Projekt matematyczny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Projekt matematyczny"

Transkrypt

1 Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32

2 Wielkie twierdzenie Fermata Równanie x n + y n = z n nie ma rozwiązań w niezerowych liczbach całkowitych x, y, z, gdy n N, n 3. Andrew Wiles (ur w Cambridge) dowód WTF w 1993 r.; uzupełnienie luk po dwóch latach pracy ostateczna wersja dowodu opublikowana w 1995 r. w Annals of Mathematics Nagroda Wolfa w 1996 r. odznaczenie Międzynarodowej Unii Matematycznej w 1998 r. w zastępstwie Medalu Fieldsa Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 2 / 32

3 Hipoteza Poincarégo Każda zwarta, jednospójna rozmaitość topologiczna bez brzegu jest homeomorficzna ze sferą trójwymiarową. Grigorij Perelman (ur w Leningradzie) dowód hipotezy opublikowany w Internecie w 2003 r.; zweryfikowany w 2006 r. magazyn Science naukowe wydarzenie roku 2006 odmowa przyjęcia Medalu Fieldsa w 2006 r. odmowa przyjęcia nagrody 1 mln $, przyznanej przez Instytut Matematyczny Claya Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 3 / 32

4 Ciągi arytmetyczne a liczby pierwsze Istnieją dowolnie długie ciągi arytmetyczne złożone z liczb pierwszych. dowód podany w 2004 r., opublikowany w 2008 r. w Annals of Mathematics Medal Fieldsa w 2006 r. dla Terence a Tao najdłuższy znany ciąg arytmetyczny liczb pierwszych ma 26 elementów; jego różnica wynosi 23, 681, , 092, 870 Ben Green (ur w Bristolu) Terence Tao (ur w Adelajdzie) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 4 / 32

5 Projekt matematyczny 1 Definicja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

6 Projekt matematyczny 1 Definicja 2 Identyfikacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

7 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

8 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste 4 Faktoryzacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

9 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste 4 Faktoryzacja 5 Reprezentacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

10 Projekt matematyczny 1 Definicja 2 Identyfikacja 3 Obiekty proste 4 Faktoryzacja 5 Reprezentacja 6 Analogia Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 5 / 32

11 Symetrie czworościanu

12 Symetrie czworościanu 4 k

13 Symetrie czworościanu 4 l k , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 6 / 32

14 Symetrie czworościanu 4 l k Liczba symetrii: = , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 7 / 32

15 Symetrie sześciokątnego dysku

16 Symetrie sześciokątnego dysku

17 Symetrie sześciokątnego dysku

18 180 60, 120, 180, 240, 300 Symetrie sześciokątnego dysku Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 8 / 32

19 Symetrie sześciokątnego dysku Liczba symetrii: = , 120, 180, 240, 300 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 9 / 32

20 Symetrie piramidy o podstawie dwunastokątnej Liczba symetrii: k 30, 0 k < 12 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 10 / 32

21 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji r: 4 l 4 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 11 / 32

22 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji s r: 4 l 1 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 12 / 32

23 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji s: 4 l 2 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 13 / 32

24 Brak przemienności między symetriami czworościanu r obrót o 120 wokół osi l s obrót o 180 wokół osi k Wynik zastosowania operacji r s: 2 l 2 l k k , , 240 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 14 / 32

25 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

26 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; wszystkie symetrie piramidy są przemienne, w odróżnieniu od symetrii czworościanu i dysku sześciokątnego; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

27 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; wszystkie symetrie piramidy są przemienne, w odróżnieniu od symetrii czworościanu i dysku sześciokątnego; istnieje tylko jedna symetria piramidy (obrót o 180 ), która złożona ze sobą jest identycznością. Dla czworościanu i dysku takich symetrii jest więcej. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

28 Symetrie czworościanu, dysku i piramidy Każda z trzech figur ma 12 symetrii, ale różnią się one istotnie: piramida ma tylko jedną oś symetrii; wszystkie symetrie piramidy są przemienne, w odróżnieniu od symetrii czworościanu i dysku sześciokątnego; istnieje tylko jedna symetria piramidy (obrót o 180 ), która złożona ze sobą jest identycznością. Dla czworościanu i dysku takich symetrii jest więcej. Wniosek: Miarą symetrii danej figury nie jest tylko liczba jej symetrii. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 15 / 32

29 Pojęcie grupy Definicja Grupą nazywamy strukturę (G, ), spełniającą warunki: działanie jest łączne, tzn. x (y z) = (x y) z dla wszelkich x, y, z G; istnieje element neutralny, tj. taki element e G, że x e = e x = x dla każdego x G; każdy element x G ma element odwrotny, tj. taki element x 1 G, że x x 1 = e = x 1 x. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 16 / 32

30 Przykłady grup Grupa diedralna D n Dla n 3 symbolem D n oznacza się grupę wszystkich symetrii własnych n-kąta foremnego. Ma ona dokładnie 2n elementów. Np. dla n = 6 to nic innego jak wspomniana grupa obrotów dysku sześciokątnego. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 17 / 32

31 Przykłady grup Grupa diedralna D n Dla n 3 symbolem D n oznacza się grupę wszystkich symetrii własnych n-kąta foremnego. Ma ona dokładnie 2n elementów. Np. dla n = 6 to nic innego jak wspomniana grupa obrotów dysku sześciokątnego. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 17 / 32

32 Przykłady grup Grupy liczbowe (R, +), (R +, ), (Q, +), (Q +, ), (Z, +) itd. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 18 / 32

33 Przykłady grup Grupy liczbowe (R, +), (R +, ), (Q, +), (Q +, ), (Z, +) itd. Grupy reszt modulo n Z n oznacza grupę możliwych reszt z dzielenia przez n, tj. zbiór {0, 1,..., n 1} z działaniem dodawania modulo n. Na przykład: Tabelka działania w grupie (Z 3, +) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 18 / 32

34 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

35 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Przykład: σ = ( ), τ = ( ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

36 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Przykład: σ = τσ = ( ( ) ), τ = ( ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

37 Przykłady grup Grupy permutacji S n Dla każdego n N symbol S n oznacza grupę permutacji zbioru {1, 2,..., n}, z działaniem składania permutacji. Grupa S n ma n! elementów. Przykład: σ = ( ), τ = ( ) τσ = ( ) ( ) = στ Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 19 / 32

38 Przykłady grup Grupy warkoczy B n Niech n N. Symbol B n oznacza zbiór wszystkich warkoczy, złożonych z n strun rozpiętych pomiędzy n punktami położonymi na dwóch równoległych płaszczyznach. Warkocze utożsamiamy homeomorficznie. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 20 / 32

39 Przykłady grup Grupy warkoczy B n Niech n N. Symbol B n oznacza zbiór wszystkich warkoczy, złożonych z n strun rozpiętych pomiędzy n punktami położonymi na dwóch równoległych płaszczyznach. Warkocze utożsamiamy homeomorficznie. Przykłady warkoczy z B 3 i B 4 Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 20 / 32

40 Przykłady grup Dodawanie warkoczy polega na naturalnym złożeniu: warkocz a warkocz ab warkocz B Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 21 / 32

41 Przykłady grup Branie elementu odwrotnego do danego warkocza polega na odbiciu symetrycznym względem dolnej płaszczyzny: warkocz abb warkocz bba = (abb) 1 warkocz abbbba = e (jedynka grupy B 3 ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 22 / 32

42 Izomorfizm grup Izometrie szachownicy: identyczność e, obrót r o kąt 180 wokół środka, symetrie q 1 i q 2 względem zaznaczonych diagonali Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 23 / 32

43 Izomorfizm grup Izometrie szachownicy: identyczność e, obrót r o kąt 180 wokół środka, symetrie q 1 i q 2 względem zaznaczonych diagonali e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 23 / 32

44 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

45 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Te dwie struktury są identyczne w sensie teorii grup. Definicja Grupy (G, ) i (H, ) nazywamy izomorficznymi, jeżeli istnieje takie wzajemnie jednoznaczne odwzorowanie f : G H, że f (x y) = f (x) f (y). Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

46 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Te dwie struktury są identyczne w sensie teorii grup. Definicja Grupy (G, ) i (H, ) nazywamy izomorficznymi, jeżeli istnieje takie wzajemnie jednoznaczne odwzorowanie f : G H, że f (x y) = f (x) f (y). Przykład: (R, +) (R +, ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

47 Izomorfizm grup Grupa izometrii szacownicy a grupa liczb {1, 3, 5, 7} z działaniem mnożenia modulo 8 e r q 1 q 2 e e r q 1 q 2 r r e q 2 q 1 q 1 q 1 q 2 e r q 2 q 1 q 2 r e Te dwie struktury są identyczne w sensie teorii grup. Definicja Grupy (G, ) i (H, ) nazywamy izomorficznymi, jeżeli istnieje takie wzajemnie jednoznaczne odwzorowanie f : G H, że f (x y) = f (x) f (y). Przykład: (R, +) (R +, ), (Q, +) (Q +, ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 24 / 32

48 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

49 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

50 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; grupa (Z, +), oraz wszystkie grupy (Z n, +), są generowane przez 1 element (przez jedynkę). Taką grupą jest na przykład grupa symetrii piramidy, która jest izomorficzna z (Z 12, +). Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

51 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; grupa (Z, +), oraz wszystkie grupy (Z n, +), są generowane przez 1 element (przez jedynkę). Taką grupą jest na przykład grupa symetrii piramidy, która jest izomorficzna z (Z 12, +). Które z tych grup są najprostszymi obiektami? Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

52 Obiekty proste w teorii grup każdy warkocz można wygenerować za pomocą najprostszych warkoczy typu a i A. Dokładniej mówiąc: grupa warkoczy B n daje się wygenerować za pomocą n 1 warkoczy prostych oraz warkoczy do nich odwrotnych ; grupy (R, +) nie da się wygenerować za pomocą skończenie wielu elementów; grupa (Z, +), oraz wszystkie grupy (Z n, +), są generowane przez 1 element (przez jedynkę). Taką grupą jest na przykład grupa symetrii piramidy, która jest izomorficzna z (Z 12, +). Które z tych grup są najprostszymi obiektami? Definicja Grupę, która jest generowana przez jeden element nazywamy grupą cykliczną. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 25 / 32

53 Podgrupa Jak można rozkładać grupę na czynniki proste (na grupy cykliczne)? dla grup diedralnych D 3 i D 6 mamy D 3 < D 6 (D 3 jest podgrupą grupy D 6 ); Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 26 / 32

54 Podgrupa Jak można rozkładać grupę na czynniki proste (na grupy cykliczne)? dla grup diedralnych D 3 i D 6 mamy D 3 < D 6 (D 3 jest podgrupą grupy D 6 ); Z 3 < Z 6 ; Q < R; Z < Q; Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 26 / 32

55 Faktoryzacja i reprezentacja 1 Definicja 2 Identyfikacja 3 Obiekty proste Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 27 / 32

56 Faktoryzacja i reprezentacja 1 Definicja 2 Identyfikacja 3 Obiekty proste Przechodzimy do omówienia (w kontekście teorii grup) dwóch najważniejszych punktów: 4 Faktoryzacja 5 Reprezentacja Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 27 / 32

57 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 28 / 32

58 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Przykład: Z 2 = {0, 1}, Z 2 Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} jest grupą 4-elementową, w której działamy następująco: (0, 0) + (0, 0) = (0, 0), (0, 1) + (1, 1) = (1, 0) itd. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 28 / 32

59 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Przykład: Z 2 = {0, 1}, Z 2 Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} jest grupą 4-elementową, w której działamy następująco: (0, 0) + (0, 0) = (0, 0), (0, 1) + (1, 1) = (1, 0) itd. Uwaga: Z 2 Z 2 Z 4. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 28 / 32

60 Faktoryzacja skończenie generowalnych grup abelowych Twierdzenie Frobeniusa & Stickelbergera, 1878 Każda skończenie generowalna grupa abelowa G ma rozkład: G Z n Z p k Z k p l, l gdzie n N 0, k 1,..., k l N, a p 1,..., p l są liczbami pierwszymi. Zastosowania: w informatyce (w przesyłaniu i kompresji danych); w mechanice kwantowej (do opisu symetrii cząstek elementarnych). Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 29 / 32

61 Reprezentacja grup skończonych Twierdzenie Cayleya, 1854 Jeżeli G jest grupą skończoną o n elementach, to G jest izomorficzna z pewną podgrupą grupy permutacji S n. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 30 / 32

62 Reprezentacja grup skończonych Twierdzenie Cayleya, 1854 Jeżeli G jest grupą skończoną o n elementach, to G jest izomorficzna z pewną podgrupą grupy permutacji S n. Grupy symetrii własnych dla pięciu brył platońskich: czworościan: A 4 (permutacje parzyste zbioru {1, 2, 3, 4}), sześcian: S 4, ośmiościan: S 4, dwunastościan: A 5, dwudziestościan: A 5. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 30 / 32

63 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

64 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

65 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

66 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

67 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, każda liczba zespolona w postaci z = e iϕ z, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

68 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, każda liczba zespolona w postaci z = e iϕ z, każdy porządny operator w postaci T = I P, gdzie I - izometria, P - rozciągnięcie, Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

69 Analogia Rozkład na czynniki pierwsze a teoria grup: potęgi liczb pierwszych grupy cykliczne, podzielność podgrupa, zasadnicze twierdzenie arytmetyki twierdzenie Frobeniusa-Stickelbergera Reprezentacje unitarne: każda liczba rzeczywista da się zapisać w postaci: x = ±1 x, każda liczba zespolona w postaci z = e iϕ z, każdy porządny operator w postaci T = I P, gdzie I - izometria, P - rozciągnięcie, grupy przekształceń układów kwantowych reprezentuje się jako porządne operatory. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 31 / 32

70 Analogia Matematyk to ktoś, kto dostrzega analogie między twierdzeniami, dobry matematyk analogie między dowodami, wybitny matematyk analogie między teoriami, zaś genialny matematyk analogie między analogiami. Stefan Banach ( ) Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 32 / 32

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2 Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.

Bardziej szczegółowo

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.

Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca. Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której

Bardziej szczegółowo

Symetria w fizyce materii

Symetria w fizyce materii Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa

Bardziej szczegółowo

Podstawowe pojęcia. Co w matematyce możemy nazwać. węzłem, a co. splotem?

Podstawowe pojęcia. Co w matematyce możemy nazwać. węzłem, a co. splotem? Magdalena Czarna Podstawowe pojęcia Co w matematyce możemy nazwać węzłem, a co splotem? Podstawowe pojęcia Węzeł to krzywa zamknięta (splątany okrąg) w przestrzeni 3-wymiarowej. W związku z tym węzłem

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Zadania z algebry liniowej - sem. I Struktury algebraiczne Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy

1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy 1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

Algebra. Jakub Maksymiuk. lato 2018/19

Algebra. Jakub Maksymiuk. lato 2018/19 Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem

Bardziej szczegółowo

Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z].

Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z]. 1. Wykład 1: Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym(lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Ciała skończone. 1. Ciała: podstawy

Ciała skończone. 1. Ciała: podstawy Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak

Bardziej szczegółowo

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)

Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y) Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,

Bardziej szczegółowo

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same

macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same 1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,

Bardziej szczegółowo

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu

Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii C n oś symetrii n-krotna (oś główna - oś o obrót wokół osi symetrii o kąt równy 360 0 /n najwyższej krotności) σ płaszczyzna symetrii

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Grupa klas odwzorowań powierzchni

Grupa klas odwzorowań powierzchni Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań

Bardziej szczegółowo

Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): -

Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Sylabus modułu: Wstęp do algebry i teorii liczb (03-M01N-WATL) Nazwa wariantu modułu (opcjonalnie): - 1. Informacje ogólne koordynator

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów 3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda

Bardziej szczegółowo

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.

Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi

Bardziej szczegółowo

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle

Bardziej szczegółowo

Kodowanie węzłów Warkocze Twierdzenie Aleksandra. Dominika Stelmach gr. 10B2

Kodowanie węzłów Warkocze Twierdzenie Aleksandra. Dominika Stelmach gr. 10B2 Kodowanie węzłów Warkocze Twierdzenie Aleksandra Dominika Stelmach gr. 10B2 Teoria węzłów jest rzadkim przykładem dziedziny matematycznej, która współcześnie jest bardzo modna i intensywnie rozwijana.

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

DB Algebra liniowa semestr zimowy 2018

DB Algebra liniowa semestr zimowy 2018 DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d),

(4) W zbiorze R R definiujemy działania i wzorami. (a, b) (c, d) =(a + c, b + d), Zestaw zadań 2: Ciało liczb zespolonych Układy równań liniowych () Ile działań można określić na zbiorze n-elementowym? Ile z nich to działania przemienne? (2) Zbadaj własności działania różnicy symetrycznej

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne: 1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie piątej

Wymagania edukacyjne z matematyki w klasie piątej Wymagania edukacyjne z matematyki w klasie piątej Klasa V Wymagania Wymagania ponad Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM. DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 6. Znajomość podstaw logiki, teorii mnogości i algebry liniowej.

KARTA KURSU. Kod Punktacja ECTS* 6. Znajomość podstaw logiki, teorii mnogości i algebry liniowej. KARTA KURSU Nazwa Nazwa w j. ang. Algebra abstrakcyjna Abstract algebra Kod Punktacja ECTS* 6 Koordynator Prof. dr hab. Kamil Rusek Zespół dydaktyczny: Dr Antoni Chronowski Opis kursu (cele kształcenia)

Bardziej szczegółowo

5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.

5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. 5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. Przeprowadzimy obecnie skróconą klasyfikację skończonych grup prostych. 5.1.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

Topologia Algebraiczna 2 Zadania egzaminacyjne

Topologia Algebraiczna 2 Zadania egzaminacyjne Topologia Algebraiczna 2 Zadania egzaminacyjne Agnieszka Bojanowska, Stefan Jackowski 9 czerwca 2013 1 Kompleksy łańcuchowe Zad. 1. Niech I będzie odcinkiem w kategorii kompleksów łańcuchowych, czyli kompleksem

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego

reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za

Bardziej szczegółowo

Julia Radwan-Pragłowska gr. 10B2. Elementy teorii węzłów

Julia Radwan-Pragłowska gr. 10B2. Elementy teorii węzłów Julia Radwan-Pragłowska gr. 10B2 Elementy teorii węzłów Plan prezentacji 1. Wprowadzenie Niezmiennik Wielomian Wielomian wielomian węzła Warkocz Grupa warkocza Wielomian Laurenta 2. Niezmienniki homologiczne

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH

BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH Adam Doliwa doliwa@matman.uwm.edu.pl Instytut Matematyczny Polskiej Akademii Nauk (Warszawa) Uniwersytet Warmińsko-Mazurski (Olsztyn) SPOTKANIA Z MATEMATYK A Olsztyn,

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna:

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: Ewa Koralewska LP... OGÓLNA PODSTA- WA PROGRA MOWA b c PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Liczby.

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika

Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Instytut Matematyczny PAN Konwersatorium dla doktorantów Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Joanna Jaszuńska IM PAN Warszawa, 10 listopada 2006 Twierdzenie Banacha-Tarskiego z punktu

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Klasa V Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo

MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017

MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 Nr z wniosku ID: 3313 Tytuł projektu edukacyjnego: Jakie bryły przestrzenne spotykamy na

Bardziej szczegółowo

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe

14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe 14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011 1 GEOMETRIA ANALITYCZNA 1 Wydział Fizyki Algebra liniowa z geometria - zadania Rok akademicki 2010/2011 Agata Pilitowska i Zbigniew Dudek 1 Geometria analityczna 1.1 Punkty i wektory 1. Sprawdzić, czy

Bardziej szczegółowo

Grupy i matematyka szkolna

Grupy i matematyka szkolna Jest to tekst związany z odczytem wygłoszonym na XLVIII Szkole Matematyki Poglądowej, Skojarzenia i analogie, Otwock Śródborów, styczeń 01. Grupy i matematyka szkolna Kamila MURASZKOWSKA, Edmund PUCZYŁOWSKI,

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra

Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Algebra Wymagania egzaminacyjne z matematyki na studia w Akademii Świętokrzyskiej im. J. Kochanowskiego w Kielcach (wszystkie kierunki) Egzamin wstępny z matematyki na kierunek Matematyka będzie przeprowadzony

Bardziej szczegółowo

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16

2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16 DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Wyk lad 2 Podgrupa grupy

Wyk lad 2 Podgrupa grupy Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO

MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO 2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.

Bardziej szczegółowo

1. Informacje ogólne. 2. Opis zajęć dydaktycznych i pracy studenta. wykład

1. Informacje ogólne. 2. Opis zajęć dydaktycznych i pracy studenta. wykład Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do algebry i teorii liczb (03-MO1S-12-WATL) Nazwa wariantu modułu (opcjonalnie):

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i

= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i 15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA V

Wymagania na poszczególne oceny szkolne KLASA V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie

Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie Wymagania edukacyjne dla klasy pierwszej Matematyka na czasie Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program

Bardziej szczegółowo