PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK
|
|
- Dominika Kozieł
- 7 lat temu
- Przeglądów:
Transkrypt
1 PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg warośc Przkład sożce wa na głowę rok sożce T 0 Defncje 1. Absolune rzros warośc zmennej w okrese 1, defnujem jako: gdze: T Przkład 1 1,2,..., n 1 1, T Względne rzros warośc w okrese 1, określam jako:
2 Przkład T 1, ,053 0,038 0,025 0,080 0,065 gdze: - oznacza ozom badanego zjawska w ewnm wbranm momence czasu T0 2a. Względne rzros nazwam łańcuchowm jeśl w każdm momence czasu orównujem ozom zjawska z wbranm za momen odnesena 1 T 1, zn. odsawą orównana jes warość zjawska 1 w momence orzednm. 2b. Względne rzros nazwam jednoodsawowm jeśl odsawa orównana jes sała, zn. cons dla wszskch. T 1 warośc 3. Wskaźnk dnamk warośc, zdefnowan jako: /,, T nazwam ndeksem. 0
3 Przkład. Indeks łańcuchowe / / 2005/ / / ,056 1,040 1,026 1,088 1,069 Przkład. Indeks jednoodsawowe / / / / / ,056 1,099 1,127 1,225 1,310 ZASADY PRZELICZEŃ INDEKSÓW 1. Przelczane ndeksów jednoodsawowch o odsawe na ndeks o nnej odsawe olega na odzelenu odowednch ndeksów jednoodsawowch. Dan wskaźnk jednoodsawow dzelm rzez wskaźnk jednoodsawow okresu rzjęego za now odsawę orównań. / / : ; T0 / 2. Przelczane ndeksów jednoodsawowch o odsawe na ndeks łańcuchowe (zn. o odsawe -1), olega na odzelenu dwóch odowednch (zn. sąsednch) ndeksów jednoodsawowch:
4 / 1 : 1 / 1/ ; T1 3. Przelczane cągu ndeksów łańcuchowch na ndeks jednoodsawowe o odsawe olega na mnożenu odowednego cągu ndeksów łańcuchowch. a) Jeżel momen czasu ' dla rzelczanego ndeksu łańcuchowego / 1 jes wększ od usalonej odsaw (zn. dla momenów czasu nasęującch o okrese rzjęm za odsawę) mnożm rzez sebe odowedne ndeks: / / 1; b) Jeżel naomas (zn. dla momenów czasu orzedzającch momen rzję za odsawę) o dzelm rzez sebe odowedne ndeks: / ' 1 2 1:... 1: / 1 ' Zmenam cąg ndeksów łańcuchowch na ndeks o sałej odsawe (=2002=1,0).
5 a) jeżel lczm ndeks dla okresów czasu nasęującch o okrese rzjęm za odsawę (dla '> czl '>19) o mnożm rzez sebe odowedne ndeks (zn. wszske kolejne ndeks od momenu rzjęego za odsawę do danego momenu, dla kórego lczm ndeks): ; b) jeżel lczm ndeks dla okresu czasu orzedzającch okres rzję za odsawę (dla '< czl '<2006) o berzem od uwagę odwroność locznu ndeksów dnamk: 1: ; 1: ; 1: Jeżel zamenam cąg ndeksów o sałej odsawe =19 na ndeks łańcuchowe (o odsawe =-1) o dzelm wskaźnk jednoodsawow dla danego okresu rzez wskaźnk jednoodsawow okresu orzednego: : ; : ; 88 : Jeżel zamenam ndeks jednoodsawowe o odsawe =19 na ndeks o nowej odsawe =1986 o dzelm dan
6 wskaźnk jednoodsawow rzez wskaźnk jednoodsawow okresu rzjęego za odsawę: : ; : Dnamkę zarudnena w zakładze "K" w laach rzedsawa cąg ndeksów łańcuchowch / : Laa Rok orzedn=1 / 1 Rok 19=1 / 19 Rok orzedn=1 / 1 Rok 1986=1 / ,03 1:[1,103 1,04 1,04] 0,7:0,7=1,00 =0, ,04 1:[1,03 1,04]=0,934 0,934:0,7 0,934:0,7=1,040 =1, ,04 1:1,03=0,971 0,971:0,934 0,971:0,7=1,083 =1, ,03 1,000 1,000:0,971=1,03 1,000:0,7=1, ,02 1 1,02=1,020 1,020:1,00=1,02 1,020:0,7=1, ,03 1 1,02 1,03=1,051 1,051:1,020=1,03 1,051:0,7=1,172
7 SYNTETYCZNE WIELKOŚCI CHARAKTERYZUJĄCE SZEREG CZASOWY 1. Przecęn ozom zjawska w długm okrese a) szereg czasow jes zw. szeregem okresów, zn. warośc badanego zjawska mają charaker srumen, czl są addwne: - marą rzecęnego ozomu zjawska jes neważona średna armeczna: 1 n n1 0 b) szereg czasow zawera warośc zasobów w usalonch momenach czasu (zw. szereg momenów) w zwązku z m ch łączna suma jes ozbawona nerreacj: - marą rzecęnego ozomu zjawska jes średna chronologczna: c 0,5 0 n1 n 1 n Średne emo zman ozomu zjawska w czase: gdze: r 0, n 1 1, g g n1 n1 / 1 n1 1 n1 0
8 jes średną geomerczną z warośc ndeksu łańcuchowego w badanm okrese. Przkład Lczba wdzów w olskch knach w laach rzedsawała sę nasęująco (w mln): Laa ,7 178,1 177,8 173,3 164,7 163,1 153,1 141,3 g n n 1 1 / 1 n n n2 178,1 177,8 141,3 141, , , ,7 178,1 153,1 193,7 4,4%
9 AGREGATOWE INDEKSY DLA WIELKOŚCI ABSOLUTNYCH: WARTOŚCI, ILOŚCI I CEN Oznaczena: M 1,2,...,m - zbór numerów rozarwanch roduków; w, wj - warość j-ego roduku, j M j0 1 odsawowm badanm;, odowedno w momence, - lość (masa fzczna) j-ego roduku, j M j0 j1 w momence odsawowm badanm;, odowedno, - cena (jednoskowa) j-ego roduku, j M j0 j1 odsawowm badanm. w momence Indeks ndwdualne (rose): wskaźnk dnamk doczące orównana jednorodnch zmenającch sę w czase warośc. Indwdualn ndeks warośc: j w w w j1 j0 j M rz czm: wj j j 0,1, j M
10 Indwdualn ndeks lośc: j j 1 j0 j M Indwdualn ndeks cen: j j1 j0 j M Indeks agregaowe (zesołowe): wskaźnk dnamk doczące orównana dnamk zjawska w nejednorodnej zborowośc: Agregaow ndeks warośc: I w jm jm w w j1 j0 jm jm j1 j1 j0 j0 Indeks en nformuje o łącznch zmanach warośc wszskch roduków w momence badanm w sosunku do momenu odsawowego.
11 Sandarzacja: srowadzane do orównwalnośc warośc w okrese badanm do warośc w okrese odsawowm. Ogólna formuła sandarzacjna agregaowego ndeksu lośc: I j 1 j0 j cons j cons oraz cen: I j cons j cons j1 j0 Agregaow ndeks cen a) według formuł Laseresa: L I jm jm j1 j0 j0 j0 b) według formuł Paaschego: P I jm jm j1 j1 j0 j1 c) według formuł Fshera: FI LI PI
12 Agregaow ndeks lośc (mas fzcznej): a) według formuł Laseresa: L I jm jm j0 j1 j0 j0 b) według formuł Paaschego: I P jm jm j1 j1 j1 j0 c) według formuł Fshera: I I I F L P Równość ndeksowa I I I I I I I w P L P L F F
13
14 Przkład Srzedaż oraz cena serów w laach rzedsawnna jes w onższej abelce. Wznaczć ndeks cen lośc wg wszskch formuł oraz ndeks warośc. ser j lość cen lżck , 15,33 edamsk ,2 18,9 gouda ,5 21,44 omorsk ,45 19,56 odlask ,1 20,5 śląsk ,99 25,55 mazursk ,15 18,72
15
ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY
D. Miszczńska, M.Miszczński, Maeriał do wkładu 5 ze Saski, 29/ [] ANALZA DYNAMK ZJAWSK. szereg czasow, chronologiczn (momenów, okresów) 2. średni oziom zjawiska w czasie (średnia armeczna, średnia chronologiczna)
Wykład 6. Badanie dynamiki zjawisk
Wkład 6 Badane dnamk zask Krza eża Pze laa 975 976 977 978 979 98 98 982 983 984 985 986 987 odchlene od onu merach 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,973 4,977 4,9725 4,9742 4,9757
Zad 2 Dynamika zatrudnienia mierzona indeksami łańcuchowymi w ostatnich pięciu latach kształtowały się następująco: Lata Indeksy ( w %)
Analza dnamk Zad. 1 Indeks lczb studującch studentów w województwe śląskm w kolejnch pęcu latach przedstawał sę następująco: Lata 1 2 3 4 5 Indeks jednopodstawowe z roku t = 1 100,0 115,7 161,4 250,8 195,9
SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji
SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa
ANALIZA SZEREGÓW CZASOWYCH
ANALIZA ZEREGÓW CZAWYCH zereg czasow zbór warosc baanej cech lub warosc baanego zjawska zaobserwowanch w róznch momenach czasu uporzakowan chronologczne. klank szeregu czasowego:. enencja rozwojowa (ren)
formularzy opisowych, ankiet lub innych dokumentów stanowi nieuporządkowany statystyczny, stanowi on podstawę dalszych
Zebran materał statstczn w forme sprawozdań, formularz opsowch, anket lub nnch dokumentów stanow neuporządkowan surow materał statstczn, neprzdatn jeszcze do bezpośrednej analz, porównań wnosków. Materał
PARAMETRY ELEKTRYCZNE CYFROWYCH ELEMENTÓW PÓŁPRZEWODNIKOWYCH
ARAMETRY ELEKTRYZNE YFROWYH ELEMENTÓW ÓŁRZEWODNIKOWYH SZYBKOŚĆ DZIAŁANIA wyrażona maksymalną częsolwoścą racy max MO OBIERANA WSÓŁZYNNIK DOBROI D OBIĄŻALNOŚĆ ELEMENTÓW N MAKSYMALNA LIZBA WEJŚĆ M ODORNOŚĆ
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 4. Zmenne znegrowane 3 Szereg
Analiza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
FINANSOWE SZEREGI CZASOWE WYKŁAD 3
FINANSOWE SZEREGI CZASOWE WYKŁAD 3 dr Tomasz Wójowcz Wydzał Zarządzana AGH 3800 3300 800 300 800 300 800 0 0 30 40 50 60 70 Kraków 0 Tomasz Wójowcz, WZ AGH Kraków przypomnene MA(q): gdze ε są d(0,σ ).
Stanisław Cichocki Natalia Nehrebecka. Wykład 2
Sansław Cchock Naala Nehrebecka Wykład 2 1 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 2 1. Szereg czasowy 2. Sezonowość 3. Zmenne sacjonarne 3 Szereg czasowy jes pojedynczą realzacją pewnego
Podstawowe algorytmy indeksów giełdowych
Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o
Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa
Matematyka ubezpieczeń majątkowych r.
Maemayka ubezpeczeń mająkowych 7.05.00 r. Zadane. Pewne ryzyko generuje jedną szkodę z prawdopodobeńswem q, zaś zero szkód z prawdopodobeńswem ( q). Ubezpeczycel pokrywa nadwyżkę szkody ponad udzał własny
Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o ˆ
Eonoera Ćwczena Werfacja odelu eonoercznego Maerał poocncze Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź
Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó
ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń
Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć
Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź
WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty
74 LIDIA LUTY ROCZNIKI NAUKOWE EKONOMII ROLNICTWA I ROZWOJU OBSZARÓW WIEJSKICH, T. 11, z. 1, 214 WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO Lda Lut Katedra Statstk Matematcznej
Analiza współzależności
Aalza wsółzależośc Pozawae zwązków mędz cecham jes aalzą ze względów ozawczch. W rzeczwsośc rzadko jes ak ab jakaś cecha obeków lub zjawsko ewego rodzaju kszałowało sę zuełe ezależe od ch cech lub zjawsk.
METODY SZACOWANIA PARAMETRÓW MODELI DWULINIOWYCH
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/,, sr. 39 47 METODY SZACOWANIA ARAMETRÓW MODELI DWULINIOWYCH Joanna Górka, Mchał Bernard erzak Kaedra Ekonomer Sask Unwerse Mkołaja Koernka w Torunu e-ma:
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
termodynamika fenomenologiczna p, VT V, teoria kinetyczno-molekularna <v 2 > termodynamika statystyczna n(v) to jest długi czas, zachodzi
fzka statstczna stan makroskopow układ - skończon obszar przestrzenn (w szczególnośc zolowan) termodnamka fenomenologczna p, VT V, teora knetczno-molekularna termodnamka statstczna n(v) stan makroskopow
Prognozowanie i symulacje
Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez
Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47
Statystyka Wykład 12 Magdalena Alama-Bućko 29 maja 2017 Magdalena Alama-Bućko Statystyka 29 maja 2017 1 / 47 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
EKONOMETRIA Wykład 2: Metoda Najmniejszych Kwadratów
EKONOMERIA Wkład : Meoda Najmnejszch Kwadraów dr Doroa Cołek Kaedra Ekonomer Wdzał Zarządzana UG hp://wzr.pl/dc doroa.colek@ug.edu.pl Lnow model ekonomerczn:... zmenna endogenczna, 0 k k u zmenne objaśnające,
ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
SELEKCJA: JAK JEDNA POPULACJA (STRATEGIA) WYPIERA INNĄ
W stronę bolog: dnama oulacj Martn. owa Evolutonar Dnamcs elna Press 6 SELEKCJ: JK JED POPULCJ (STRTEGI) WYPIER IĄ Model determnstczn ( a ) ( b ) : Dodając stronam mam a b czl średne dostosowane (ftness).
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
Cechy szeregów czasowych
energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
L.Kowalski zadania ze statystyki opisowej-zestaw 4. ZADANIA Zestaw 4
ZADANA Zestaw 4 Zadanie 4. Na podstawie informacji o zyskach firmy podanych w tabeli: Lata 995 996 997 998 999 Zysk (w tys. zł) 5200 600 6500 6700 700 a) wyznaczyć ciąg przyrostów łańcuchowych (bezwzględnych
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
Nieparametryczne Testy Istotności
Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:
Wybrane zagadnienia Termodynamiki Technicznej
Zdzsław Nagórsk Wybrane zagadnena Termodynamk Techncznej Ewa Fudalej - Kosrzewa Insrukcje do ćwczeń laboraoryjnych Warszawa 0 Polechnka Warszawska Wydzał Samochodów Maszyn Roboczych Kerunek sudów "Edukacja
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.
Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
OGŁOSZENIE TARYFA DLA ZBIOROWEGO ZAOPATRZENIA W WODĘ I ZBIOROWEGO ODPROWADZANIA ŚCIEKÓW. Taryfa obowiązuje od 01.01.2014 do 31.12.
OGŁOSZENIE Zgodne z Uchwałą Nr XXXIII/421/2013 Rady Mejskej w Busku-Zdroju z dna 14 lstopada 2013 r. w sprawe zatwerdzena taryf za zborowe zaopatrzene w wodę zborowe odprowadzane śceków dla Mejskego Przedsęborstwa
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji
ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc
Prąd sinusoidalny. najogólniejszy prąd sinusoidalny ma postać. gdzie: wartości i(t) zmieniają się w czasie sinusoidalnie
Opracował: mgr nż. Marcn Weczorek www.marwe.ne.pl Prąd snsodalny najogólnejszy prąd snsodalny ma posać ( ) m sn(2π α) gdze: warość chwlowa, m warość maksymalna (amplda), T okres, α ką fazowy. T m α m T
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Arytmetyka finansowa Wykład z dnia 30.04.2013
Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
METODY KOMPUTEROWE 10
MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE
Regulamin. udzielania pomocy materialnej o charakterze socjalnym dla uczniów zamieszkaùych na terenie Gminy Wolbórz
Zaù¹cznk Nr 1 uchwaùy Nr XXVIII/167/2005 Rady Gmny Wolbórz z dna 30 marca 2005 r. Regulamn udzelana pomocy maeralnej o charakerze socjalnym dla ucznów zameszkaùych na erene Gmny Wolbórz I. Sposób usalana
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
KURS STATYSTYKA. Lekcja 7 Analiza dynamiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 7 Aaliza damiki zjawisk (zjawiska w czasie) ZADANIE DOMOWE www.erapez.pl Sroa Część : TEST Zazacz poprawą odpowiedź (lko jeda jes prawdziwa). Paie Szereg damicz o: a) ciąg prędkości
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE
CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek
III. Przetwornice napięcia stałego
III. Przewornce napęca sałego III.1. Wsęp Przewornce: dosarczane pożądanej warośc napęca sałego koszem energ ze źródła napęca G. Możlwość zmnejszana, zwększana, odwracana polaryzacj lb kszałowane pożądanego
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
STATYSTYKA EKONOMICZNA w LOGISTYCE
STATYSTYKA EKONOMICZNA w LOGISTYCE Metod statstczne w analze procesów zaopatrzena dr Zbgnew Karwack Katedra Badań Operacjnch UŁ Podstawowe funkcje procesów zaopatrzena Proces zaopatrzena ( zakupów ) stanową
MECHANIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE
Oga Koacz, Adam Łodygows, Wocech Pawłows, chał Płoowa, Krzyszof Tymer Konsuace nauowe: rof. dr hab. JERZY RAKOWSKI Poznań 00/003 ECHAIKA BUDOWLI 6 CIĘŻARY SPRĘŻYSTE Wyznaczane rzemeszczeń z zasosowanem
p Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO
ALGEBRY HALLA DLA POSETÓW SKOŃCZONEGO TYPU PRINJEKTYWNEGO NA PODSTAWIE REFERATU JUSTYNY KOSAKOWSKIEJ. Moduły prnjektywne posety skończonego typu prnjektywnego Nech I będze skończonym posetem. Przez max
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy
Dyskretny proces Markowa
Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem