Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:"

Transkrypt

1 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu na sposób, w jaki konstrukcje te na ogół się wprowadza, można je dodatkowo podzielić na konstrukcje wewnętrzne i zewnętrzne. Uwaga 1.1. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: (1) G = H 1 H 2 oraz H 1 H 2 = {1}, (2) każdy element g G ma jednoznaczne przedstawienie w postaci gdzie h 1 H 1 oraz h 2 H 2. g = h 1 h 2, Dowód. (1) (2): Załóżmy, że G = H 1 H 2 oraz H 1 H 2 = {1}. Załóżmy, że dla pewnych h 1, h 1 H 1 oraz h 2, h 2 H 2 zachodzi h 1 h 2 = h 1h 2. Wówczas (h 1) 1 h 1 = h 2h 1 2 H 1 H 2 = {1}, więc h 1 = h 1 oraz h 2 = h 2. (2) (1): Załóżmy, że każdy element g G ma jednoznaczne przedstawienie postaci g = h 1 h 2, gdzie h 1 H 1, h 2 H 2. Wówczas oczywiście G = H 1 H 2. Załóżmy, że g H 1 H 2. Wówczas g = g 1 = 1 g. Zatem g = 1. Oznaczenie: Gdy (G, +) zapisana jest w notacji addytywnej, piszemy H 1 + H 2 zamiast H 1 H 2. Definicja 1.1. Niech (G, ) będzie grupą, H 1, H 2 < G. (1) G jest słabym iloczynem (sumą) wewnętrznym podgrup H 1 i H 2, gdy spełnia jeden (a więc wszystkie) warunki Uwagi 1.1. (2) G jest słabym iloczynem (sumą) półprostym wewnętrznym podgrup H 1 i H 2, gdy jest słabym iloczynem (sumą) wewnętrznym oraz H 1 G lub H 2 G. (3) G jest słabym iloczynem (sumą) prostym wewnętrznym podgrup H 1 i H 2, gdy jest słabym iloczynem (sumą) wewnętrznym oraz H 1 H 2 G. Przykłady: (1) Rozważmy grupę D(n). Niech Obr(n) oznacza grupę obrotów, a Odb(n) dowolną dwuelementową grupę generowaną przez odbicie. Wówczas D(n) = Obr(n) Odb(n) jest słabym iloczynem półprostym wewnętrznym, ale nie jest słabym iloczynem prostym wewnętrznym. (2) Rozważny grupę abelową (A, ). Każda podgrupa grupy abelowej jest normalna, a więc A jest słabym iloczynem wewnętrznym A jest słabym iloczynem półprostym wewnętrznym A jest słabym iloczynem prostym wewnętrznym. Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: (1) odwzorowanie φ : H 1 H 2 G dane wzorem φ(h 1, h 2 ) = h 1 h 2 jest izomorfizmem; (2) G = H 1 H 2, H 1 H 2 = {1} oraz h 1 H 1 h 2 H 2 (h 1 h 2 = h 2 h 1 ); (3) G jest słabym iloczynem prostym wewnętrznym podgrup H 1 i H 2. Dowód. (1) (2) : Ponieważ φ jest izomorfizmem, więc jest surjekcją, a zatem G = H 1 H 2. Ustalmy h 1 H 1, h 2 H 2. Wówczas: h 1 h 2 = φ(h 1, h 2 ) = ((φ(h 1, h 2 )) 1 ) 1 = (φ(h 1 1, h 1 2 )) 1 = (h 1 1 h 1 2 ) 1 = ((h 2 h 1 ) 1 ) 1 = h 2 h 1. Przypuśćmy, że istnieje 1 g H 1 H 2. Wówczas φ(1, g) = g = φ(g, 1), wbrew założeniu, że φ jest izomorfizmem, a więc injekcją. 1

2 2 (2) (3) : Wystarczy udowodnić, że H 1 H 2 G. Ustalmy g niech g = h 1 h 2 dla h 1 H 1, h 2 H 2. Ustalmy h H 1. Wówczas: ghg 1 = h 1 h 2 h(h 1 h 2 ) 1 = h 1 h 2 hh 1 2 h 1 1 = h 1 h 2 h 1 2 hh 1 1 = h 1 hh 1 1 H 1, a zatem gh 1 g 1 H 1. Podobnie pokazujemy, że H 2 G. (3) (1) : Ponieważ G jest słabym iloczynem prostym wewnętrznym, a więc w szczególności słabym iloczynem wewnętrznym, więc odwzorowanie φ jest dobrze określoną bijekcją. Ustalmy (h 1, h 2 ), (h 1, h 2) H 1 H 2. Wówczas: φ((h 1, h 2 ) (h 1, h 2)) = φ(h 1 h 1, h 2 h 2) = h 1 h 1h 2 h 2 = h 1 h 2 h 1h 2 = φ(h 1, h 2 )φ(h 1, h 2), a więc φ jest homomorfizmem. Definicja 1.2. Niech H 1, H 2 będą grupami. Grupę H 1 H 2 nazywamy iloczynem (sumą) prostym zewnętrznym grup H 1 i H 2. Oznaczenie: Gdy H 1 i H 2 zapisane są w notacji addytywnej, piszemy H 1 H 2 zamiast H 1 H 2. Ze względu na izomorfizm z Uwagi 1.2, będziemy na ogół mówić po prostu o iloczynach (sumach) prostych, bez rozróżniania między słabymi iloczynami (sumami) prostymi wewnętrznymi a iloczynami (sumami) prostymi zewnętrznymi. Opisane konstrukcje w naturalny sposób przenoszą się na dowolną skończoną liczbę grup. W ten sposób mówimy o iloczynach (sumach) prostych grup H 1,..., H n, które oznaczać będziemy przez H 1... H n, lub H 1... H n w notacji addytywnej. Konstrukcje te przenoszą się także na nieskończoną liczbę grup. Zobaczymy, że w tym przypadku słabe iloczyny (sumy) i iloczyny (sumy) na ogół różnią się od siebie. Definicja i uwaga 1.1. Niech { : i I} będzie rodziną (możliwie nieskończoną) grup, niech : f(i) } i I = {f : I i I będzie produktem kartezjańskim rodziny zbiorów { : i I}. Jeżeli f, g i I, to iloczyn f g definiujemy jako funkcję f g : I i I daną wzorem f g(i) = f(i)g(i). ( i I, ) jest grupą, którą nazywamy iloczynem prostym zewnętrznym lub, krótko, produktem grup. Ponadto definiujemy odwzorowania π i : i I wzorem π i (a) = a(i), dla i I. π i, i I, są dobrze określonymi epimorfizmami grup, które nazywamy epimorfizmami kanonicznymi. Dowód powyższej uwagi pozostawiamy czytelnikowi jako nietrudne ćwiczenie. Definicja i uwaga 1.2. Niech { : i I} będzie rodziną (możliwie nieskończoną) grup, niech : f(i) } i I = {f : I i I będzie produktem kartezjańskim rodziny zbiorów { : i I}. W zbiorze i I rozpatrzmy podzbiór : f(i) = 1 Gi dla prawie wszystkich i I}. i I w = {f i I

3 Iloczyn f g, dla f, g w i I definiujemy jak w grupie i I. ( w i I, ) jest grupą, którą nazywamy słabym iloczynem prostym zewnętrznym. W przypadku, gdy grupy, i I, są abelowe, piszemy na ogół i I i słaby iloczyn prosty zewnętrzny nazywamy koproduktem grup abelowych, a w przypadku, gdy, i I, są abelowe i zapisane w notacji addytywnej, piszemy na ogół i I i koprodukt grup abelowych nazywamy sumą grup abelowych. Ponadto definiujemy odwzorowania ι i : w ι i (a) = a, gdzie a(j) = i I wzorem { a, gdy j = i, 1 Gj, gdy j i, dla i I. ι i, i I, są dobrze określonymi monomorfizmami grup, które nazywamy monomorfizmami kanonicznymi. Dowód powyższej uwagi pozostawiamy czytelnikowi jako nietrudne ćwiczenie. Uwaga 1.3. Oczywiście w przypadku, gdy I jest zbiorem skończonym i I = w i I. Uzasadnia to terminologię przyjętą w Definicji 1.2. Odpowiednikiem Uwagi 1.1 dla przypadku nieskończonego jest: Uwaga 1.4. Niech (G, ) będzie grupą, niech {H i : i I} będzie rodziną (możliwie nieskończoną) podgrup normalnych grup G. Następujące warunki są równoważne: (1) G = w i I, (2) każdy element g G \ {1} ma jednoznaczne przedstawienie w postaci g = h i1 h i2... h in, gdzie i 1,..., i n są różnymi elementami zbioru I oraz h ik 1, k {1,..., n}. Dowód pozostawiamy jako ćwiczenie. Odpowiednikiem Uwagi 1.2 dla przypadku nieskończonego jest: Uwaga 1.5. Niech (G, ) będzie grupą, niech {H i : i I} będzie rodziną (możliwie nieskończoną) podgrup normalnych grup G. Wówczas, jeżeli (1) G = i I H i oraz (2) dla każdego k I, N k i I\{k} H i, to G = w i I H i. Dowód. Jeżeli a w i I H i, to wówczas a(i) = 1, dla prawie wszystkich i I. Niech zatem I 0 będzie skończonym zbiorem {i I : a(i) 1}. Wówczas i I 0 a(i) jest dobrze zdefiniowanym elementem grupy G, ponieważ dla a(i) N i oraz a(j) N j, j i, i, j I 0, zachodzi a(i)a(j) = a(j)a(i), jako że podgrupy H i, i I, są normalne. W rezultacie odwzorowanie φ : w i I H i G dane wzorem φ(a) = i I 0 a(i) jest dobrze określonym homomorfizmem. Ustalmy a G. Ponieważ podgrupy {N i : i I} generują grupę G, element a G można zapisać jako skończony iloczyn elementów z różnych podgrup N i. Ponadto, ponieważ podgrupy N i, i I, są normalne, 3

4 4 mnożenie elementów z różnych podgrup N i i N j, i j, jest przemienne, element a G możemy zapisać jako iloczyn a = i I 0 a i, dla pewnego skończonego podzbioru I 0 I. Tym samym i I 0 ι i (a i ) w i I N i oraz ( ) φ ι i (a i ) = φ ι i (a i ) = a i = a i I 0 i I 0 i I 0 i tym samym φ jest epimorfizmem. Ustalmy a ker φ i niech, jak poprzednio, I 0 = {i I : a(i) 1}. Powiedzmy, że I 0 = {i 1,..., i n }. Wówczas φ(a) = i I 0 = a(i 1 )... a(i n ) = 1, skąd w szczególności a(i 1 ) 1 = a(i 2 )... a(i n ) N i1 = {1}, i I 0 \{i 1 } a więc a(i 1 ) = 1. Powtarzając ten sam argument dla i 2,..., i n, otrzymujemy, że a = 1. Tym samym φ jest monomorfizmem. Powyższe twierdzenie można częściowo odwrócić: Uwaga 1.6. Niech { : i I} będzie rodziną (możliwie nieskończoną) grup. Wówczas: (1) w i I i I ; (2) ι i ( ) i I, dla każdego i I. Dowód pozostawiamy jako ćwiczenie. Przechodzimy teraz do dowodu dwóch najważniejszych twierdzeń tego wykładu podających własności uniwersalne produktów grup i grup abelowych oraz koproduktów grup abelowych. Twierdzenie 1.1. Niech { : i I} będzie rodziną grup (lub grup abelowych), H pewną grupą (lub grupą abelową), niech {φ i : H : i I} będzie rodziną homomorfizmów grup. Wówczas istnieje dokładnie jeden homomorfizm φ : H i I taki, że π i φ = φ i, dla i I. Innymi słowy, następujący diagram jest przemienny: i I φ H φ i Ponadto jeśli grupa (lub grupa abelowa) G ma powyższą własność, to wówczas G = i I. Dowód. Dowód przeprowadzimy dla grup, rozumowanie dla grup abelowych jest identyczne. Pokażemy najpierw istnienie stosownego homomorfizmu. W tym celu zdefiniujmy funkcję φ : H i I wzorem π i φ(a) = a, gdzie a(i) = φ i (a). Funkcja ta jest homomorfizmem, gdyż dla a, b H zachodzi a więc φ(ab) = φ(a)φ(b). ab(i) = φ i (ab) = φ i (a)φ i (b) = a(i)b(i),

5 Homomorfizm ten jest wyznaczony jednoznacznie, załóżmy bowiem, że φ : H i I jest innym homomorfizmem takim, że π i φ = φ i, dla i I. Natenczas, dla dowolnego a H: φ(a)(i) = π i (φ(a)) = φ i (a) = π i (φ (a)) = φ (a)(i), a więc φ(a) = φ (a), zatem φ = φ, wobec dowolności a H. Pozostaje sprawdzić, że jeżeli G jest grupą wraz z rodziną epimorfizmów {π i : G : i I} taką, że dla dowolnej grupy H i rodziny homomorfizmów {φ i : H : i I} istnieje dokładnie jeden homomorfizm φ : H G taki, że π i φ = φ i, to wówczas G = i I. Istotnie, załóżmy, że G jest taką właśnie grupą i zastosujmy powyższą własność biorąc w charakterze grupy H i rodziny {φ i : H : i I} produkt i I wraz z rodziną epimorfizmów kanonicznych. Istnieje zatem homomorfizm φ : i I G taki, że następujący diagram jest przemienny: i I G φ i G π i Na odwrót, korzystając z własności uniwersalnej produktu, biorąc tym razem w charakterze grupy H i rodziny {φ i : H : i I} grupę G wraz z rodziną {π i : G : i I} otrzymujemy istnienie homomorfizmu φ : G i I takiego, że diagram G φ π i. i I 5 π i π i jest przemienny. Łącząc te dwa diagramy w jeden otrzymujemy: φ φ G G π i π i skąd w szczególności φ φ : G G jest takim homomorfizmem, że π i (φ φ) = π i. Korzystając raz jeszcze z własności uniwersalnej grupy G zastosowanej do niej samej wraz z epimorfizmami {π i : G : i I} wiemy, że istnieje dokładnie jeden homomorfizm o tej własności, co φ φ. Z drugiej strony widzimy, że własność tę trywialnie spełnia homomorfizm identycznościowy id G : G G. Tym samym φ φ = id G. Podobnie pokazujemy, że także φ φ = id i I G, a zatem, w szczególności, φ jest bijekcją, a więc i i izomorfizmem. Twierdzenie 1.2. Niech { : i I} będzie rodziną grup abelowych, H pewną grupą abelową, niech {φ i : H : i I} będzie rodziną homomorfizmów grup. Wówczas istnieje dokładnie jeden homomorfizm φ : i I H taki, że φ ι i = φ i,

6 6 dla i I. Innymi słowy, następujący diagram jest przemienny: i I G φ i H ι i φ i Ponadto jeśli grupa abelowa G ma powyższą własność, to wówczas G = i I. Dowód. Pokażemy istnienie stosownego homomorfizmu. Dla ustalonego a i I tylko dla skończenie wielu indeksów i I a(i) 1 powiedzmy, że I 0 = {i I : a i 1} = {i 1,..., i r }. Zdefiniujmy zatem odwzorowanie φ : i I H wzorem { 1, gdy a = 1, φ(a) = φ i1 (a i1 )... φ ir (a ir ) = i I 0 φ i (a i ), gdy a 1. Korzstając z faktu, że H jest przemienna, bez trudu sprawdzamy, że φ jest homomorfizmem. Wprost z określenia φ wynika też, że φ ι = φ i. Podobnie jak w poprzednim dowodzie sprawdzamy, że φ jest wyznaczone jednoznacznie oraz że własność uniwersalna definiuje koprodukt z dokładnością do izomorfizmu. Uwaga 1.7. Czytelnik zechce podać przykład dwóch grup nieabelowych, których iloczyn kartezjański nie spełnia powyższej własności uniwersalnej.

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Definicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G,

Definicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G, Grupy rozwiązalne. Definicja Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G, G piq rg pi 1q, G pi 1q s, dla i P N nazywamy górnym ciągiem centralnym grupy

Bardziej szczegółowo

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe 14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech

Bardziej szczegółowo

Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.

Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu. 11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Zasada indukcji matematycznej

Zasada indukcji matematycznej Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach

Bardziej szczegółowo

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Podciała, podciała generowane przez zbiór, rozszerzenia ciał.

Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli

Bardziej szczegółowo

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.

im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu. 61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;

(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ; 10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory. 10.1. Homomorfizmy pierścieni, ideały pierścieni. Definicja 10.1. Niech P, R będą pierścieniami. (1) Odwzorowanie

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.

5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. 5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. Przeprowadzimy obecnie skróconą klasyfikację skończonych grup prostych. 5.1.

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian 9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Twierdzenie 5.1 Definicja i uwaga 5.1. relacjami zadana za pomocą zbioru generatorów i zbioru relacji kodem genetycz- nym

Twierdzenie 5.1 Definicja i uwaga 5.1. relacjami zadana za pomocą zbioru generatorów i zbioru relacji kodem genetycz- nym 5. Wykład 5: Generatory i relacje. Kod genetyczny grupy. Twierdzenie Nielsena-Schreiera. Głównym celem dzisiejszego wykładu jest następujący rezultat: Twierdzenie 5.1 (Nielsena-Schreiera). Podgrupa grupy

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. 12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Zadania o transferze

Zadania o transferze Maria Donten, 5.12.2007 Zadania o transferze 1. Oznaczenia, założenia i przypomnienia Przez M i M będziemy oznaczać rozmaitości gładkie, przy czym M nakrywa M. Przyjmujemy, że gładkie odwzorowanie p :

Bardziej szczegółowo

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1

Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016

Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016 Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u

Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

Wyk lad 4 Warstwy, dzielniki normalne

Wyk lad 4 Warstwy, dzielniki normalne Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

ZALICZENIE WYKŁADU: 30.I.2019

ZALICZENIE WYKŁADU: 30.I.2019 MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.

Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1. Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +

Bardziej szczegółowo

3 Abstrakcyjne kompleksy symplicjalne.

3 Abstrakcyjne kompleksy symplicjalne. 3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α

Bardziej szczegółowo

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. 1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

Uniwersytet w Białymstoku. Wykład monograficzny

Uniwersytet w Białymstoku. Wykład monograficzny Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

13. Cia la. Rozszerzenia cia l.

13. Cia la. Rozszerzenia cia l. 59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Φ(f) ={g 1,...,g n }, jeżeli f ma przedstawienie f = x j g j dla pewnych x i R \{0}.

Φ(f) ={g 1,...,g n }, jeżeli f ma przedstawienie f = x j g j dla pewnych x i R \{0}. 10. Wykład 10: Moduły wolne. Definicja 10.1. Niech R będzie pierścienie z jedynką. Lewy unitarny R-oduł M nazyway odułe wolny, gdy M = i I f i, gdzie f i = R, i I. Rodzinę {f i : i I} nazyway bazą (lub

Bardziej szczegółowo

Definicje- Algebra III

Definicje- Algebra III Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń

Bardziej szczegółowo

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie

Bardziej szczegółowo

Grupy. Rozdział 1. 1.1 Grupy, podgrupy, homomorfizmy. 1.1.1 Definicja i przykłady grup

Grupy. Rozdział 1. 1.1 Grupy, podgrupy, homomorfizmy. 1.1.1 Definicja i przykłady grup Rozdział 1 Grupy Ostatnie zmiany 24.10.2005 r. 1.1 Grupy, podgrupy, homomorfizmy Rozpoczniemy od przypomnienia podstawowych pojęć i faktów z teorii grup, występujących w kursowym uniwersyteckim wykładzie

Bardziej szczegółowo

Wykład 5. Ker(f) = {v V ; f(v) = 0}

Wykład 5. Ker(f) = {v V ; f(v) = 0} Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro

Bardziej szczegółowo

Logika matematyczna w informatyce

Logika matematyczna w informatyce Paweł Gładki Logika matematyczna w informatyce http://www.math.us.edu.pl/ pgladki/ Konsultacje: Piątek, 8:00-9:30 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Algebra. Jakub Maksymiuk. lato 2018/19

Algebra. Jakub Maksymiuk. lato 2018/19 Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z].

Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z]. 1. Wykład 1: Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym(lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

Algebry skończonego typu i formy kwadratowe

Algebry skończonego typu i formy kwadratowe Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

Całki niewłaściwe. Całki w granicach nieskończonych

Całki niewłaściwe. Całki w granicach nieskończonych Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo