MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Równane zaweraące cząskową pochodną neznane fnkc dwóch b węce zmennch nazwa sę cząskowm równanem różnczkowm. Na przkład: 6 5 8 (0.) Koeność równana cząskowego różnczkowego zaeż od pochodnch w nm wsępącch zapse sę e od nawększe do namnesze pochodne. RRC es nowe eże wszske ego pochodne są nowe. Ze wzgęd na szeroke zasosowane w bdowncwe nasze rozważana ogranczą sę do RRC nowch drgego rzęd (rząd okreśa maksmaną pochodną aka sę w równan pokaze) z dwema zmennm. Da akch równań można zapsać posać kanonczną: 0 D C B A (0.)
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Kaegore do kórch RRC nowe drgego rzęd można skasfkować (ze wzgęd na wznacznk): Wznacznk B 4AC Kaegora RRC <0 Epczne 0 Paraboczne >0 Hperboczne Przkład Równane Lapace a (znadowane san saonego brak zmenne czasowe) 0 Równane przewodncwa cepnego zagadnena propagac (rozkład fnkc w czase przesrzen) 0 Równana faowe drgana np. srn (rozkład fnkc w czase przesrzen) c Przkład RRC epcznch: Rs.. Przekład RRC epcznch a) rozkład emperar na podgrzewane baszce b) pogąd na przepłw wod pod amą c) rozkład poa eekrcznego w okoc zoaora. Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Przkład RRC parabocznch: Rs.. a) Obraz dłgego pręa zoowanego (bez przepłw cepła do ooczena) podgrzewanego z edne sron b) rozwązane zagadnena sanów podgrzewanego pręa w różnch czasach RRC paraboczne możwaą znaezene rozkład zmenne w każde chw.. RÓWNANIA RÓŻNICZKOWE CZĄSKOWE ELIPYCZNE (równane Lapace a) 0 (0.) Jeże kernek rozchodzena sę cepła ne es ednakow (cepło rozchodz sę w dwóch kernkach) można wówczas zapsać: f ( ) (0.4) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 4 Korzsaąc z meod eemenów skończonch równane różnczkowe można sprowadzć do agebracznego kład równań: (0.5) Błęd są rzęd () [ ] ( ) [ ] Równana (0.5) podsawam do równana (0.) co w rezace dae: 0 (0.6) Da sak kwadraowe (rs. ) równane (0.6) przme posać: 0 4 (0.7) Rs.. Saka ża do rozwązana RRC parabocznego (ak równane Lapace a) meodą różnc skończonch.
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 5 Naeż wkorzsać warnk brzegowe Drchea zn. warośc brzegowe mszą bć spreczowane ab zskać konkrene rozwązane. Przkład: Rs. 4. Płka podgrzewana różnm emperaram z różnch sron dane warnk brzegowe ce- obczene emperar w okreśonch pnkach Korzsam ze wzor (0.7) wedząc że 4 0 0 75 0 4 0 0 4 75 Podobną procedrę naeż przeprowadzć da wszskch nnch pnków maąc dość złożon kład równań- rozwązać go. ( ) ( ) (0.8) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 6 Rozwązane: 40006 9755 65 568 785878 760640 88506 5999 697050 Równane Forera: W RRC p parabocznego oprócz zman czas wsępe równeż drga zmenna neednokrone ważnesza nż czas. Da podgrzewanego eemen meaowego es o nesanne zmenaąc sę przepłw cepła przez powerzchnę płk. Ab wznaczć ów przepłw korzsam z prawa Forera: q k' q k' (0.9) q n q q Kernek przepłw cepła wznacza sę: q θ an da q > 0 q q θ an π da q < 0 q (0.0) Meoda Lebmann a: Poega na erac da do n do m. Poneważ macerz es dagonana en proces doprowadz do orzmana sabnego rozwązana. (0.) 4 Warnek brzegow Nemanna: (0.) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 7 Jes o aernawne rozwązane do radcnch warnków brzegowch (np. Drchea). Jes o ak przpadek gd es dana pochodna. 0 (0.) 0 0 4 0 Naeż zwrócć wagę na pnk (-) kór mmo że eż poza obszarem es równeż wmagan w równan. Wdawać b sę mogło że pnk en będze sanowł probem ae właśne przchodz z pomocą pochodna warnk brzegowego. Naeż okreść perwszą pochodną po zmenne w pnkce (0): (0.4) eraz maąc zaeżność na - możem podsawć e do wzor (0.): 0 0 40 0 (0.5) Warnk brzegowe da neregarnch kszałów: Rs. 5. Obraz nerównego brzeg Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 8 Korzsaąc z różnc cenrane w ł: (0.6) Pochodna wrażene (0.7) wzgędem zmenne : ( ) ( ) Μ (0.7) Wrażene na pochodną wzgędem zmenne wgąda anaogczne: ( ) ( ) β β β β β β (0.8)
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 9 Okreśane prz neregarnch kszałach: Rs. 6. Zakrzwon brzeg- warnk brzegowe ze wzgęd na dan ką η 7 7 L 8 7 ( ) cosθ η 6 8 anθ 6 L 7 anθ cosθ 6 anθ (0.9). RÓWNANIA RÓŻNICZKOWE CZĄSKOWE PARABOLICZNE Równana doczące przewodncwa cepnego zapsane równanem: k (0.0) Meod p epc (awne) Równana przewodncwa cepła wmagaą aproksmac drge pochodne przesrzen perwsze pochodne czas. Równana e są reprezenowane podobne ak równana Lapace a- meodą cenraną różnc skończonch: Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 0 (0.) Ab okreść przesrzeń czasową wkorzsem schema różncow wprzód. (0.) Podsawam równana (0.) (0.) do równana (0.0) orzmem: k (0.) Co w efekce końcowm dae: ( ) ( ) k gdze λ λ (0.4) Do rozwązwana równań parabocznch wkorzswana es meoda Eer a. Do zskana rozwązana wkorzse sę ż dan krok poprzedn. en zabeg wkorzsem w węzłach wewnęrznch (parz rs. 7): rs. 7. X- pnk do obczena (nasępn poprzedn) O- pnk do obczena przesrzen (pnk obecn nasępn poprzedn)
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Przkład: Wkorzsane meod epc do obczena rozkład emperar da dłgego pręa (parz rs. 8.): Rs. 8. Prę dan w zadan Dane warośc: Dłgość 0cm cm 0s Da 0 (0) 00 0 C (chwa począkowa z ewe sron) (0) 50 0 C (chwa począkowa z prawe sron) k ca 049 0 s cm C λ 085 (0) 00875 0 4 0 ( ) Wkorzsąc zaeżność (0.) możem zapsać da 0 s 46 8 : 4 0 000875 0 0 000875 0 0 000875 0 0 000875 50 [ (0) 00] [ (0) 0] 0 [ (0) 0] 0 [ (0) 0] 048 0875 (0.5) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Da 0 s 46 8 wgąda o nasępąco: 4 0875 000875 0 0 000875 0 0 000875 048 048 000875 50 [ (0875) 00] [ (0) 0875] 004577 [ (0) 0] 00788 [ (048) 0] 049 40878 (0.6) Rs. 9. Grafczne wnk przkład meod epc da różnch warośc czas Probem zbeżnośc sabnośc: 0 Meoda zbeżna: w akm przpadk zske sę rozwązane dokładne 0 Sabność- oznacza że błęd ne narasaą podczas rozwązwana probem (gd sę całke) Carnahan aor zaeżnośc na sabność równań: Sabność można zskać narzcaąc sne ogranczena na krok czasow: b λ (0.7) k Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Sabność a współcznnk λ: λ λ 4 λ 6 bęę ne narasaą ae mogą oscować ne ma oscac mn ma n bą meod Nabezpeczne go żż (0.8) Brak sabnośc przkład obraze wkres gd λ przme 075 Poechnka Poznańska Rs. 0. brak sabnośc prz zb dżm λ Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 4 Meod p mpc (neawne) Z powższch rozważań wnka że meoda epc ma dże kłopo ze sabnoścą. Koneczne są węc resrkcne ogranczena ab zachować sabność. Meod mpc są pozbawone ego mankamen koszem bardze skompkowanch agormów. Fndamenana różnca pomędz meodam epc a mpc es pokazana na rs..: Rs.. Pokaze różncę omawanch meod Różnca poega na okreśan pochodne. W przpadk meod mpc pochodną okreśa sę w czase co sprawa że meoda a es pozbawona ogranczeń nezbędnch w meodze epc. (0.9) Ab okreść przesrzeń czasową wkorzsem schema różncow wprzód. (0.0) Poechnka Poznańska Mchał Płokowak Adam Łodgowsk
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk 5 Wkorzsąc podsawowe równane na równana paraboczne (0.0) orzmam: k (0.) Równane o można proścć: ( ) ( ) k gdze λ λ λ λ (0.) Da kładów gd dane są emperar brzegowe: ( ) 0 0 f (0.) Gdze f 0 ( ) es fnkcą ak emperar brzegowe zmenaą sę w czase. Meoda Cranka- Ncosona Jes o nadokładnesza meoda bez konecznośc dodakowch ogranczeń ze wzgęd na czas przesrzeń. Jes o możwe dzęk zasosowan meod pnk środkowego (obczene pochodne cenrane w pnkach co dae znaczne wększą preczę). da (0.4) Drga pochodna po przesrzen es okreśana w pnkce pośrednm co powode średnene przbżeń w począk ( ) końc ( ) w rezace dae dżo wększą dokładność: (0.5)
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE 6 Rs.. Grafczna nerpreaca meod Cranka- Ncosona (pnk środkowego) Porównane wnków meod: epc mpc Cranka- Ncosona (przkład ze sr. ) λ epc mpc Crank- Ncoson 0 0875 0875 50 7977 5 0475-9 5849 6479 0475 67 6 6487 00875 659 649 6477 05 00475 65 64 6474 05 00475 6497 6449 647 Rozwązane dokładne 67808 Jak wdać meoda C-N bła nadokładnesza od samego począk a meoda epc dała sasfakconąc wnk dopero wed gd współcznnk λ spełnł założena ogranczeń czasowch. Poechnka Poznańska Mchał Płokowak Adam Łodgowsk