Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
|
|
- Bogdan Dudek
- 6 lat temu
- Przeglądów:
Transkrypt
1 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu na sposób, w jaki konstrukcje te na ogół się wprowadza, można je dodatkowo podzielić na konstrukcje wewnętrzne i zewnętrzne. Uwaga 1.1. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: (1) G = H 1 H 2 oraz H 1 H 2 = {1}, (2) każdy element g G ma jednoznaczne przedstawienie w postaci gdzie h 1 H 1 oraz h 2 H 2. g = h 1 h 2, Dowód. (1) (2): Załóżmy, że G = H 1 H 2 oraz H 1 H 2 = {1}. Załóżmy, że dla pewnych h 1, h 1 H 1 oraz h 2, h 2 H 2 zachodzi h 1 h 2 = h 1h 2. Wówczas (h 1) 1 h 1 = h 2h 1 2 H 1 H 2 = {1}, więc h 1 = h 1 oraz h 2 = h 2. (2) (1): Załóżmy, że każdy element g G ma jednoznaczne przedstawienie postaci g = h 1 h 2, gdzie h 1 H 1, h 2 H 2. Wówczas oczywiście G = H 1 H 2. Załóżmy, że g H 1 H 2. Wówczas g = g 1 = 1 g. Zatem g = 1. Oznaczenie: Gdy (G, +) zapisana jest w notacji addytywnej, piszemy H 1 + H 2 zamiast H 1 H 2. Definicja 1.1. Niech (G, ) będzie grupą, H 1, H 2 < G. (1) G jest słabym iloczynem (sumą) wewnętrznym podgrup H 1 i H 2, gdy spełnia jeden (a więc wszystkie) warunki Uwagi 1.1. (2) G jest słabym iloczynem (sumą) półprostym wewnętrznym podgrup H 1 i H 2, gdy jest słabym iloczynem (sumą) wewnętrznym oraz H 1 G lub H 2 G. (3) G jest słabym iloczynem (sumą) prostym wewnętrznym podgrup H 1 i H 2, gdy jest słabym iloczynem (sumą) wewnętrznym oraz H 1 H 2 G. Przykłady: (1) Rozważmy grupę D(n). Niech Obr(n) oznacza grupę obrotów, a Odb(n) dowolną dwuelementową grupę generowaną przez odbicie. Wówczas D(n) = Obr(n) Odb(n) jest słabym iloczynem półprostym wewnętrznym, ale nie jest słabym iloczynem prostym wewnętrznym. (2) Rozważny grupę abelową (A, ). Każda podgrupa grupy abelowej jest normalna, a więc A jest słabym iloczynem wewnętrznym A jest słabym iloczynem półprostym wewnętrznym A jest słabym iloczynem prostym wewnętrznym. Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: (1) odwzorowanie φ : H 1 H 2 G dane wzorem φ(h 1, h 2 ) = h 1 h 2 jest izomorfizmem; (2) G = H 1 H 2, H 1 H 2 = {1} oraz h 1 H 1 h 2 H 2 (h 1 h 2 = h 2 h 1 ); (3) G jest słabym iloczynem prostym wewnętrznym podgrup H 1 i H 2. Dowód. (1) (2) : Ponieważ φ jest izomorfizmem, więc jest surjekcją, a zatem G = H 1 H 2. Ustalmy h 1 H 1, h 2 H 2. Wówczas: h 1 h 2 = φ(h 1, h 2 ) = ((φ(h 1, h 2 )) 1 ) 1 = (φ(h 1 1, h 1 2 )) 1 = (h 1 1 h 1 2 ) 1 = ((h 2 h 1 ) 1 ) 1 = h 2 h 1. Przypuśćmy, że istnieje 1 g H 1 H 2. Wówczas φ(1, g) = g = φ(g, 1), wbrew założeniu, że φ jest izomorfizmem, a więc injekcją. 1
2 2 (2) (3) : Wystarczy udowodnić, że H 1 H 2 G. Ustalmy g niech g = h 1 h 2 dla h 1 H 1, h 2 H 2. Ustalmy h H 1. Wówczas: ghg 1 = h 1 h 2 h(h 1 h 2 ) 1 = h 1 h 2 hh 1 2 h 1 1 = h 1 h 2 h 1 2 hh 1 1 = h 1 hh 1 1 H 1, a zatem gh 1 g 1 H 1. Podobnie pokazujemy, że H 2 G. (3) (1) : Ponieważ G jest słabym iloczynem prostym wewnętrznym, a więc w szczególności słabym iloczynem wewnętrznym, więc odwzorowanie φ jest dobrze określoną bijekcją. Ustalmy (h 1, h 2 ), (h 1, h 2) H 1 H 2. Wówczas: φ((h 1, h 2 ) (h 1, h 2)) = φ(h 1 h 1, h 2 h 2) = h 1 h 1h 2 h 2 = h 1 h 2 h 1h 2 = φ(h 1, h 2 )φ(h 1, h 2), a więc φ jest homomorfizmem. Definicja 1.2. Niech H 1, H 2 będą grupami. Grupę H 1 H 2 nazywamy iloczynem (sumą) prostym zewnętrznym grup H 1 i H 2. Oznaczenie: Gdy H 1 i H 2 zapisane są w notacji addytywnej, piszemy H 1 H 2 zamiast H 1 H 2. Ze względu na izomorfizm z Uwagi 1.2, będziemy na ogół mówić po prostu o iloczynach (sumach) prostych, bez rozróżniania między słabymi iloczynami (sumami) prostymi wewnętrznymi a iloczynami (sumami) prostymi zewnętrznymi. Opisane konstrukcje w naturalny sposób przenoszą się na dowolną skończoną liczbę grup. W ten sposób mówimy o iloczynach (sumach) prostych grup H 1,..., H n, które oznaczać będziemy przez H 1... H n, lub H 1... H n w notacji addytywnej. Konstrukcje te przenoszą się także na nieskończoną liczbę grup. Zobaczymy, że w tym przypadku słabe iloczyny (sumy) i iloczyny (sumy) na ogół różnią się od siebie. Definicja i uwaga 1.1. Niech { : i I} będzie rodziną (możliwie nieskończoną) grup, niech : f(i) } i I = {f : I i I będzie produktem kartezjańskim rodziny zbiorów { : i I}. Jeżeli f, g i I, to iloczyn f g definiujemy jako funkcję f g : I i I daną wzorem f g(i) = f(i)g(i). ( i I, ) jest grupą, którą nazywamy iloczynem prostym zewnętrznym lub, krótko, produktem grup. Ponadto definiujemy odwzorowania π i : i I wzorem π i (a) = a(i), dla i I. π i, i I, są dobrze określonymi epimorfizmami grup, które nazywamy epimorfizmami kanonicznymi. Dowód powyższej uwagi pozostawiamy czytelnikowi jako nietrudne ćwiczenie. Definicja i uwaga 1.2. Niech { : i I} będzie rodziną (możliwie nieskończoną) grup, niech : f(i) } i I = {f : I i I będzie produktem kartezjańskim rodziny zbiorów { : i I}. W zbiorze i I rozpatrzmy podzbiór : f(i) = 1 Gi dla prawie wszystkich i I}. i I w = {f i I
3 Iloczyn f g, dla f, g w i I definiujemy jak w grupie i I. ( w i I, ) jest grupą, którą nazywamy słabym iloczynem prostym zewnętrznym. W przypadku, gdy grupy, i I, są abelowe, piszemy na ogół i I i słaby iloczyn prosty zewnętrzny nazywamy koproduktem grup abelowych, a w przypadku, gdy, i I, są abelowe i zapisane w notacji addytywnej, piszemy na ogół i I i koprodukt grup abelowych nazywamy sumą grup abelowych. Ponadto definiujemy odwzorowania ι i : w ι i (a) = a, gdzie a(j) = i I wzorem { a, gdy j = i, 1 Gj, gdy j i, dla i I. ι i, i I, są dobrze określonymi monomorfizmami grup, które nazywamy monomorfizmami kanonicznymi. Dowód powyższej uwagi pozostawiamy czytelnikowi jako nietrudne ćwiczenie. Uwaga 1.3. Oczywiście w przypadku, gdy I jest zbiorem skończonym i I = w i I. Uzasadnia to terminologię przyjętą w Definicji 1.2. Odpowiednikiem Uwagi 1.1 dla przypadku nieskończonego jest: Uwaga 1.4. Niech (G, ) będzie grupą, niech {H i : i I} będzie rodziną (możliwie nieskończoną) podgrup normalnych grup G. Następujące warunki są równoważne: (1) G = w i I, (2) każdy element g G \ {1} ma jednoznaczne przedstawienie w postaci g = h i1 h i2... h in, gdzie i 1,..., i n są różnymi elementami zbioru I oraz h ik 1, k {1,..., n}. Dowód pozostawiamy jako ćwiczenie. Odpowiednikiem Uwagi 1.2 dla przypadku nieskończonego jest: Uwaga 1.5. Niech (G, ) będzie grupą, niech {H i : i I} będzie rodziną (możliwie nieskończoną) podgrup normalnych grup G. Wówczas, jeżeli (1) G = i I H i oraz (2) dla każdego k I, N k i I\{k} H i, to G = w i I H i. Dowód. Jeżeli a w i I H i, to wówczas a(i) = 1, dla prawie wszystkich i I. Niech zatem I 0 będzie skończonym zbiorem {i I : a(i) 1}. Wówczas i I 0 a(i) jest dobrze zdefiniowanym elementem grupy G, ponieważ dla a(i) N i oraz a(j) N j, j i, i, j I 0, zachodzi a(i)a(j) = a(j)a(i), jako że podgrupy H i, i I, są normalne. W rezultacie odwzorowanie φ : w i I H i G dane wzorem φ(a) = i I 0 a(i) jest dobrze określonym homomorfizmem. Ustalmy a G. Ponieważ podgrupy {N i : i I} generują grupę G, element a G można zapisać jako skończony iloczyn elementów z różnych podgrup N i. Ponadto, ponieważ podgrupy N i, i I, są normalne, 3
4 4 mnożenie elementów z różnych podgrup N i i N j, i j, jest przemienne, element a G możemy zapisać jako iloczyn a = i I 0 a i, dla pewnego skończonego podzbioru I 0 I. Tym samym i I 0 ι i (a i ) w i I N i oraz ( ) φ ι i (a i ) = φ ι i (a i ) = a i = a i I 0 i I 0 i I 0 i tym samym φ jest epimorfizmem. Ustalmy a ker φ i niech, jak poprzednio, I 0 = {i I : a(i) 1}. Powiedzmy, że I 0 = {i 1,..., i n }. Wówczas φ(a) = i I 0 = a(i 1 )... a(i n ) = 1, skąd w szczególności a(i 1 ) 1 = a(i 2 )... a(i n ) N i1 = {1}, i I 0 \{i 1 } a więc a(i 1 ) = 1. Powtarzając ten sam argument dla i 2,..., i n, otrzymujemy, że a = 1. Tym samym φ jest monomorfizmem. Powyższe twierdzenie można częściowo odwrócić: Uwaga 1.6. Niech { : i I} będzie rodziną (możliwie nieskończoną) grup. Wówczas: (1) w i I i I ; (2) ι i ( ) i I, dla każdego i I. Dowód pozostawiamy jako ćwiczenie. Przechodzimy teraz do dowodu dwóch najważniejszych twierdzeń tego wykładu podających własności uniwersalne produktów grup i grup abelowych oraz koproduktów grup abelowych. Twierdzenie 1.1. Niech { : i I} będzie rodziną grup (lub grup abelowych), H pewną grupą (lub grupą abelową), niech {φ i : H : i I} będzie rodziną homomorfizmów grup. Wówczas istnieje dokładnie jeden homomorfizm φ : H i I taki, że π i φ = φ i, dla i I. Innymi słowy, następujący diagram jest przemienny: i I φ H φ i Ponadto jeśli grupa (lub grupa abelowa) G ma powyższą własność, to wówczas G = i I. Dowód. Dowód przeprowadzimy dla grup, rozumowanie dla grup abelowych jest identyczne. Pokażemy najpierw istnienie stosownego homomorfizmu. W tym celu zdefiniujmy funkcję φ : H i I wzorem π i φ(a) = a, gdzie a(i) = φ i (a). Funkcja ta jest homomorfizmem, gdyż dla a, b H zachodzi a więc φ(ab) = φ(a)φ(b). ab(i) = φ i (ab) = φ i (a)φ i (b) = a(i)b(i),
5 Homomorfizm ten jest wyznaczony jednoznacznie, załóżmy bowiem, że φ : H i I jest innym homomorfizmem takim, że π i φ = φ i, dla i I. Natenczas, dla dowolnego a H: φ(a)(i) = π i (φ(a)) = φ i (a) = π i (φ (a)) = φ (a)(i), a więc φ(a) = φ (a), zatem φ = φ, wobec dowolności a H. Pozostaje sprawdzić, że jeżeli G jest grupą wraz z rodziną epimorfizmów {π i : G : i I} taką, że dla dowolnej grupy H i rodziny homomorfizmów {φ i : H : i I} istnieje dokładnie jeden homomorfizm φ : H G taki, że π i φ = φ i, to wówczas G = i I. Istotnie, załóżmy, że G jest taką właśnie grupą i zastosujmy powyższą własność biorąc w charakterze grupy H i rodziny {φ i : H : i I} produkt i I wraz z rodziną epimorfizmów kanonicznych. Istnieje zatem homomorfizm φ : i I G taki, że następujący diagram jest przemienny: i I G φ i G π i Na odwrót, korzystając z własności uniwersalnej produktu, biorąc tym razem w charakterze grupy H i rodziny {φ i : H : i I} grupę G wraz z rodziną {π i : G : i I} otrzymujemy istnienie homomorfizmu φ : G i I takiego, że diagram G φ π i. i I 5 π i π i jest przemienny. Łącząc te dwa diagramy w jeden otrzymujemy: φ φ G G π i π i skąd w szczególności φ φ : G G jest takim homomorfizmem, że π i (φ φ) = π i. Korzystając raz jeszcze z własności uniwersalnej grupy G zastosowanej do niej samej wraz z epimorfizmami {π i : G : i I} wiemy, że istnieje dokładnie jeden homomorfizm o tej własności, co φ φ. Z drugiej strony widzimy, że własność tę trywialnie spełnia homomorfizm identycznościowy id G : G G. Tym samym φ φ = id G. Podobnie pokazujemy, że także φ φ = id i I G, a zatem, w szczególności, φ jest bijekcją, a więc i i izomorfizmem. Twierdzenie 1.2. Niech { : i I} będzie rodziną grup abelowych, H pewną grupą abelową, niech {φ i : H : i I} będzie rodziną homomorfizmów grup. Wówczas istnieje dokładnie jeden homomorfizm φ : i I H taki, że φ ι i = φ i,
6 6 dla i I. Innymi słowy, następujący diagram jest przemienny: i I G φ i H ι i φ i Ponadto jeśli grupa abelowa G ma powyższą własność, to wówczas G = i I. Dowód. Pokażemy istnienie stosownego homomorfizmu. Dla ustalonego a i I tylko dla skończenie wielu indeksów i I a(i) 1 powiedzmy, że I 0 = {i I : a i 1} = {i 1,..., i r }. Zdefiniujmy zatem odwzorowanie φ : i I H wzorem { 1, gdy a = 1, φ(a) = φ i1 (a i1 )... φ ir (a ir ) = i I 0 φ i (a i ), gdy a 1. Korzstając z faktu, że H jest przemienna, bez trudu sprawdzamy, że φ jest homomorfizmem. Wprost z określenia φ wynika też, że φ ι = φ i. Podobnie jak w poprzednim dowodzie sprawdzamy, że φ jest wyznaczone jednoznacznie oraz że własność uniwersalna definiuje koprodukt z dokładnością do izomorfizmu. Uwaga 1.7. Czytelnik zechce podać przykład dwóch grup nieabelowych, których iloczyn kartezjański nie spełnia powyższej własności uniwersalnej.
... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1
4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy
Definicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G,
Grupy rozwiązalne. Definicja Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G, G piq rg pi 1q, G pi 1q s, dla i P N nazywamy górnym ciągiem centralnym grupy
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
Wniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.
11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,
Teoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Ćwiczenia 1 - Pojęcie grupy i rzędu elementu
Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Podciała, podciała generowane przez zbiór, rozszerzenia ciał.
Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli
im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.
61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,
1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy
1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,
(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;
10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory. 10.1. Homomorfizmy pierścieni, ideały pierścieni. Definicja 10.1. Niech P, R będą pierścieniami. (1) Odwzorowanie
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. Przeprowadzimy obecnie skróconą klasyfikację skończonych grup prostych. 5.1.
Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii
Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Twierdzenie 5.1 Definicja i uwaga 5.1. relacjami zadana za pomocą zbioru generatorów i zbioru relacji kodem genetycz- nym
5. Wykład 5: Generatory i relacje. Kod genetyczny grupy. Twierdzenie Nielsena-Schreiera. Głównym celem dzisiejszego wykładu jest następujący rezultat: Twierdzenie 5.1 (Nielsena-Schreiera). Podgrupa grupy
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.
12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.
Kombinacje liniowe wektorów.
Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Zadania o transferze
Maria Donten, 5.12.2007 Zadania o transferze 1. Oznaczenia, założenia i przypomnienia Przez M i M będziemy oznaczać rozmaitości gładkie, przy czym M nakrywa M. Przyjmujemy, że gładkie odwzorowanie p :
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy
Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
ZALICZENIE WYKŁADU: 30.I.2019
MATEMATYCZNE PODSTAWY KOGNITYWISTYKI ZALICZENIE WYKŁADU: 30.I.2019 KOGNITYWISTYKA UAM, 2018 2019 Imię i nazwisko:.......... POGROMCY PTAKÓW STYMFALIJSKICH 1. [2 punkty] Podaj definicję warunku łączności
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Algebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.
Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +
3 Abstrakcyjne kompleksy symplicjalne.
3 Abstrakcyjne kompleksy symplicjalne. Uwaga 3.1. Niech J będzie dowolnym zbiorem indeksów, niech R J = {(x α ) α J J α x α R} będzie produktem kartezjańskim J kopii R, niech E J = {(x α ) α J R J x α
- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.
1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Topologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Uniwersytet w Białymstoku. Wykład monograficzny
Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych
Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych Marcin Michalski 14.11.014 1 Wprowadzenie Jedną z intuicji na temat liczb rzeczywistych jest myślenie o nich jako liczbach,
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Φ(f) ={g 1,...,g n }, jeżeli f ma przedstawienie f = x j g j dla pewnych x i R \{0}.
10. Wykład 10: Moduły wolne. Definicja 10.1. Niech R będzie pierścienie z jedynką. Lewy unitarny R-oduł M nazyway odułe wolny, gdy M = i I f i, gdzie f i = R, i I. Rodzinę {f i : i I} nazyway bazą (lub
Definicje- Algebra III
Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń
Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie
Seria zadań z Algebry IIR nr 29 kwietnia 207 r Notacja: We wszystkich poniższych zadaniach K jest ciałem, V wektorow a nad K zaś jest przestrzeni a Zadanie Niechaj V = K 4 [t] Określmy podprzestrzenie
Grupy. Rozdział 1. 1.1 Grupy, podgrupy, homomorfizmy. 1.1.1 Definicja i przykłady grup
Rozdział 1 Grupy Ostatnie zmiany 24.10.2005 r. 1.1 Grupy, podgrupy, homomorfizmy Rozpoczniemy od przypomnienia podstawowych pojęć i faktów z teorii grup, występujących w kursowym uniwersyteckim wykładzie
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Logika matematyczna w informatyce
Paweł Gładki Logika matematyczna w informatyce http://www.math.us.edu.pl/ pgladki/ Konsultacje: Piątek, 8:00-9:30 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Algebra. Jakub Maksymiuk. lato 2018/19
Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z].
1. Wykład 1: Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym(lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY
ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)
Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
Wykłady... b i a i. i=1. m(d k ) inf
Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem
Prawdopodobieństwo i statystyka
Wykład V: Zmienne losowe i ich wartości oczekiwane 25 października 2017 Definicja zmiennej losowej Definicja Zmienne losowa to charakterystyka liczbowa wyniku eksperymentu losowego. Zmienne losowa na przestrzeni
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
Definicja odwzorowania ciągłego i niektóre przykłady
Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Algebry skończonego typu i formy kwadratowe
Algebry skończonego typu i formy kwadratowe na podstawie referatu Justyny Kosakowskiej 26 kwietnia oraz 10 i 17 maja 2001 Referat został opracowany w oparciu o prace Klausa Bongartza Criterion for finite
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Całki niewłaściwe. Całki w granicach nieskończonych
Całki niewłaściwe Całki w granicach nieskończonych Wiemy, co to jest w przypadku skończonego przedziału i funkcji ograniczonej. Okazuje się potrzebne uogólnienie tego pojęcia w różnych kierunkach (przedział
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Struktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j