Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe
|
|
- Łukasz Krzemiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe
2 Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji metody gradientowe.
3 Metoda Hooka-Jeveesa z krokiem dyskretnym τ- krok α > 1 współczynnik kroku roboczego β (0,1) współczynnika korekcji kroku τ τβ
4 Metoda Hooka-Jeveesa z krokiem dyskretnym DANE: d 1, d 2,, d S, x 0, τ, ε, α, β Krok 0: z 1 x 0, s = 1, n = 0 Krok 1: z s+1 z s + τd s Jeśli F z s+1 < F z s idź do kroku 2 w przeciwnym razie z s+1 z s τd s Jeśli F z s+1 < F(z s ) idź do kroku 2 w przeciwnym razie z s+1 z s Krok 2: Jeśli s < S, s s + 1 idź do kroku 1 w przeciwnym razie Jeśli F z S+1 < F(z 1 ) idź do kroku 3 τ τβ, x n+1 x n, z s x n, n n + 1, s = 1 idź do kroku 1 Krok 3: Jeśli τ < ε, STOP w przeciwnym razie x n+1 z S+1 + α z S+1 z 1, n n + 1, s 1 idź do kroku 1
5 Metoda Rozenbrocka z krokiem dyskretnym τ- krok α > 1 współczynnik korekcji kroku β ( 1, 0) - współczynnika korekcji kroku τ s τ s α τ s τ s β
6 Metoda Rozenbrocka z krokiem dyskretnym DANE: d 1, d 2,, d S, x 0, τ, ε, α > 1, β 1, 0 Krok 0: τ 1 = τ 2 = = τ S = τ, δ 1 = δ 2 = = δ S = 0, z 1 = x 0, n = 0, s = 1 Krok 1: z s+1 = z s + τ s d s, δ s = δ s + τ s IF F z s+1 < F z s τ s ατ s s s + 1, IDŹ DO KROKU 2 ELSE F z s+1 F z s τ s βτ s s s + 1 IDŹ DO KROKU 2 Krok 2: IF s < S s s + 1 IDŹ DO KROKU 1 IF F z S+1 < F z 1 z 1 z S+1 s 1 IDŹ DO KROKU 1 IF F z S+1 = F x n IF n = 0 zmień punkt startowy ELSE x n+1 = z S+1 Krok 3: IF STOP? (np.: xn 1 xn ) STOP Krok 4: Obrót bazy ELSE n:= n+1, s=1 τ 1 = τ 2 = = τ S = τ, δ 1 = δ 2 = = δ S = 0, IDŹ DO KROKU 1
7 Obrót bazy Krok 4: d s s = 0 a s = b s = S σ j=s j d j s 0 a s s = 1 a s σ s 1 j=1 a T j d j d j
8 Metoda Hooka-Jeveesa z krokiem optymalnym
9 Metoda Hooka-Jeevesa - z krokiem optymalnym DANE: d 1, d 2,, d S, x 0, ε Krok 0: z 1 x 0, n = 0, s = 1 Krok 1: z s+1 z s + τ s d s τ s - min w kierunku d s Krok 2: Jeśli s < S, s = s + 1 idź do kroku 1 Jeśli z S+1 z 1 < ε - STOP Krok 3: x n+1 z s + τd τ min w kierunku d S+1 τ s d d = z S+1 z 1 = σ s=1 z S+1 z 1 σ S+1 s=1 τ s d n n + 1, s = 1, z 1 = x n
10 Metoda Rozenbrocka z krokiem optymalnym
11 Metoda Rozenbrocka z krokiem optymalnym DANE: d 1, d 2,, d S, x 0, ε Krok 0: z 1 x 0, n = 0, s = 1 Krok 1: z s+1 z s + τ s d s τ s - min w kierunku d s Krok 2: Jeśli s < S, s s + 1 idź do kroku 1 Jeśli z S+1 z 1 < ε - STOP Krok 3: d s τ s = 0 a s = b s = S σ j=s τ j d j τ s 0 a s s = 1 a s σ s 1 j=1 a T j d j d j d s = b s s = 1,2,, S b s Krok 4: d s d s s = 1,2,, S, n n + 1, s = 1 idź do kroku 1
12 Metoda Powella wektory sprzężone d 1, d 2,, d S d i T Ad j = - sprzężone według macierzy A, symetrycznej i dodatnio określonej 0 i j 1 i = j
13 Metoda Powella wektory sprzężone F x = x T Ax + b T x + c Dla tak dobranej funkcji, jeżeli zestaw wektorów d 1, d 2,, d S jest sprzężony według macierzy A, to minimalizując wzdłuż kierunków sprzężonych otrzymamy rozwiązanie w nie więcej niż S krokach.
14 Metoda Powella F x = x T Ax + b T + c x 1 = x 0 + x d τ - min w kierunku d z x 0 x 1 = x 0 + τ d τ - min w kierunku d z x 0 d T Ad = 0 d, d - sprzężone według A d = x 1 x 1 x 1 x 1
15 Metoda Powella
16 Metoda Powella DANE: d 1, d 2,, d S, x 0, ε Krok 0: z 1 x 0 + τ S d S, n 0, s 1 τ S - min w kierunku d S Krok 1: z s+1 = z s + τ s d s τ s - min w kierunku d s Krok 2: Jeśli s < S, s s + 1 idź do kroku 1 Jeśli z S+1 z 1 < ε - STOP Krok 3: x n+1 z s+1 d Z S+1 Z 1 Z S+1 Z 1 z 1 x n+1 + τd τ min w kierunku d d s d s+1 s = 1, 2,, S 1 d S d τ max max z s+1 z s 1 s S d max = d Δ = max 1 s S τ s τ mδ Z S+1 Z 1 > 0.8
17 Metoda Neldera-Meada (simplex) x 1 x 2 x S+1 - simplex w przestrzeni s-wymiarowej x H F x H = max s) 1 s S+1 x L F x L = min s) 1 s S+1 x ҧ = 1 s S+1 s=1,s H x s Generowanie simplexu początkowego x 0, c a = c ( S ) S 2 b = c ( S + 1 1) S 2 d j = x i = x 0 + d j, x S+1 = x 0
18 Metoda Neldera-Meada (simplex)
19 ҧ ҧ ҧ ҧ Metoda Neldera-Meada Odbicie x = x + α( xҧ x H ) α współczynnik odbicia Jeśli α > 0 F x < F(x L ) Ekspansja x = x + γ x xҧ γ > 1 γ współczynnik kontrakcji Jeśli F x > F x H x = x + β(x H x) ҧ Jeśli F x > max F(x 1 s S+1 s ) x = s H x + β x xҧ β (0, 1)
20 ҧ ҧ ҧ Metoda Neldera-Meada DANE: x 0, c, ε Krok 0: x 1 x 2 x S+1 - simplex początkowy, n = 0 Krok 1: x H F x H = max F x s, x L F x L = min F(x s) 1 s S+1 1 s S+1 x = 1 σ S s=1 S+1 x s s H Krok 2: x = x + α xҧ x H Jeśli F x < F x L x = x ҧ + γ(x x) ҧ idź do kroku 3 w przeciwnym razie idź do kroku 4 Krok 3: Jeśli F x < F x x H = x, n = n + 1 idź do kroku 1 w przeciwnym razie x H = x, n = n + 1 idź do kroku 1 Krok 4: Jeśli F x < max 1 s S+1 s H F x s x H = x, n = n + 1 Krok 5: x F x = min F x, F x H x = x + β x xҧ Jeśli F x > F x x j = x j + 1 x 2 L x j, j = 1,2,, S + 1 idź do kroku 1 x H = x, n = n + 1 idź do kroku 1
Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe
Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń
Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła
Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń
M eto dy o p ty m a liza cji
M eto dy o p ty m a liza cji M e to d y d et erm i ni s ty cz n e M et od y st oc h a sty cz n e b e z o gr an ic z eń z o gra n ic z en ia m i m e to d a M o nt e-c ar lo b ezg r ad ie n to w e g r ad
PROGRAMOWANIE KWADRATOWE
PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe
Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody
Optymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Metody optymalizacji - teoria i wybrane algorytmy
Metody optymalizacji - teoria i wybrane algorytmy 15 stycznia 2012 Spis treści I Algorytmy optymalizacji funkcji jednej zmiennej 2 1 Metody ustalania przedziału, w którym znajduje się minimum 3 1.1 Metoda
Przegląd metod optymalizacji numerycznej. Krzysztof Malczewski
Przegląd metod optymalizacji numerycznej Krzyszto Malczewski Numeryczne metody optymalizacji Deterministyczne (klasyczne) * bez ograniczeń: - bezgradientowe: + simpleks Neldera-Meada, + spadku względem
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej
Wprowadzenie do badań operacyjnych - wykład 2 i 3
Wprowadzenie do badań operacyjnych - wykład 2 i 3 Hanna Furmańczyk 14 listopada 2008 Programowanie liniowe (PL) - wszystkie ograniczenia muszą być liniowe - wszystkie zmienne muszą być ciągłe n j=1 c j
Metody Numeryczne Optymalizacja. Wojciech Szewczuk
Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne
Stosowana Analiza Regresji
Model jako : Stosowana Analiza Regresji Wykład XI 21 Grudnia 2011 1 / 11 Analiza kowariancji Model jako : Oprócz czynnika o wartościach nominalnych chcemy uwzględnić wpływ predyktora o wartościach ilościowych
Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu
Stochastyczne zagadnienie rozdziału z dyskretnym rozkładem popytu Marcin Anholcer Uniwersytet Ekonomiczny w Poznaniu 19 marca 2013, Ustroń Marcin Anholcer Stochastyczne zagadnienie rozdziału 1/ 15 1 Zagadnienie
KADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
5. Metody stochastyczne (symulowane wyżarzanie, algorytmy genetyczne) -> metody Monte Carlo
Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu 2. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Niesimpleksowe metody rozwia zywania zadań PL. Seminarium Szkoleniowe Edyta Mrówka
Niesimpleksowe metody rozwia zywania zadań PL Seminarium Szkoleniowe Metoda Simplex: wady i zalety Algorytm SIMPLEX jest szeroko znany i stosowany do rozwi azywania zadań programowania liniowego w praktyce.
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
jeśli nie jest spełnione kryterium zatrzymania, to nowym punktem roboczym x(t+1) staje i następuje przejście do 1)
Metody automatycznej optymalizacji cz.i metody dwufazowe Święta Wielkanocne już za nami, tak więc bierzemy się wspólnie do pracy. Ostatnim razem dokonaliśmy charakterystyki zadań optymalizacji i wskazaliśmy
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Optymalizacja systemów
Optymalizacja systemów Laboratorium - problem detekcji twarzy autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, P. Klukowski Cel zadania Celem zadania jest zapoznanie się z gradientowymi algorytmami optymalizacji
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Spis wszystkich symboli
1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej
Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika
Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.
Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Nierówności symetryczne
Nierówności symetryczne Andrzej Nowicki Uniwersytet Mikołaja Kopernika, Wydział Matematyki i Informatyki, ul Chopina 1 18, 87 100 Toruń (e-mail: anow@matunitorunpl) Sierpień 1995 Wstęp Jeśli x, y, z, t
1 Grupa SU(3) i klasyfikacja cząstek
Grupa SU(3) i klasyfikacja cząstek. Grupa SU(N) Unitarne (zespolone) macierze N N można sparametryzować pzez N rzeczywistych parametrów. Ale detu =, unitarność: U U = narzucają dodatkowe warunki. Rozważmy
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,
1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości
Metoda gradientu prostego
Metoda gradientu prostego Metoda gradientu prostego jest pojęciem z zakresu optymalizacji matematycznej. Jest to algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Jest to jedna
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES
WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES Dynamika mutacyjnego AE Mutacja gaussowska σ=0.1 Wszystkie wygenerowane punkty Wartość średnia jakości punktów populacji
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Algorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Statystyka aktuarialna i teoria ryzyka, rozkłady szkód
Statystyka aktuarialna i teoria ryzyka, rozkłady szkód Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 7 1 / 16 ROZKŁADY WARTOŚCI SZKÓD Podstawowe własności: rozkłady skupione na dodatniej
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Metody numeryczne II
Metody numeryczne II Poszukiwanie ekstremów funkcji Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne II (C) 2004 Janusz Szwabiński p.1/55 Poszukiwanie ekstremów funkcji 1. Funkcje jednej zmiennej
Metody Obliczeniowe w Nauce i Technice
17 - Minimalizacja funkcji Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Bukowska Yurii Vyzhha
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra
Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Rozwiązanie Powyższe zadanie możemy przedstawić jako następujące zagadnienie programowania liniowego:
Zadanie Rafineria naftowa otrzymała zamówienie na dwa rodzaje specjalnych paliw węglowodorowych X oraz Y. Zamówienie opiewa na minimum 4 000 galonów paliwa X i minimum 2 400 galonów paliwa Y. Paliwa te
Metody numeryczne II
Metody numeryczne II Poszukiwanie ekstremów funkcji Janusz Szwabiński szwabin@ift.uni.wroc.pl nmslides-13.tex Metody numeryczne II Janusz Szwabiński 29/5/2003 14:40 p.1/55 Poszukiwanie ekstremów funkcji
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Praca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Wykład 6. Programowanie liniowe
Wykład 6. Programowanie liniowe Zakład może wytwarzać dwa produkty: P 1 i P 2. Ich produkcja jest limitowana dostępnymi zasobami trzech środków: S 1, S 2, S 3. Zasoby tych środków wynoszą odpowiednio,
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
ϕ(t k ; p) dla pewnego cigu t k }.
VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych
Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10
System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH
PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH WŁADYSŁAW KIERAT Oliver Heaviside w latach 1893-1899 opublikował trzytomową monografię: Elektromagnetic Theory,
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa
Ekonometria Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 10 1 / 22 Outline 1 2 Jakub Mućk Ekonometria Ćwiczenia 10 2 / 22 Oznaczenia i definicje Numeracja gałęzi: i, j = 1, 2,,
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.