Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia: reprezentacje jednowymiarowe A, B A, np. taie dla tórych χ = 1 E dwuwymiarowe, F trójwymiarowe parzyste wzgl. inwersji lub σ h zna + nieparzyste - zna - ila przyładów 1. grupy cyliczne C n i S n grupy abelowe - h = liczbie las => wszystie rep. 1D liczba nieprzywiedlnych reprezentacji = h n n χ c = χ c = χ e = 1 n to muszą być to pierwiasti z liczby 1... n χ = c n e πim n M = 0, 1,,..., n-1; numeruje olejne reprezentacje... tworzenie tabeli charaterów
np. dla grupy C dwie lasy, h=, => dwie nreps. o wym. =1 lasy ---> ozn. reprezentacji e C A 1 1 B 1-1 jeśli wybierzemy oś obrotu jao oś Z, to funcja bazowa reprezentacji A nie może zależeć od, y; budując ją ze sładowych wetora X, możemy wybrać np.: φ A,y,z = z lub dowolna funcja sferycznie symetryczna grupa taich obrotów może dotyczyć zarówno uładu hamiltonianu o symetrii sferycznej ja i o symetrii osiowej... dla reprezentacji B : φ B,y,z = lub φ B,y,z = y lub dowolna funcja dla tórej C przeprowadza -> - jeśli to mają być funcje H, to muszą dodatowo być pomnożone przez niezmienniczy czynni zapewniający wadratową całowalność {np. φ B mogłoby być funcją wodorową p r, tóra jest ombinacją liniową p 111 i p 11-1, a p 111 ~ r e -r/a sinϑe iϕ, p 111 ~ r e -r/a sinϑe -iϕ, ale r sinϑcosϕ= } grupa C 3 3 lasy, h=3, => 3 nreps o wymiarze =1 C 3 E C 3 C 3 A 1 1 1 B 1 1 p p B 1 p p p = e πi/3 możliwe funcje bazowe jao sładowe wetora biegunowego X
A : z tzn. f A,y,z = z, B 1 : iy tzn. f A,y,z = iy, itd.; B : + iy rzeczywiście: po obrocie woół Z o π/3 -> cosπ/3 + y sinπ/3 -iy -> i sinπ/3 iy cosπ/3 co w rezultacie daje epiπ/3 iy epiπ/3 = epiπ/3 * iy. grupa D 3 lub izomorficzna do niej C 3v nie jest abelowa, h = 6, 3 lasy zatem wymiary reps. niereduowalnych: 1, 1, 1 + 1 + = 6 jedna z nreps 1D ma wszystie charatery = 1 A 1 z warunu ortogonalności charaterów musimy mieć dla A : χe=1, χc 3 =1, χu = -1, D 3 E C 3 3u A 1 1 1 1 A 1 1-1 E -1 0 charater χ e E =, natomiast pozostałe wyniają z warunów ortogonalności ćwiczenia funcje bazowe reprezentacji A 1 nie mogą zależeć liniowo od z u przenosiłoby wówczas z -> -z, możliwe są np: φ A1,y,z = z lub φ A1,y,z = + y dla A możemy mieć φ A,y,z = z 1 bazę E mogą stanowić φ B,y,z = i φb,y,z = y
zauważmy podobieństwo w postaci tych funcji to funcji wodorowych czy orbitali atomowych Reprezentacje grupy translacji grupa jest abelowa wszystie reprezentacje nieprzywiedlne są 1D zatem dla wetorów bazowych a 1, a, a 3, generatorów grupy mamy e a ϕ = λ ϕ i funcję bazową oznaczymy jao ϕ λ λ 1 λ 3 z unitarności reprezentacji wynia λ i = 1 dla translacji o dowolny wetor a i a = m + 1a1 + ma m3a3 m1 m m3 e a ϕλ 1λ λ = λ 31 1 λ λ3 ϕλ 1λλ 31 trója liczb λ i jednoznacznie definiuje reprezentację grupy; wprowadzając oznaczenie A6 λ i = ep -ia i możemy reprezentację numerować za pomocą wetora ; oznaczenie to nie jest jednoznaczne: wprowadzając pojęcie wetorów sieci odwrotnej:
b i [ a a ] π = Ω 0 i+ 1 i+ gdzie np. dla i= y, i+1=3 z, i+=1 a Ω 0 = a 1 [a a 3 ] mamy i zatem A7 wetory b = b i a j = πδ i i j e b a ij = 1 n + 1b1 + nb n3b3 tworzą sieć odwrotną o taiej samej grupie puntowej ja sieć prosta choć w ogólności w innym typie z A7 i A6 wynia, że są oreślone z doładnością do dowolnego wetora sieci odwrotnej tzn. jeśli = + b to ep-i a i =ep-ia i ep-in i π= ep-ia i co daje to samo λ i Strefa Brillouina omóra Wignera-Seitza w sieci odwrotnej obejmuje wszystie nierównoważne sobie wetory b, jest niezmiennicza wzgl. wszystich operacji grupy puntowej i ma obj. om. elementarnej
Reprezentacje grupy przestrzennej reprezentacje grupy przestrzennej G P można zbudować w oparciu o jednowymiarowe reprezentacje grupy translacji G T będącej podgrupą grupy G p weźmy dowolną reprezentację D grupy przestrzennej; niech dimd = s, a baza ϕ 1, ϕ,, ϕ s D - jest reduowalna ze względu na podgrupy translacji w G P tzn. jeśli operacje G P ograniczymy do translacji, to wszystie odpowiadające tym translacjom macierze z rep. D dadzą się zreduować do jednowymiarowych tzn.: jeśli olejne ϕ i wybierzemy obrócimy ta aby stały się jao bazy jednowymiarowe niereduowalnych reprezentacji grupy G T to macierz Dt a = De a będzie diagonalna; ażdy diagonalny element Dt a będzie postaci λ = ep -ia, a macierz Dt a ma wymiar s;
wśród s wetorów, nietóre mogą być identyczne, lub równoważne, tzn. różniące się o wetor sieci odwrotnej K zbudowany jao K = n 1b1 + nb + n3b3 def. gwiazda {GR} reprezentacji D to zbiór n różnych i n s pamiętamy, że cały czas mamy na myśli reprezentację grupy G P wszystie różne i tworzące gwiazdę, tworzą tzw. promienie gwiazdy tu jeszcze nie wiemy czy gwiazda jest symetryczna Tw. gwiazda reprezentacji jest niezmiennicza względem operacji grupy G P, tzn. = g = r {GR} albo inaczej mówiąc: jeśli w {GR} jest, to jest tam też ażdy = r przyłady gwiazd nieprzywiedlnych symbol g=r α+a rozumiemy jao r α, bo translacja o a odpowiada przejściu do równoważnego dowód: niech r α jest elementem G o translacji ułamowej α elemencie obrotowym r i ponieważ:
pamiętamy, że r a= t a r, oraz, że rt a = t r-1 a r translacje są przemienne, zatem: t a et α r = t α et a r = t α e r t r-1 a = t α r e t r-1 a w iloczynie salarnym.r -1 a, obrót na a to to samo co obrót przeciwny na, formalnie nie powinniśmy rysować razem i a bo należą do różnych przestrzeni, ale tu chodzi o ilustrację iloczynu salarnego niech e a ϕ = e ia ϕ tzn. jest to funcja bazy reprezentacji G P będąca funcją własną operatora translacji t a o wetor a, zatem, e a r α ϕ = r α e r 1 a ϕ = r α e ~ α ir 1 ϕ = e a ira a to dowodzi, że funcja ϕ = r ϕ jest funcją własną operatora translacji t a odpowiadającą wetorowi falowemu = r r α ϕ uwaga: wybraliśmy jedną z funcji bazowych reprezentacji D, odpowiadającą wetorowi z {GR}, dla translacji t a, i oazało się, że = r odpowiada tej samej translacji t a, zatem też musi należeć do {GR} bo właśnie rozpatrywaliśmy macierz Dt a zauważmy, że teraz operacji grupy G doonujemy na grupie wetorów z sieci odwrotnej biorąc jaiolwie wetor 1 z gwiazdy, możemy podziałać na niego wszystimi operacjami r, r 1 = j
jeśli zbiór j wyczerpuje całą gwiazdę reprezentacji D, to taa gwiazda nazywa się nieprzywiedlną jeśli zbiór j nie wyczerpuje całej gwiazdy, to jest ona przywiedlna; można rozłożyć ją na nieprzywiedlne, onstruując różne zbiory g i, o rozłącznych zespołach wetorów falowych j, taie rozłączne zbiory wetorów falowych tworzą oddzielne nieprzywiedlne gwiazdy reprezentacji D, {NGR} funcje { ϕ }, dla {NGR} tworzą bazy dla różnych nieprzywiedlnych gwiazd niereduowalnych reprezentacji grupy G P = transformują się między sobą pod wpływem operacji r є G p Grupa wetora falowego def. Podgrupa G, grupy G P, sładająca się z elementów nie zmieniających wetora falowego, lub przeprowadzających go w równoważne = + K, nazywa się grupą wetora falowego ila własności: w G istnieje niezmiennicza podgrupa translacji jeśli G = G P to gwiazda reprezentacji grupy G P słada się z jednego wetora przyłady: a wetor =0
b dla płasiej sieci wadratowej przyład gdy G <> G P tylo e, C, σ y stanowią G Mała reprezentacja - - to reprezentacja D grupy wetora falowego po co nam RGWF? - funcja Blocha: ψ = e ir u, funcje u powinny zostać wybrane jao bazy reprezentacji nieoniecznie całej grupy G P, ale GWF; podobnie w metodzie p - pytanie - ja wybrać funcje u n r dla onretnego... Tw. mała reprezentacja D, grupy wetora falowego jednoznacznie wyznacza reprezentację D grupy przestrzennej z nieprzywiedlną gwiazdą {} bez dowodu oczywiście: wymiar N wynosi: nieprzywiedlnej reprezentacji grupy przestrzennej N = s n s - dim D n - ilość promieni w gwieździe
Symetria w mechanice wantowej typ widma operatora zależy od symetrii tego operatora lasyfiacja stanów eletronowych np. hamiltonian dla eletronu w zewnętrznym potencjale V polu potencjalnym; np. periodycznym dla ryształu V z y m H + + + = E in - niezmienniczy względem dowolnej operacji grupy przestrzennej - obrotów i translacji, to symetria H wyznaczona jest przez symetrię V gdyż symetria V jest na ogół niższa niezmienniczość H względem operacji g G grupy symetrii hamiltonianu uładu fizycznego oznacza: X1 1 H g H = albo inaczej 1 1 ψ ψ ψ φ g D H g g H H g D = = a to oznacza: X g HD H g D = ale z X1 1 1 = g E g H ψ ψ
widać, że funcjom ψ, ψ g 1 odpowiada ta sama wartość własna E, działając operacjami Dg na dowolną funcją ψ j pozostajemy w zbiorze funcji odpowiadających E, zatem: funcje własne H odpowiadające zdegenerowanej wartości własnej H tworzą bazę reprezentacji D grupy symetrii G hamiltonianu one mogą być reduowalne lub nie ale ażdej reprezentacji nieprzywiedlnej powinna odpowiadać inna wartość własna energii za wyj. degeneracji tzw. przypadowej grupa symetrii H może być wyższa niż grupa symetrii V np. z powodu niezmienniczości wzgl. odwrócenia czasu za pomocą teorii reprezentacji można lasyfiować też widma częstości drgań cząstecze i ryształów znoszenie degeneracji pod wpływem zaburzenia niech H = H 0 + H 1 niech grupą symetrii H 0 jest G 0, a grupą symetrii H 1 jest G 1, będąca podgrupą G 0 tzn. H ma niższą symetrię od H 0 znając charatery nieprzywiedlnych reprezentacji G 0 i G 1 można ustalić ja zdegenerowane poziomy energetyczne H 0 rozszczepią się na poziomy H gdyż niereduowalna reprezentacja grupy G 0 może być reduowalna w podgrupie grupy G 0 - podobnie ja z podgrupą translacji w grupie przestrzennej G P jeśli zaburzenie jest małe i wielość rozszczepienia mała w porównaniu z odległością poziomów energetycznych H 0, to ażdy poziom H powstaje w wyniu rozszczepienia tylo jednego poziomu H 0 i poziomy się nie przecinają wtedy:
nieprzywiedlne reprezentacje grupy G 0 rozłada się na nieprzywiedlne reprezentacje grupy G 1, bo dana rep. G 0 może być przywiedlną rep. G 1 oczywiście może się zdarzyć, że rep. G 0 pozostanie nieprzywiedlna w G 1 - odpowiadający jej poziom H 0 - nie ulegnie rozszczepieniu rozładu danej D reprezentacji G 0 na nieprzywiedlne reprezentacje G 1 doonuje się w oparciu o charatery Dg dla tych g, tóre należą do G 1 przyłady Rozszczepienie poziomów atomowych w polu rystalicznym np. 5 rotnie zdegenerowany poziom atomowy o symetrii orbitalnej d funcje te { ϕ l,m } stanowią reprezentację D grupy obrotów H niezmienniczy ze wzgl. na operacje grupy obrotów - l=, dim reprezentacji jest =5 po umieszczeniu atomu, jao domieszi, w sieci ubicznej o symetrii sześciennej T d, poziom ten rozpada się na poziomy -rotnie i 3 rotnie zdegenerowany odpowiadające reprezentacjom E i F 1 grupy T d ; T d ma 4 elementy w 5-ciu lasach => 5 reprezentacji niereduowalnych o wymiarach: 1,1,,3,3 ; => to jest jedyny możliwy rozpad 5-ti na i 3! formalnie możliwy byłby też 1,1,3, ale z tabel charaterów i z analizy transformacji funcji { ϕ l,m } wynia, że jest to niemożliwe uwaga: o wielości rozszczepienia decyduje potencjał pola rystalicznego można je oszacować rachuniem zaburzeń dalej -> przy rozciągnięciu ryształu np. wzdłuż osi z, symetria dalej obniża się z T d do D d - D d izomorficzna z D 4 ma 8 elementów w 5-ciu lasach, to 5 rep.nrd. o wymiarach 1,1,1,1, i wówczas: E - rozłada się na dwie jednowymiarowe A 1 i B 1
a F 1 na jednowymiarową B i dwuwymiarową E,... dla przypomnienia D d jest podgrupą T d, tóre jest podgrupą O 3...