4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie A i oznczmy symolem AB. B AB A definiujemy nstępująco: Wektory AB i BA to nie te sme wektory chociż AB i BA to ten sm odcinek. Współrzędne wektor zczepionego AB AB = [(x B ; y B ; z B ) (x A ; y A ; z A )] = [x B x A ; y B y A ; z B z A ] Gdy punktem początkowym wektor zczepionego jest O (0; 0; 0) to współrzędne wektor OB są identyczne ze współrzędnymi punktu B. 4.1
Przykłd: Wyznczyć współrzędne wektor zczepionego w punkcie A(; -1; 3) o końcu w punkcie B(4; 5; -1) Rozwiąznie: Otrzymujemy AB = [4 - ; 5 (-1); -1 3] = [; 6; -4]. Po dokonniu odejmowń pozostją jko współrzędne wektor trzy liczy. Sytucj w której znmy tylko współrzędne wektor nie opisuje ztem wektor zczepionego. Przykłd: Dne są punkty A (0; 0; 0) B (1; ; -1) C (1; 1; 1) i D (; 3; 0). Oliczyć współrzędne wektorów zczepionych AB i CD. Rozwiąznie: AB = [1 0; 0; -1 0] = [1; ; -1]; CD = [ 1; 3 1; 0 1] = [1; ; -1]. Wektory AB i CD mją więc tkie sme współrzędne. Wektor swoodny jest to ziór nieskończenie wielu wektorów zczepionych o tkich smych współrzędnych (reprezentntów dnego wektor swoodnego). W dlszych rozwżnich zrówno wektory zczepione jk i swoodne ędziemy krótko nzywć wektormi. 4.
4.. Współrzędne krtezjńskie wektor Z z Współrzędnymi krtezjńskimi x O y α O x X Y prostokątnymi wektor w przyjętym ukłdzie współrzędnych OXYZ ozncznymi przez x y z nzywmy współrzędne tego wektor n kolejnych osich ukłdu utworzone przez umieszczenie początku wektor w początku ukłdu współrzędnych. Rzutując zczepiony w początku ukłdu współrzędnych wektor ędący reprezentntem wektor swoodnego n osie ukłdu współrzędnych otrzymujemy wzory: x = cos α y = cos β z = cos γ gdzie α β γ są to kąty jkie tworzy wektor z osimi OX OY OZ. Licz we wzorch (6.) to długość wektor. Współrzędne wektor możn więc zpisć w postci = [ x ; y ; z ] = [ cos α ; cos β ; cos γ] Przykłd: Dne są kąty kierunkowe wektor o długości =5:α =π/6 β = π/3 λ = π/. Oliczyć współrzędne wektor. 4.3
Rozwiąznie: x = cos α = 5 cos π/6 = 5 cos 30 = 5 3 = 433 y = cos β = 5 cos π/3 = 5 cos 60 = 5 05 = 50 z = cos γ = 5 cos π/ = 5 cos 90 = 5 0 = 0 4.3. Długość wektor. Wersory Jeśli = [ x ; y ; z ] to długość wektor oznczną lu (ez strzłki) oliczmy ze wzoru x y = = + + z Długość wektor AB oznczmy AB lu po prostu AB AB = AB = ( xb x A ) + ( y B y A ) + ( z B z A ) Przykłd: Oliczyć długość wektor o początku w punkcie A (; -1; 3) i końcu w punkcie B (4; ; -1). Rozwiąznie: AB = (4 ) + ( (-1)) + (-1 3) = 4 + 9 + 16 = 9 Stąd AB = AB = 9 5385 Wektory o długości równej 1 (wektory jednostkowe) nzywmy wersormi. 4.4
Dl kżdego wektor (oprócz wektor zerowego) możn zudowć odpowidjący mu wersor. Jeżeli = [ x ; y ; z ] to wektor o współrzędnych równych x y z ; dl kosinusów kierunkowych wektor mmy związek: cos α + cos β + cos γ = 1 ; m długość 1. Stąd ) Zpis: ) Zpis: Dw wektory i są zgodnie równoległe gdy współrzędne jednego z tych wektorów możn otrzymć ze współrzędnych drugiego mnożąc je przez liczę dodtnią. Gdy t licz musi yć ujemn mmy wektory przeciwnie równoległe Wersorem niezerowego wektor = [ x y z ] oznczonym e nzywmy wektor e x = y z = [ cos α cos β cos γ ] Szczególnymi wersormi są wersory osi ukłdu współrzędnych.. oś OZ wersor osi OX: i = [1; 0; 0] k wersor osi OY: j = [0; 1; 0] j wersor osi OZ: k = [0; 0; 1] i oś OY oś OX Rys. 6.5. Wersory osi prostokątnego ukłdu współrzędnych. 4.5
4.4. Dziłni n wektorch Wprowdzimy nstępujące dziłni n wektorch: - dodwnie wektorów (wynik jest wektorem) - mnożenie wektor przez liczę(wynik jest wektorem) - mnożenie sklrne wektorów (wynik jest sklrem tzn. liczą) - mnożenie wektorowe wektorów (tylko w R 3 ; wynik jest wektorem). Sumą wektorów = [ x ; y ; z ] orz = [ x ; y ; z ] jest wektor + = [ x + x ; y + y ; z + z ] + Przykłd 6.7: Oliczyć sumę wektorów: = [3; -; 5] = [-1; 4; -7] c = [-4; -1; ] Rozwiąznie: + + c = [3 1 4; - + 4 1; 5 7 + ] = [-; 1; 0] Iloczynem różnej od zer liczy λ R i niezerowego wektor nzywmy wektor λ = [λ x ; λ y ; λ z ] Jest to wektor o długości λ zgodnie równoległy z wektorem gdy λ > 0 przeciwnie równoległy gdy λ < 0. 4.6
Sum iloczynów wektorów i licz nosi nzwę komincji liniowej wektorów i jest oczywiście wektorem: i = 1... n. n i= 1 α ii = α11 + α +... + α n n ; αi R Dw liniowo zleżne wektory i (dl których istnieje równ wektorowi zerowemu komincj liniow o współczynnikch różnych od zer tzn. istnieją λ 1 i λ tkie że λ + λ 0 nzywmy współliniowymi. ) 1 = Przykłd: Wektory = [4; -6; 5] i = [-; 3; -5] są liniowo zleżne gdyż. Możn stąd wyliczyć że = - czyli są one 1 + ( ) = 0 zgodnie równoległe. Poniewż są to wektory swoodne więc możn wyrć reprezentnt kżdego z nich zczepionego np. w punkcie O (0; 0; 0). Wówczs wektory te leżą jeden n drugim przy czym wektor jest dw rzy dłuższy od wektor. Iloczynem sklrnym dwóch niezerowych wektorów i ozncznym nstępująco: nzywmy liczę określoną = x x + y y + z z 4.7
Ioczyn sklrny niezerowego wektor przez sieie dje wynik równy kwdrtowi długości tego wektor: = x x + y y + z z = czyli = = Tliczk mnożeni sklrnego wersorów osi: i j k i 1 0 0 j 0 1 0 k 0 0 1 Przykłd: Oliczyć iloczyn sklrny wektorów = [; 3; -1] i = [-1; 3; ]. Rozwiąznie: = (-1) + 3 3 + (-1) = - + 9 = 5 Kątem niezerowych wektorów ( ) i ozncznym nzywmy kąt jki tworzy jeden z tych wektorów z osią zgodnie równoległą do drugiego z wektorów. Wprowdzimy terz wzór n kosinus kąt pomiędzy wektormi i. Z rysunku widć że + c = skąd ( ) c c = lo c c = ( ) ( ) skąd mmy c = - + Z tw. kosinusów mmy: c = + cos ( ) Stąd = cos ( ) 4.8
lu cos( ) = = x x + yy + z z Wrunek prostopdłości niezerowych wektorów: ( 0 0 ) ( = 0) W przypdku wektorów w przestrzeni wektorowej n-wymirowej mówimy o ortogonlności: dw niezerowe wektory są ortogonlne gdy ich iloczyn sklrny jest równy zero. c = k i j Iloczynem wektorowym wektorów i w trójwymirowej przestrzeni wektorowej ozncznym nzywmy trzeci wektor c = mjący nstępujące cechy: 1. c = c = sin ( ). c i c 3. trójk wektorów i c zczepionych w tym smym punkcie jest ustwion w tkiej smej kolejności jk wersory osi i j k (wektory i c tworzą nlogicznie jk wersory osi tk zwną prwoskrętną trójkę wektorów). 4.9
Dl wersorów osi: j i = -k k j = -i i j -k lu po oróceniu -k o kąt 180 i j k j -i lu po oróceniu -i o kąt 90 j k k i k = -j -j i Tliczk mnożeni wektorowego i j k i 0 k -j j -k 0 i k j -i 0 Włsności iloczynu wektorowego. Włsności iloczynu wektorowego: 1. = (ntyprzemienność). ( + c ) = + c (rozdzielność względem dodwni) 3. ( λ ) = λ ( ) dl dowolnego λ R 4. ( 0 0 ) ( = 0 ) Przykłd Oliczyć iloczyn wektorowy wektorów = [; 3; -1] i = [-1; 3; ]. 4.10
Rozwiąznie: Mmy = i + 3j k orz = -i + 3j +k = ( i + 3 j k ) ( + 3 j 3 j + 3 j k k ( i + 3 j + k ) = i ( i ) k 3 j k k = + i 3 j + i k + 3 j ( i ) + = i i + 6i j + 4i k 3 j i + 9 j j + 6 j k + k i 3k j k k = 6k + 4( j ) 3( k ) + 6i + j 3( i ) = i tu mógy yć wynik le przeksztłcimy to wyrżenie do postci nstępującej: i ) = = i (3 3 ( 1)) j ( ( 1) ( 1)) + k ( 3 ( 1) 3) = i j k = 3 1 współrzędne wektor 1 3 współrzędne wektor Stąd i j k = 3 1 9i 3j + 9k = [9 3 9] 1 3 Uogólnijąc dl wektorów = [ x ; y ; z ] i = [ x ; y ; z ]: i j k = x y z x y z PAMIĘTAJMY: = 5 licz = [9 3 9] wektor 4.11
Przykłd: Oliczyć iloczyn wektorowy wektorów = [; 3; -1] i = [-4; -6; ]. Rozwiąznie: i j k 3 1 1 3 = 3 1 = i j + k = 6 4 4 6 4 6 0. Wektory i są równoległe. Wzór n sin kąt między wektormi: sin ( ) = = 1 i x x j y y k z z ) 4.5. Rchunek wektorowy podsumownie Wprowdziliśmy dw podstwowe rodzje wektorów: wektor zczepiony i wektor swoodny. Dl kżdego wektor określone zostły: długość (nzywn tkże modułem) tk smo jk długość odcink kierunek od punktu początkowego do końcowego tkże zwrot czyli zgodn lu przeciwn równoległość w stosunku do drugiego wektor lu równoległej osi. 4.1
Położenie kżdego wektor względem osi ukłdu współrzędnych możn określić przy pomocy kątów kierunkowych lu kosinusów kierunkowych. Wektor o długości jednostkowej otrzymł nzwę wersor. Wersory osi ukłdu współrzędnych oznczone zostły litermi i j k. Tworzą one zę przestrzeni wektorowej trójwymirowej. Wprowdzone zostły dziłni n wektorch: - dodwnie wektorów (wynik jest wektorem) zpisywne: + ; - mnożenie wektor przez liczę (wynik jest wektorem) zpisywne ez żdnego znku między liczą wektorem: λ λ ; - mnożenie sklrne wektorów (wynik jest sklrem tzn. liczą) zpisywne z użyciem kropki: ; - mnożenie wektorowe wektorów (tylko w R 3 ; wynik jest wektorem) zpisywne z użyciem krzyżyk: Określone zostły wrunki. - prostopdłości (ortogonlności) wektorów z wykorzystniem iloczynu sklrnego - równoległości wektorów z wykorzystniem iloczynu wektorowego; - współliniowości dwóch wektorów (zniknie ich komincji liniowej). Wprowdzono wzory n kosinus kąt między wektormi ( z wykorzystniem iloczynu sklrnego) i n sinus kąt między wektormi (z wykorzystniem modułu iloczynu wektorowego). 4.13
4.6. Zdni 4.1. Dne są punkty A = (1; 1; 3) B = (0; -1; 4) i C = (3; -5; 0). 4.. Wyznczyć wektory AB AC BC orz wektory BA CA CB. 4.3. Dny jest punkt A = (1; -; 3). Wyznczyć punkt B wiedząc ze ) AB = [3; 5; -4] ) AB = [0; ; 0] c) AB = [-1; ; -3]. 4.4. Dne są wektory: = [1; 3; 4] = [-3; 0; 1] c = [1; 3; 3] orz d = [-1; -3; -]. Wyznczyć wektor + + c d 3 3c 4d c + d +. 4.5. Dw wektory AB i AC mją wspólny początek A ( 1 0) tę smą długość h = i tworzą kąt ϕ = π / 3. ) Nrysowć te wektory orz ich sumę i różnicę. ) Nrysowć kilk wektorów reprezentntów wektor swoodnego którego reprezentntem jest wektor AB. c) Oliczyć moduł sumy i moduł różnicy wektorów AB i AC. 4.6. Dny jest równoległook o okch AB BC CD DA. Wyrzić wektory AB i AD przez wektory AC i BD. 4.7. Wektory AB = i AF = są sąsiednimi okmi sześciokąt foremnego ABCDEF. Wyrzić wektory AC AD AE BC BD CF z pomocą wektorów i. 4.14
4.8. Wektory u i v o długościch u = 1 v = tworzą kąt ϕ = 60. Oliczyć u v i u + v. 4.9. Wektory u v w mją moduły u = 4 v = w = 6 i kżde dw z tych wektorów tworzą kąt równy π/3. Oliczyć: ) u + v + w ) u v + w c) u + v w 4.10. Punkt jest początkiem trzech wektorów: AB = AC = AD = c. Wektory i są okmi trójkąt wektor c jest środkową tego trójkąt. Rozłożyć geometrycznie 4.11. wektor n kierunki wektorów i c ; 4.1. wektor c n kierunki wektorów i. 4.13. Dne są trzy liniowo niezleżne wektory i c. Zdć liniową zleżność wektorów. ) p = + + c q = + c r = + c ) p = c q = c r = + c c) m = c p = + q = + 05c r = c 4.14. Mjąc dne wersory p q tworzące kąt 45 utworzono wektory u = 3p + q v = 4p + q i zudowno n tych wektorch równoległook. Oliczyć długości przekątnych tego równoległooku. 4.15
4.15. Wyzncz długość wektor AB jego rzuty n osie ukłdu współrzędnych kąty jkie tworzy z osimi współrzędnych dl nstępujących dnych: A (-1; 0; 3) B (-; 5; 0) A (0; 3; -4) B (4; 0; -3) A (1; ; -3) B (-; -4; 6) 4.16. Oliczyć wersory wektorów c i d z zdni 3. 4.17. Oliczyć iloczyn sklrny wektorów i = = 3 ( ) = π/3 = = 5 ( ) = 0 = = 5 ( ) = 10 = 1 = 5 ( ) = π/ 4.18. Oliczyć kąt ( ) wiedząc że ) = = 5 = 5 ) = = 3 = 6 c) = = 3 = 0 d) = = 3 = -6 wiedząc że 4.19. Dne są punkty A = (0; -1; 3) B (6; 5; -) C = (1; -; 3). 4.0. Wykzć że AB AC. 4.1. Dl jkich wrtości prmetru m 4.. wektory [m + 1; m; 1] i [10; 4; m] są równoległe? 4.3. wektory [m ; -3; 0] i [m; m; m +] są prostopdłe? 4.16
4.4. Zdć czy dw poniższe wektory są równoległe lu prostopdłe. W przypdku równoległości wyrzić jeden z nich przez drugi: ) = [1; 3; 4] = [-3; 0; 1] ) = [1; 5; 0] = [; 10; 1] c) = [1; 1; 1] = [-1; 1; 0] 4.5. Dne są cztery wektory. Wyrzić jeden z nich jko komincję liniową pozostłych: ) = [1; 3; 4] = [-3; 0; 1] c = [1; 3; 3] d = [-1; -3; -] ) = [1; ; 1] = [-1; 0; 1] c = [3; 0; 0] d = [0; 1; -] c) = [6; 0; 1] = [1; 1; ] c = [-1; 0; 1] d = [0; 0; 1] d) = [3; 0; 1] = [1; 4; -] c = [5; 8; -3] d = [; -4; 3] 4.6. Wyzncz wektory prostopdłe do dnych dwóch wektorów: ) = [1; 3; 4] = [-3; 0; 1] ) = [1; 5; 0] = [; 10; 1] c) = [1; 1; 1] = [-1; 1; 0] d) = [; -3; 1] = -4; 6; -] 4.7. Wektor tworzy z osimi OX i OY kąty π/3 i π/4. Oliczyć kąt który ten wektor tworzy z osią OZ. 4.8. Zdć czy oś o kosinusch kierunkowych 1/ 1/ 1/ jest prostopdł do osi o kosinusch kierunkowych 0 5 1/ 5. 4.9. Oś p m kosinusy kierunkowe 1/3 -/3 /3. Oliczyć kosinusy kierunkowe osi s wiedząc że e s e e k. p s 4.17
4.30. Udowodnić że delt Kronecker może yć zdefiniown w trójwymirowej przestrzeni wektorowej przy wykorzystniu iloczynu sklrnego wektorów zy jeżeli osie ukłdu współrzędnych nzwiemy OX = OX 1 OY = OX OZ = OX 3 wersory osi: i = e 1 j = e k = e 3. 4.18