanie Ad 1. Model zadania jest następujący:

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

6. ANALIZA POST-OPTYMALIZACYJNA analiza wrażliwości rozwiązania optymalnego

Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne

OPTYMALIZACJA DYSKRETNA

1 Przykładowe klasy zagadnień liniowych

ZAGADNIENIE TRANSPORTOWE

Zaawansowane metody numeryczne

Układy równań liniowych

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Własności wyznacznika

5. Rozwiązywanie układów równań liniowych

(Dantzig G. B. (1963))

A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1

1 Zbiory i działania na zbiorach.

Układy równań liniowych i metody ich rozwiązywania

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

Układy równań i nierówności liniowych

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Wykład z modelowania matematycznego. Zagadnienie transportowe.

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

Przekształcenia liniowe

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Wykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2

ALGORYTM SIMPLEX. B.Gładysz Badania operacyjne 2007

OPTYMALIZACJA W LOGISTYCE

- modele liniowe. - modele nieliniowe.

KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Laboratorium Metod Optymalizacji

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Układy równań liniowych. Ax = b (1)

Algebra liniowa. 1. Macierze.

PROGRAMOWANIE NIELINIOWE

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

2. Układy równań liniowych

UKŁADY RÓWNAŃ LINIOWYCH

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

4. PROGRAMOWANIE LINIOWE

Rozwiązywanie układów równań liniowych

Zaawansowane metody numeryczne

Transkrypt:

Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008

Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j x j max (min) n j=1 n j=1 n j=1 a ij x j b i (i = 1, 2,..., m) a ij x j b i (i = m + 1,..., p) a ij x j = b i (i = p + 1,..., r) x j 0 (j + 1, 2,..., n 1 ), n 1 n 1

Postać standardowa oraz kanoniczna PL Postać standardowa PL(max) PL(min): n j=1 n j=1 c j x j max a ij x j b i (i = 1, 2,..., m) n j=1 n j=1 c j x j min a ij x j b i (i = 1, 2,..., m) x j 0 (j = 1, 2,..., n) x j 0 (j = 1, 2,..., n) 2

Postać kanoniczna (wersja macierzowa): c T x max(min) c T = [c 1 c 2... c n ] x = x 1 x 2. x n ax = b A = a 11 a 12... a 1n a 21. a 22.... a 2n. a m1 a m2... a mn x 0 b = b 1 b 2. b m 3

Sprowadzanie do postaci kanonicznej - zmienne swobodne Przykład: 2x 1 + 4x 2 + 2x 3 max 2x 1 + 3x 2 + x 3 3 4x 1 + 2x 2 + 3x 3 5 x 1, x 2, x 3 0 2x 1 + 4x 2 + 2x 3 + 0x 4 + 0x 5 max 2x 1 + 3x 2 + x 3 x 4 = 3 4x 1 + 2x 2 + 3x 3 + x 5 = 5 x 1, x 2, x 3, x 4, x 5 0 4

Dualność Zadanie pierwotne (ZP): n j=1 n j=1 Zadanie dualne (ZD): c j x j max, a ij x j b i (i = 1, 2,..., m), x j 0 (j = 1, 2,..., n) m i=1 m i=1 b i y i min, a ij y i c j (j = 1, 2,..., n), y i 0 (i = 1, 2,..., m) 5

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 6

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 7

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 8

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 9

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 10

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 11

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 12

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 13

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 14

1. W ZD jest tyle zmiennych, ile nierówności w ZP 2. W ZD jest tyle warunków, ile zmiennych jest w ZP 3. Wagi funkcji celu ZP są wyrazami wolnymi w zadaniu dualnym 4. Wyrazy wolne ZP są wagami funkcji celu w ZD 5. Macierz współczynników ZD jest transpozycją macierzy współczynników ZP 6. Jeżeli ZP jest na max, to ZD jest na min (i odwrotnie) Ponadto: 7. Jeżeli w ZP i-ty w-k jest równością, to odpowiadająca mu zmienna y i nie ma ograniczeń, 8. Jeżeli w ZP i-ty w-k jest nietypową nierównością, to y i 0 9. Jeżeli w ZP na zmienną x j nie nałożono ograniczeń, to j-ty w-k w ZD jest równością 10. Jeżeli w ZP x j 0, to w ZD j-ty w-k jest nietypową nierównością 15

Twierdzenie 1 Jeżeli ZP i ZD mają rozwiązania dopuszczalne, to obydwa mają rozwiązania optymalne. Jeżeli natomiast chociaż jedno z nich nie ma rozwiązania dopuszczalnego, to obydwa nie mają rozwiązań optymalnych. Twierdzenie 2 Jeżeli istnieją rozwiązania: x ZP i y ZD, dla których odpowiadające funkcje celu dają te same wartości, to obydwa rozwiązania są optymalne. 16

Twierdzenie 3 (o równowadze) Jeżeli x 1, x 2,..., x n jest rozwiązaniem dopuszczalnym ZP oraz y 1, y 2,..., y m jest rozw. dop. ZD, to aby te rozwiązania były optymalnymi, wystarcza, że spełnione są następujące warunki: n j=1 m i=1 a ij x j < b i y i = 0, a ij y i > c j x j = 0, y i > 0 x j > 0 n j=1 m i=1 a ij x j = b i a ij y i = c j. 17

ZP f(x) = 9x 1 + 6x 2 max 3x 1 + 6x 2 240 8x 1 + 4x 2 400 9x 1 + 3x 2 270 x 1, x 2 0 ZD f (y) = 240y 1 + 400y 2 + 270y 3 min 3y 1 + 8y 2 + 9y 3 9 6y 1 + 4y 2 + 3y 3 6 y 1, y 2, y 3 0 x = (20, 30) y = (0.6, 0, 0.8) 18

Metoda simpleks dla ZP: f(x) = 9x 1 + 6x 2 + 0x 3 + 0x 4 + 0x 5 max 3x 1 + 6x 2 + x 3 = 240 8x 1 + 4x 2 + x 4 = 400 9x 1 + 3x 2 + x 5 = 270 x 1, x 2, x 3, x 4, x 5 0 c j 9 6 0 0 0 wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 0 x 3 3 6 1 0 0 240 80 0 x 4 8 4 0 1 0 400 50 0 x 5 9 3 0 0 1 270 30 z j 0 0 0 0 0 x 0 war.opt. 9 6 0 0 0 0 19

Po obliczeniach: c j 9 6 0 0 0 wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 6 x 2 0 1 1/5 0 1/15 30 0 x 4 0 0 4/15 1 4/5 120 9 x 1 1 0 1/15 0 2/15 20 z j 9 6 0.6 0 0.8 x 0 war.opt. 0 0 0.6 0 0.8 360 Wartości bezwzględne wskaźników optymalności zmiennych decyzyjnych ZP są wartościami zm. bilansujących ZD, natomiast wartości bezwzględne wskaźników optymalności zmiennych bilansujących ZP są wartościami zm. decyzyjnych ZD. 20

Po obliczeniach: c j 9 6 0 0 0 wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 6 x 2 0 1 1/5 0 1/15 30 0 x 4 0 0 4/15 1 4/5 120 9 x 1 1 0 1/15 0 2/15 20 z j 9 6 0.6 0 0.8 x 0 war.opt. 0 0 0.6 0 0.8 360 Wartości bezwzględne wskaźników optymalności zmiennych decyzyjnych ZP są wartościami zm. bilansujących ZD, natomiast wartości bezwzględne wskaźników optymalności zmiennych bilansujących ZP są wartościami zm. decyzyjnych ZD. 21

Zadanie prymalne: f(x) = 9x 1 + 6x 2 + 0x 3 + 0x 4 + 0x 5 max 3x 1 + 6x 2 + x 3 = 240 8x 1 + 4x 2 + x 4 = 400 9x 1 + 3x 2 + x 5 = 270 x 1, x 2, x 3, x 4, x 5 0 Zadanie dualne: f (y) = 240y 1 + 400y 2 + 270y 3 + 0y 4 + 0y 5 min 3y 1 + 8y 2 + 9y 3 y 4 = 9 6y 1 + 4y 2 + 3y 3 y 5 = 6 y 1, y 2, y 3, y 4, y 5 0 22

c j 9 6 0 0 0 wyrazy zm.baz. x 1 x 2 x 3 x 4 x 5 wolne ilorazy 6 x 2 0 1 1/5 0 1/15 30 0 x 4 0 0 4/15 1 4/5 120 9 x 1 1 0 1/15 0 2/15 20 z j 9 6 0.6 0 0.8 x 0 war.opt. 0 0 0.6 0 0.8 360 Zadanie prymalne Zadanie dualne Zmienne wartości wskaźniki zmienne wartości optymalności Decyzyjne x 1 = 20 0 bilansujące y 4 = 0 x 2 = 30 0 y 5 = 0 Bilansujace x 3 = 0-0.6 decyzyjne y 1 = 0.6 x 4 = 120 0 y 2 = 0 x 5 = 0-0.8 y 3 = 0.8 23

Metoda simpleks PL: c T x max(min) c - n-wymiarowy wektor wag Ax = b A - macierz współczynników (m n) b - m-wymiarowy wektor wyrazów wolnych x 0 x - n-wymiarowy wektor zmiennych B - baza - macierz kwadratowa (m m), m liniowo niezależnych kolumn macierzy A; det(b) 0 Z każdą bazą B związane jest rozwiązanie bazowe, jest ich ( ) n m. 24

Jak uzyskać rozwiązanie bazowe? 1. Wybieramy bazę B. 2. Zmienne niebazowe przyjmują wartośc 0 (x N = 0). 3. Rozwiązujemy układ m r-ń z m niewiadomymi Bx B =b. Twierdzenie 4 Jeżeli zadanie PL ma rozwiązanie optymalne, to ma także rozwiązanie optymalne bazowe. Wniosek 1 Rozwiązania optymalnego wystarczy szukać wśród rozwiązań bazowych, których liczba jest skończona. 25

Jak uzyskać rozwiązanie bazowe? 1. Wybieramy bazę B. 2. Zmienne niebazowe przyjmują wartośc 0 (x N = 0). 3. Rozwiązujemy układ m r-ń z m niewiadomymi Bx B =b. Twierdzenie 3 Jeżeli zadanie PL ma rozwiązanie optymalne, to ma także rozwiązanie optymalne bazowe. Wniosek 2 Rozwiązania optymalnego wystarczy szukać wśród rozwiązań bazowych, których liczba jest skończona. 26

Jak uzyskać rozwiązanie bazowe? 1. Wybieramy bazę B. 2. Zmienne niebazowe przyjmują wartośc 0 (x N = 0). 3. Rozwiązujemy układ m r-ń z m niewiadomymi Bx B =b. Twierdzenie 3 Jeżeli zadanie PL ma rozwiązanie optymalne, to ma także rozwiązanie optymalne bazowe. Wniosek 1 Rozwiązania optymalnego wystarczy szukać wśród rozwiązań bazowych, których liczba jest skończona. 27

Pełny przegląd WSZYSTKICH rozwiązań bazowych jest nieefektywny! W metodzie simpleks przechodzimy od jednego dopuszczalengo rozwiązania bazowego do drugiego, o którym wiemy, że jest NIE GORSZE od poprzedniego. KROK A: Wyznaczamy rozwiązanie wejściowe - dopuszczalne i bazowe. KROK B: Sprawdzamy, czy aktualne rozwiązanie bazowe jest optymalne. KROK C: Jeżeli nie, to bierzemy pod uwagę sąsiednie rozwiązanie bazowe, o ktorym wiemy, że jest nie gorsze i wracamy do B. 28