Programowanie liniowe metoda sympleks
|
|
- Katarzyna Maciejewska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, / 12
2 Metoda sympleks Twórca George Dantzig, USA 1947 rok Cel: rozwiazywanie zadania programowania liniowego określonego w postaci standardowej f (x 1,..., x n ) = c 1 x c n x n min (f funkcja celu) przy warunkach a 11 x a 1n x n = b 1 U :......, x 1 0,..., x n 0, gdzie b i 0 a m1 x m1 + + a mn x n = b m dla i = 1,..., m. W skrócie : a 11 a 1n Min{c x : Ax = b, x 0}, gdzie A =....., a m1 a mn b = b 1. b m, x = x 1. x n, c = c 1. c n. Zakładamy, że r(a) = m. Mirosław Sobolewski (UW) Warszawa, / 12
3 Schemat przeszukiwania: Zaczynajac od pewnego rozwiazania bazowego dopuszczalnego, przechodzimy kolejno do innych rozwiazań rozwiazań bazowych dopuszczalnych, w każdym kroku zastępujac jeden element zbioru bazowego innym, dopóki da się pomniejszać wartość funkcji celu f. Interpretacja geometryczna: Rozwiazania bazowe dopuszczalne = wierzchołki zbioru dopuszczalnego X. Wymiana jednego elementu w zbiorze bazowym = przejście do sasiedniego ( tzn. połaczonego krawędzia) wierzchołka X. Wędrówkę po wierzchołkach kończymy w wierzchołku najniższym w sensie funkcji celu f. Mirosław Sobolewski (UW) Warszawa, / 12
4 (Szczegóły metody sympleks ) Szukamy największej wartości funkcji g(x 1, x 2, x 3, x 4, x 5 ) = 16x x 2 + x 3, przy ograniczeniach : x 1 + x 3 = 2 x 2 + x 4 = 3 x 1 + x 2 + x 5 = 4 x 1 0,..., x 5 0 Sprowadzamy problem do postaci standardowej zastępujac maksymalizację funkcji g minimalizacja funkcji f (x 1, x 2, x 3, x 4, x 5 ) = 16x 1 10x 2 x 3. Inaczej można to zadanie zapisać w postaci f (x 1, x 2, x 3, x 4, x 5 ) = 16x 1 10x 2 x 3 min przy x x 2 2 Ax = b, x 0, gdzie A = , x = x x 4, B = 3 4 x 5 Mirosław Sobolewski (UW) Warszawa, / 12
5 (cd) Macierza rozszerzona układu jest: Widzimy stad, że wybierajac jako zmienne bazowe (zależne) x 3, x 4, x 5 mamy rozwiazanie ogólne postaci: x 3 = 2 x 1 U 1 : x 4 = 3 x 2 x 5 = 4 x 1 x 2 Poczatkowym wektorem bazowym dopuszczalnym jest (x 1, x 2, x 3, x 4, x 5 ) = (0, 0, 2, 3, 4), zbiór bazowy to {3, 4, 5}. Wyrażamy funkcję celu f przy pomocy zmiennych wolnych x 1, x 2 : f (x) = 16x 1 10x 2 x 3 = 16x 1 10x 2 (2 x 1 ) = 2 15x 1 10x 2. Dla poczatkowego rozwiazania bazowego dopuszczalnego wartość f wynosi 2 (bo x 1 = x 2 = 0). Czy możemy ja polepszyć (tj. pomniejszyć)? Tak, powiększajac x 1 albo x 2. Mirosław Sobolewski (UW) Warszawa, / 12
6 (cd) Wybieramy więc x 1 jako nowa zmienna bazowa (kierujemy się tym, że współczynnik przy x 1 w zapisie f jest najbardziej ujemny - to reguła heurystyczna(=intuicyjna), a nie ściśle uzasadniona). Mirosław Sobolewski (UW) Warszawa, / 12
7 (cd) Wybieramy więc x 1 jako nowa zmienna bazowa (kierujemy się tym, że współczynnik przy x 1 w zapisie f jest najbardziej ujemny - to reguła heurystyczna(=intuicyjna), a nie ściśle uzasadniona). Musimy również określić, która ze zmiennych x 3, x 4, x 5 przestanie być zmienna bazowa. Wybór jest zdeterminowany przez to, by nowe rozwiazanie bazowe było dopuszczalne (tzn. nie pojawiły się ujemne wartości zmiennych). Mirosław Sobolewski (UW) Warszawa, / 12
8 (cd) Wybieramy więc x 1 jako nowa zmienna bazowa (kierujemy się tym, że współczynnik przy x 1 w zapisie f jest najbardziej ujemny - to reguła heurystyczna(=intuicyjna), a nie ściśle uzasadniona). Musimy również określić, która ze zmiennych x 3, x 4, x 5 przestanie być zmienna bazowa. Wybór jest zdeterminowany przez to, by nowe rozwiazanie bazowe było dopuszczalne (tzn. nie pojawiły się ujemne wartości zmiennych). Reguła jest następujaca: spośród dotychczasowych zmiennych bazowych (=zależnych) wybieramy tę, w której dotychczasowym przedstawieniu jako funkcji zmiennych wolnych współczynnik a przy nowej zmiennej bazowej jest ujemny i iloraz wyrazu stałego b przez ten współczynnik, czyli b/a jest największy(=jego moduł jest najmniejszy). Mirosław Sobolewski (UW) Warszawa, / 12
9 (cd) Wybieramy więc x 1 jako nowa zmienna bazowa (kierujemy się tym, że współczynnik przy x 1 w zapisie f jest najbardziej ujemny - to reguła heurystyczna(=intuicyjna), a nie ściśle uzasadniona). Musimy również określić, która ze zmiennych x 3, x 4, x 5 przestanie być zmienna bazowa. Wybór jest zdeterminowany przez to, by nowe rozwiazanie bazowe było dopuszczalne (tzn. nie pojawiły się ujemne wartości zmiennych). Reguła jest następujaca: spośród dotychczasowych zmiennych bazowych (=zależnych) wybieramy tę, w której dotychczasowym przedstawieniu jako funkcji zmiennych wolnych współczynnik a przy nowej zmiennej bazowej jest ujemny i iloraz wyrazu stałego b przez ten współczynnik, czyli b/a jest największy(=jego moduł jest najmniejszy). Czyli: dla x 3 iloraz b/a = 2/ 1, zaś dla x 5 iloraz b/a = 4/ 1, wybieramy więc x 3 przestanie ona być zmienna bazowa (proszę sprawdzić, że wybór x 5 da rozwiazanie bazowe niedopuszczalne). Mirosław Sobolewski (UW) Warszawa, / 12
10 Uwaga: jeśli wszystkie współczynniki przy nowej zmiennej bazowej sa nieujemne, to oznacza to, że funkcja celu f jest na zbiorze rozwiazań dopuszczalnych nieograniczona z dołu osiaga dowolnie niskie ujemne rozwiazania. Nowy zbiór bazowy to {1, 4, 5} i odpowiadajace mu rozwiazanie ogólne to: x 1 = 2 x 3 U 2 : x 4 = 3 x 2 x 5 = 2 x 2 +x 3 Mirosław Sobolewski (UW) Warszawa, / 12
11 Uwaga: jeśli wszystkie współczynniki przy nowej zmiennej bazowej sa nieujemne, to oznacza to, że funkcja celu f jest na zbiorze rozwiazań dopuszczalnych nieograniczona z dołu osiaga dowolnie niskie ujemne rozwiazania. Nowy zbiór bazowy to {1, 4, 5} i odpowiadajace mu rozwiazanie ogólne to: x 1 = 2 x 3 U 2 : x 4 = 3 x 2 x 5 = 2 x 2 +x 3 Możemy zapisać funkcję celu f (x) = 2 15x 1 10x 2 = 2 15(2 x 3 ) 10x 2 = 32 10x x 3 Mamy dopuszczalne rozwiazanie bazowe (2, 0, 0, 3, 2), w którym f osiaga 32. Możemy zmniejszyć wartość f zwiększajac x 2. Będzie ono, więc nowa zmienna bazowa. Ponieważ 3/ 1 < 2/ 1, zatem x 5 przestanie być zmienna bazowa. Mirosław Sobolewski (UW) Warszawa, / 12
12 Nowy zbiór bazowy to {1, 2, 4}, zaś odpowiadajace mu rozwiazanie ogólne to x 1 = 2 x 3 U 3 : x 2 = 2 +x 3 x 5 x 4 = 1 x 3 +x 5 Możemy przedstawić f (x) = 32 10(2 x 5 + x 3 ) + 15x 3 = x x 5. Ponieważ w zbiorze rozwiazań dopuszczalnych x 3 0, x 5 0 zatem f osiaga wartość najmniejsza = 52 dla x 3 = x 5 = 0 czyli dla rozwiazania bazowego dopuszczalnego (2, 2, 0, 1, 0). Zatem rozwiazanie pierwotnego problemu to max g = min f = 52 Mirosław Sobolewski (UW) Warszawa, / 12
13 Znajdowanie poczatkowego wektora bazowego dopuszczalnego Mamy zbiór X opisany standardowo przez Ax = b, x = [x 1,..., x n ] 0, gdzie A M m n, b M m 1, b 0. Jak stwierdzić, że X jest niepusty, i jeśli tak jest jak znaleźć wektor bazowy dopuszczalny? Mirosław Sobolewski (UW) Warszawa, / 12
14 Znajdowanie poczatkowego wektora bazowego dopuszczalnego Mamy zbiór X opisany standardowo przez Ax = b, x = [x 1,..., x n ] 0, gdzie A M m n, b M m 1, b 0. Jak stwierdzić, że X jest niepusty, i jeśli tak jest jak znaleźć wektor bazowy dopuszczalny? Stosuje się tzw. metodę sztucznej bazy, wprowadzajac dodatkowe zmienne, y 1,..., y m, macierz współczynników A przedłużajac o macierz jednostkowa I m. Tzn. macierz układu dla n + m zmiennych ma teraz postać [A I m b] M m (n+m+1) (R), z macierza współczynników A = [A I m ] M m (n+m) oraz x = [x 1,..., x n, y 1,..., y m ],i rozwiazujemy problem y y n min przy warunkach A x = b, x 0. Ten problem ma zawsze rozwiazanie. Jeśli osiagamy min = 0 to X, w przeciwnym wypadku, tzn. min > 0 mamy X =. Mirosław Sobolewski (UW) Warszawa, / 12
15 Zbiór X R 4 opisany jest przez: 8x 1 + 3x 2 5x 3 + x 4 = 4 3x 1 + x 2 2x 3 x 4 = 1 x 1, x 2, x 3, x 4 0 Mirosław Sobolewski (UW) Warszawa, / 12
16 Zbiór X R 4 opisany jest przez: 8x 1 + 3x 2 5x 3 + x 4 = 4 3x 1 + x 2 2x 3 x 4 = 1 x 1, x 2, x 3, x 4 0 Wprowadzamy sztuczne zmienne y 1, y 2 i funkcję celu f (x 1,..., x 4, y 1, y 2 ) = y 1 + y 2 min przy warunkach 8x 1 + 3x 2 5x 3 + x 4 + y 1 = 4 3x 1 + x 2 2x 3 x 4 + y 2 = 1 x 1,..., x 4 0, y 1, y 2 0 Mirosław Sobolewski (UW) Warszawa, / 12
17 Zbiór X R 4 opisany jest przez: 8x 1 + 3x 2 5x 3 + x 4 = 4 3x 1 + x 2 2x 3 x 4 = 1 x 1, x 2, x 3, x 4 0 Wprowadzamy sztuczne zmienne y 1, y 2 i funkcję celu f (x 1,..., x 4, y 1, y 2 ) = y 1 + y 2 min przy warunkach 8x 1 + 3x 2 5x 3 + x 4 + y 1 = 4 3x 1 + x 2 2x 3 x 4 + y 2 = 1 x 1,..., x 4 0, y 1, y 2 0 y 1, y 2 sa poczatkowymi zmiennymi bazowymi (zależnymi) { y1 = 4 8x 1 3x 2 +5x 3 x 4 y 2 = 1 3x 1 x 2 +2x 3 +x 4 Mirosław Sobolewski (UW) Warszawa, / 12
18 Zbiór X R 4 opisany jest przez: 8x 1 + 3x 2 5x 3 + x 4 = 4 3x 1 + x 2 2x 3 x 4 = 1 x 1, x 2, x 3, x 4 0 Wprowadzamy sztuczne zmienne y 1, y 2 i funkcję celu f (x 1,..., x 4, y 1, y 2 ) = y 1 + y 2 min przy warunkach 8x 1 + 3x 2 5x 3 + x 4 + y 1 = 4 3x 1 + x 2 2x 3 x 4 + y 2 = 1 x 1,..., x 4 0, y 1, y 2 0 y 1, y 2 sa poczatkowymi zmiennymi bazowymi (zależnymi) { y1 = 4 8x 1 3x 2 +5x 3 x 4 y 2 = 1 3x 1 x 2 +2x 3 +x 4 Wyrażamy f przez zmienne niezależne: f = 5 11x 1 4x 2 + 7x 3. Mirosław Sobolewski (UW) Warszawa, / 12
19 możemy zmniejszyć f wybierajac x 2 jako nowa zmienna bazowa, natomiast y 2 przestanie być zmienna bazowa. Mirosław Sobolewski (UW) Warszawa, / 12
20 możemy zmniejszyć f wybierajac x 2 jako nowa zmienna bazowa, natomiast y 2 przestanie być zmienna bazowa. { x2 = 1 3x 1 +2x 3 +x 4 y 2 y 1 = 1 +x 1 x 3 4x 4 +3y 2 Mirosław Sobolewski (UW) Warszawa, / 12
21 możemy zmniejszyć f wybierajac x 2 jako nowa zmienna bazowa, natomiast y 2 przestanie być zmienna bazowa. { x2 = 1 3x 1 +2x 3 +x 4 y 2 y 1 = 1 +x 1 x 3 4x 4 +3y 2 Wyrażamy f przez nowe zmienne niezależne: f = 1 + x 1 x 3 4x 4 + 4y 2 Mirosław Sobolewski (UW) Warszawa, / 12
22 Jako nowa zmienna bazowa wprowadzamy x 3 natomiast y 1 staje się zmienna niebazowa (wolna): Mirosław Sobolewski (UW) Warszawa, / 12
23 Jako nowa zmienna bazowa wprowadzamy x 3 natomiast y 1 staje się zmienna niebazowa (wolna): { x2 = 3 x 1 +2x 3 7x 4 +2y 1 +5y 2 x 3 = 1 +x 1 4x 4 y 1 +3y 2 Mirosław Sobolewski (UW) Warszawa, / 12
24 Jako nowa zmienna bazowa wprowadzamy x 3 natomiast y 1 staje się zmienna niebazowa (wolna): { x2 = 3 x 1 +2x 3 7x 4 +2y 1 +5y 2 x 3 = 1 +x 1 4x 4 y 1 +3y 2 Wyrażamy f przez nowe zmienne niezależne: f = y 1 + y 2 Mirosław Sobolewski (UW) Warszawa, / 12
25 Jako nowa zmienna bazowa wprowadzamy x 3 natomiast y 1 staje się zmienna niebazowa (wolna): { x2 = 3 x 1 +2x 3 7x 4 +2y 1 +5y 2 x 3 = 1 +x 1 4x 4 y 1 +3y 2 Wyrażamy f przez nowe zmienne niezależne: f = y 1 + y 2 Otrzymaliśmy minf = 0, zatem mamy niepusty X i należy do niego dopuszczalny punkt bazowy (x 1, x 2, x 3, x 4 ) = (0, 3, 1, 0). Mirosław Sobolewski (UW) Warszawa, / 12
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Układy liniowo niezależne
Układy liniowo niezależne Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 3.wykład z algebry liniowej Warszawa, październik 2016 Mirosław Sobolewski (UW) Warszawa, październik 2016 1
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Teoretyczne podstawy programowania liniowego
Teoretyczne podstawy programowania liniowego Elementy algebry liniowej Plan Kombinacja liniowa Definicja Kombinacja liniowa wektorów (punktów) x 1, x 2,, x k R n to wektor x R n k taki, że x = i=1 λ i
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Badania Operacyjne Ćwiczenia nr 2 (Materiały)
Zbiór rozwiązań dopuszczalnych programu liniowego Zbiór rozwiązań dopuszczalnych programu linowego to taki zbiór, który spełnia warunki ograniczające (funkcyjne oraz brzegowe) programu liniowego. Przy
Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013
Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.1 Opis programów Do rozwiązania zadań programowania
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Badania operacyjne. te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze.
BADANIA OPERACYJNE Badania operacyjne Badania operacyjne są sztuką dawania złych odpowiedzi na te praktyczne pytania, na które inne metody dają odpowiedzi jeszcze gorsze. T. Sayty 2 Standardowe zadanie
Laboratorium Metod Optymalizacji
Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. wykład z algebry liniowej Warszawa, styczeń 2009
Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Definicja Niech V, W,
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23
Wykład 7 Informatyka Stosowana Magdalena Alama-Bućko 16 kwietnia 2018 Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 1 / 23 Programowanie liniowe Magdalena Alama-Bućko Wykład 7 16 kwietnia 2018 2 / 23
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w
Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Przestrzenie liniowe
Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie
Programowanie liniowe
Badania operacyjne Ćwiczenia 4 Programowanie liniowe Dualizm w programowaniu liniowym Plan zajęć Dualizm w programowaniu liniowym Projektowanie programu dualnego Postać programu dualnego Przykład 1 Rozwiązania
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Działania na przekształceniach liniowych i macierzach
Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Elementy modelowania matematycznego
Elementy modelowania matematycznego Programowanie liniowe. Metoda Simplex. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ ZADANIE LINIOWE Tortilla z ziemniaków i cebuli (4 porcje) 300
Wielokryteriowa optymalizacja liniowa
Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia
Algorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
Wykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0
METODA ANALITYCZNA Postać klasyczna: z = 5 x 1 + 6x 2 MAX 0,2 x 1 + 0,3x 2 < 18 0,6 x 1 + 0,6x 2 < 48 x 1, x 2 > 0 cx MAX Ax < b x > 0 Postać standardowa (kanoniczna): z = 5 x 1 + 6x 2 + 0x 3 + 0x 4 MAX
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
R n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
etody programowania całkowitoliczboweg
etody programowania całkowitoliczboweg Wyróżnia się trzy podejścia do rozwiazywania zagadnień programowania całkowitoliczbowego metody przegladu pośredniego (niebezpośredniego), m.in. metody podziału i
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Programowanie celowe #1
Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
( 1) ( ) 16 Warunki brzegowe [WB] Funkcja celu [FC] Ograniczenia [O] b i ( 2) ( ) ( ) 14. FC max. Kompletna postać bazowa
Standardowe zadanie PL () Należy zaplanować produkcję zakładu w pewnym tygodniu w taki sposób, aby osiągnięty zysk był maksymalny. akład może wytwarzać dwa wyroby: P i P. Ich produkcja jest limitowana
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa,listopad
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
Endomorfizmy liniowe
Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8
ALGEBRA LINIOWA Z GEOMETRIĄ, LISTA ZADAŃ NR 8 1. Sprawdzić, czy następujące podzbiory są podprzestrzeniami liniowymi przestrzeni R n (dla odpowiednich n) (a) {[u, v, 2u, 4v] ; u, v R} R 4, (b) {[u, v,
KADD Metoda najmniejszych kwadratów funkcje nieliniowe
Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji
Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013
Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy
Rozwiazywanie układów równań liniowych. Ax = b
Rozwiazywanie układów równań liniowych Ax = b 1 PLAN REFERATU: Warunki istnienia rozwiazań układu Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów - algorytm rekurencyjny Rozwiazanie układu
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Obliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Zad. 3: Układ równań liniowych
1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
Ekonometria - ćwiczenia 11
Ekonometria - ćwiczenia 11 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 21 grudnia 2012 Na poprzednich zajęciach zajmowaliśmy
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
(Dantzig G. B. (1963))
(Dantzig G.. (1963)) Uniwersalna metoda numeryczna dla rozwiązywania zadań PL. Ideą metody est uporządkowany przegląd skończone ilości rozwiązań bazowych układu ograniczeń, które możemy utożsamiać, w przypadku
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
KADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]
Spis treści 1 Metoda geometryczna... 2 1.1 Wstęp... 2 1.2 Przykładowe zadanie... 2 2 Metoda simpleks... 6 2.1 Wstęp... 6 2.2 Przykładowe zadanie... 6 1 Metoda geometryczna Anna Tomkowska 1 Metoda geometryczna