1. RACHUNEK WEKTOROWY

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. RACHUNEK WEKTOROWY"

Transkrypt

1 1 RACHUNEK WEKTOROWY 1 Rozstrzygnąć, czy możliwe jest y wartość sumy dwóch wetorów yła równa długości ażdego z nich 2 Dane są wetory: a i 3 j 2 ; 4 j = + = Oliczyć: a+, a, oraz a 3 Jai ąt tworzą dwa jednaowe wetory, jeżeli długość ich wypadowej jest równa długości ażdego z nich? 4 Dane są wetory: a = 2 i j + 3 ; = i + 3 j Oliczyć: a, a, oraz a 5 Dane są dwa wetory: a = 2 i 3 j oraz = i j Znaleźć cosinus ąta zawartego między tymi wetorami 6 Wyazać że: a = ( a ) 7 Dane są dwa wetory: a = i + j+ oraz = 2 i j+ 2 Znaleźć sinus ąta zawartego między tymi wetorami 8 Wyazać że: (a + ) c = a c + c 9 Dane są dwa wetory: Znaleźć (a a+, a, + ), Czy równość a a + = + a = i + j+ oraz = 2 i j+ 2 oraz oreślić ąt między tymi wetorami jest spełniona? W jaich warunach? 10 Dane są wetory: a = 2 i j + 3 ; = i + 3 j Oliczyć: a,, a, a oraz a zawarty między nimi Oreślić ierune i zwrot wetora a i ąt 11 Dane są wetory: a = 3 i + 4 j ; = 4 i 3 j Oliczyć: a,, a+, a+ Czy te wetory są do sieie prostopadłepodać uzasadnienie 12 Sprawdzić czy a = a 13 Dane są wetory: a = 4 i + 3 j ; = 4 i 3 j Oliczyć: a,, a+, a+ Czy te wetory leżą na tej samej prostejpodać uzasadnienie wyonując odpowiednie oliczenia 14 Dane są wetory: a = 2 i + 3 j+ ; = i + 2 j 3 ; c = i 2 j

2 Oliczyć: a,, c, a oraz tg( a, ) 15 Dane są wetory: a = 2 i + 2 j + 2 ; = i + j + z Oliczyć współrzędną z ta, ay wetory a 16 Dane są wetory: Oliczyć: i yły do sieie równoległe a = 3 i 2 j ; = 3 i + 3 j 3 ; c = i j a,, c, a+ oraz a + c 17 Dane są wetory: a = 2 i + 2 j + a ; = i + j + z Oliczyć wartość współrzędnej a z ay te wetory yły do sieie prostopadłe 18 Dane są wetory: Oliczyć: a = 2 i 2 j 3 ; = 4 i + j 2 ; c = i j+ a,, c, a+ oraz c a 19 Dane są wetory: a = 2 i + 2 j ; = 5 i + 5 j ; c = 3 i + c j y Wyznaczyć wartość współrzędnej c y ta, ay te wetory utworzyły trójąt Ile ąty tego trójąta? 20 Dane są wetory: a = 2 i + 3 j+ ; = i + 2 j 3 ; c = i 2 j Oliczyć: a+ c oraz tg( a, ) 21 Dane są wetory: Oliczyć: 22 Dane są wetory: a+ a+ a = 3 i 2 j ; = 3 i + 3 j 3 ; c = i j oraz a + c 2 a = 2 i 2 j 3 ; = 4 i + j 2 ; c = i j+ a a wynoszą Oliczyć: oraz 23 Dane są wetory: a = 2 i + 3 j+ ; = i + 2 j 3 ; c = i 2 j Oliczyć ąty między wetorami a i oraz i c 24 Dane są wetory: a 2 i 2 j ; 5 i 5 j ; c 3 i 7 = + = + = + j Sprawdzić, czy wetory te tworzą trójąt Oliczyć wartość wyrażenia: i porównać z polem trójąta zudowanego na tych wetorach? 1 2 a 25 Wyazać, że wartość ezwzględna iloczynu wetorowego dwóch wetorów daje liczowo powierzchnię równoległoou utworzonego z tych wetorów 2 PRAWA RUCHU W MECHANICE

3 1 Pojazd przejechał odległość między dwoma puntami A i B w ciągu 1,5 h, jadąc przez czas t1= 0,5 h z prędością v1= 70 m/h i przez t2 = 1 h z prędością v2 = 40 m/h Oliczyć prędość średnią pojazdu na całym odcinu drogi 2 Pojazd poruszający się z puntu A do puntu B połowę czasu jedzie z prędością v1= 50 m/h, a drugą połowę czasu z prędością v2 = 70 m/h Oliczyć średnią prędość na całej drodze od A do B 3 Motocylista przejechał pierwszą ćwiartę drogi z prędością v 1 = 10 m/s, drugą ćwiartę z prędością v 2 = 15 m/s, trzecią z prędością v 3 = 20 m/s, a czwartą z prędością v 4 = 5 m/s Znależć średnia prędość motocylisty na całym odcinu drogi 4 Pojazd przejechał jedną trzecią drogi z prędością 20 m/s, a dwie trzecie z prędością 30 m/s Ile wynosi średnia prędość? 5 Pocis wystrzelono pionowo do góry z prędością początową v 0 Znaleźć czas po tórym pocis znajdzie się w połowie masymalnej wysoości oraz średnią prędość pocisu na całym przeytym odcinu drogi 6 Punt porusza się po torze prostoliniowym ta, że: x = 5 t + 6 t 2 (wszystie wielości podane są w uładzie SI) Znaleźć średnią prędość puntu między początiem dziesiątej a ońcem dwunastej seundy i prędości chwilowe w oydwu wymienionych chwilach czasu 7 Punt materialny przeywa połowę drogi s ruchem jednostajnie przyspieszonym z przyspieszeniem a, drugą połowę drogi ruchem jednostajnym Znaleźć prędość średnią na całej drodze s 8 Punt materialny przeywa połowę drogi ruchem jednostajnym z prędością v, a drugą połowę drogi ruchem jednostajnie opóźnionym aż do zatrzymania się Znaleźć prędość średnią na całej drodze 9 Ciało wyrzucono pionowo do góry z prędością początową v = 10 m/s Oliczyć prędość średnią ciała do momentu spadu na ziemię Dane g = 10 m/s 10 Oliczyć prędość średnią pocisu wystrzelonego pionowo do góry z prędością początową v = 40 m/s w ciągu pierwszych pięciu seund Dane g = 10 m/s 11 Pojazd rusza z miejsca ruchem jednostajnie przyspieszonym Po osiągnięciu prędości v zaczyna poruszać się ruchem jednostajnie opóźnionym aż do zatrzymania się Oliczyć średnią prędość ruchu 12 Znaleźć średnią prędość ciała poruszającego się na trzech odcinach drogi: na pierwszym z prędością v = 5 m/s w czasie t = 2 s, na drugim ruchem jednostajnie

4 opóźnionym aż do prędości v = 0 w czasie t = 2 s, na trzecim ruchem jednostajnie przyspieszonym do prędości v = 5 m/s w czasie t = 2 s 13 Ruch puntu opisują równania: x = 1t 3, y = 2 t 2 gdzie 1= 2 m/s 3, 2 = 3 m/s 2 Oliczyć dla t = 1 s prędość, przyspieszenie, ąt jai tworzy wetor prędości i przyspieszenia z osią x, przyspieszenie styczne i dośrodowe, promień rzywizny toru oraz napisać równanie toru 14 Ruch puntu opisują równania: x = ( 1+ 2 ) t 2, y = ( r1- r2 ) t, gdzie: 1= 3 m/s 2, 2 = 2 m/s 2, r1= 3 m/s, r 2 = 2 m/s Znaleźć dla t = 2 s: prędość, przyspieszenie, ąty jaie tworzą wetory v i a z osią x, przyspieszenie styczne i dośrodowe, promień rzywizny toru oraz napisać równanie toru 15 Ruch puntu opisują równania: x = A1t 3 + B, y = A2 t 2 + C gdzie A1= 2 m/s 3, A2 = 3 m/s 2, B = 2 m, C = 3 m Oliczyć dla t = 2 s prędość, przyspieszenie, ąt jai tworzy wetor prędości i przyspieszenia z osią x, przyspieszenie styczne i dośrodowe, promień rzywizny toru oraz napisać równanie toru 16 Ruch puntu opisują równania: x = A cos t, y = A sin t, gdzie A = 0,1 m, = 0,01 1/s Oliczyć: prędość, przyspieszenie, przyspieszenie styczne i przyspieszenie dośrodowe, promień rzywizny toru oraz znaleźć równanie toru w momencie czasu t = 1 s 17 Ruch puntu opisują równania: x = B sin t/2, y = B cos t/2, gdzie B = 0,1 m Oliczyć: prędość, przyspieszenie, przyspieszenie styczne i przyspieszenie dośrodowe, promień rzywizny toru dla t = 1 s oraz znaleźć równanie toru 18 Ruch puntu opisują równania: x = 3 t, y = 2 t 2 Znaleźć: a) równanie toru oraz narysować wyres y(x) Zaznaczyć położenie puntu w 2 seundzie ruchu, ) prędość dla t=2s, c) przyspieszenie, d) przyspieszenie styczne dla t-=2s, e) przyspieszenie normalne dla t = 2 s, f) promień rzywizny toru w momencie czasu t = 2 s 19 Ruch puntu materialnego opisują równania: x = 4 sin (t/2), y = 4 cos (t/2) Znaleźć: dla t = 2 s: a) równanie toru, ) prędość, c) przyspieszenie, d) przyspieszenie styczne, e) przyspieszenie normalne, promień rzywizny 20 Ruch puntu opisują równania: x = 3 sin 2t, y = 3 cos 2t Napisać równanie toru Oliczyć: prędość, przyspieszenie, przyspieszenie styczne, przyspieszenie dośrodowe i promień rzywizny toru Czas t = 2 s

5 21 Jai jest ształt toru puntu poruszającego się ta, że a = const, a jai gdy a = const (podać uzasadnienie) 22 Jaą drogę przeędzie ciało w drugiej seundzie ruchu jednostajnie przyspieszonego, jeżeli w pierwszej seundzie przeyło drogę 1 m Podać odpowiednie oliczenia 23 Czas spadu swoodnego ciała z wysoości h wynosi t Na jaiej wysoości znajdzie się ciało po upływie połowy tego czasu 24 Pod jaim ątem należy wystrzelić pocis ay zasięg rzutu i wysoość masymalna yły soie równe? 25 Pocis wystrzelono pod ątem α = 60 z prędością początową v 0 = 20 m/s Po jaim czasie prędość pocisu osiągnie wartość 10 m/s W jaim puncie toru znajdzie się pocis w tym momencie czasu? 26 Ciało spada swoodnie z wysoości h Na jaiej wysoości znajdzie się ciało po upływie 1/4 czasu spadania? Dane jest przyspieszenie grawitacyjne g 27 Znaleźć czas po upływie tórego prędość ciała wyrzuconego uośnie pod ątem α do poziomu z prędością początową v 0 utworzy z poziomem ąt β Dane jest przyspieszenie ziemsie g 28 Posługując się poniższym wyresem narysować zależność a(t) oraz s(t) dla przedziałów czasu: 0-2 s, 2-4 s, 4-6 s v [m/s] t [s] 29 Czy prawdziwe jest twierdzenie że zasięgi w rzucie uośnym dla ątów różniących się od π/4 o tę samą wartość są równe Podać uzasadnienie podanej odpowiedzi 30 Kamień wyrzucono pod ątem α = 30 do poziomu z prędością v 0 = 10 m/s Oliczyć najmniejszą odległość L między miejscem wyrzutu i miejscem w tórym znajdzie się amień po upływie czasu t = 4 s od rzutu 31 Wyazać, że w ruchu jednostajnie przyspieszonym stosune dróg przeywanych w olejnych taich samych odstępach czasu jest równy 1 : 3 : 5 : 7 : 32 Oliczyć stosune prędości uli spadającej swoodnie w puncie znajdującym się w połowie wysoości i na ońcu drogi spadania 33 Z helioptera wznoszącego się pionowo ze stałą prędością na wysoości 400 m

6 wypadł przedmiot Narysować wyres odległości od ziemi H(t) od momentu opuszczenia helioptera przez przedmiot

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu

KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu KINEMATYKA Zad.1 Pierwszą połowę drogi pojazd przebył z szybkością V 1 =72 km/h, a drugą z szybkością V 2 =90km/h. Obliczyć średnią szybkość pojazdu na trasie. Na wykresie szybkości przedstawić geometrycznie

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód?

Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? Segment A.I Kinematyka I Przygotował: dr Łukasz Pepłowski. Zad. 1 Samochód przejechał drogę s = 15 km w czasie t = 10 min ze stałą prędkością. Z jaką prędkością v jechał samochód? v = s/t, 90 km/h. Zad.

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku

Bardziej szczegółowo

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli. 1. Pocisk wystrzelony poziomo leciał t k = 10 *s+, spadł w odległości S = 600 *m+. Oblicz prędkośd początkową pocisku V0 =?, i z jakiej wysokości został wystrzelony, jak daleko zaleciałby ten pocisk, gdyby

Bardziej szczegółowo

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Wstęp do Fizyki I (B+C) Wykład III: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny Pojęcia podstawowe

Bardziej szczegółowo

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni.

Część I. MECHANIKA. Wykład KINEMATYKA PUNKTU MATERIALNEGO. Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni. Część I. MECHANIKA Wykład.. KINEMATYKA PUNKTU MATERIALNEGO Ruch jednowymiarowy Ruch na płaszczyźnie i w przestrzeni 1 KINEMATYKA PUNKTU MATERIALNEGO KINEMATYKA zajmuje się opisem ruchu ciał bez rozpatrywania

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t)

Zadanie 2 Narysuj wykres zależności przemieszczenia (x) od czasu(t) dla ruchu pewnego ciała. m Ruch opisany jest wzorem x( t) KINEMATYKA Zadanie 1 Na spotkanie naprzeciw siebie wyszło dwóch kolegów, jeden szedł z prędkością 2m/s, drugi biegł z prędkością 4m/s po prostej drodze. Spotkali się po 10s. W jakiej maksymalnej odległości

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO

09-TYP-2015 DYNAMIKA RUCHU PROSTOLINIOWEGO Włodzimierz Wolczyński 09-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY DYNAMIKA RUCHU PROSTOLINIOWEGO Obejmuje działy u mnie wyszczególnione w konspektach jako 01 WEKTORY,

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

KINEMATYKA czyli opis ruchu. Marian Talar

KINEMATYKA czyli opis ruchu. Marian Talar KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje

Bardziej szczegółowo

SPRAWDZIAN Nr 1 (wersja A)

SPRAWDZIAN Nr 1 (wersja A) SPRAWDZIAN Nr 1 (wersja A) 1. Parasol leżący na fotelu jadącego samochodu względem tego samochodu Ojest w ruchu spoczywa względem szosy, po której jedzie samochód x (m)n Qjest w ruchu spoczywa 4^> 2. Chłopiec

Bardziej szczegółowo

Ruch jednostajny prostoliniowy

Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Rozdział 2. Kinematyka

Rozdział 2. Kinematyka Rozdział. Kinematyka 018 Spis treści Ruch jednowymiarowy Ruch na płaszczyźnie Rzut ukośny Ruch jednostajny po okręgu Ruch przyspieszony po okręgu Ruch krzywoliniowy Ruch jednowymiarowy Dział Fizyki zajmujący

Bardziej szczegółowo

Rodzaje zadań w nauczaniu fizyki

Rodzaje zadań w nauczaniu fizyki Jan Tomczak Rodzaje zadań w nauczaniu fizyki Typologia zadań pisemnych wg. prof. B. Niemierki obejmuje 2 rodzaje, 6 form oraz 15 typów zadań. Rodzaj: Forma: Typ: Otwarte Rozszerzonej odpowiedzi - czynności

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

ZADANIA Z KINEMATYKI

ZADANIA Z KINEMATYKI ZADANIA Z KINEMATYKI 1. Określ na poszczególnych przykładach czy względem określonego układu odniesienia ciało jest w ruchu, czy w spoczynku: a) kubek stojący na stole względem stołu b) kubek stojący na

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych

Wstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej:

- obliczyć względne procentowe odchylenie otrzymanej wartości od wartości tablicowej: Kila uwa: - Doświadczenia przeprowadzay w rupach - osobowych (nie więszych), jedna w raach rupy ażdy suden wyonuje swoje osobne poiary i obliczenia. - Na zajęcia przychodziy z wydruowanyi wybranyi ćwiczeniai

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Zależność prędkości od czasu

Zależność prędkości od czasu prędkość {km/h} KINEMATYKA ruch jednostajny i przyspieszony 1. Na trasie z Olesna do Poznania kursuje autobus pospieszny i osobowy. Autobus zwykły wyjechał o 8 00 i jechał ze średnią prędkością 40 km/h.

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski Ruch prostoliniowy zmienny dr inż. Romuald Kędzierski Przypomnienie Szybkość średnia Wielkość skalarna definiowana, jako iloraz przebytej drogi i czasu, w którym ta droga została przebyta. Uwaga: Szybkość

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

Przykładowe zdania testowe I semestr,

Przykładowe zdania testowe I semestr, Przykładowe zdania testowe I semestr, 2015-2016 Rozstrzygnij, które z podanych poniżej zdań są prawdziwe, a które nie. Podstawy matematyczno-fizyczne. Działania na wektorach. Zagadnienia kluczowe: Układ

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu:

Wykład 2. Kinematyka. Podstawowe wielkości opisujące ruch. W tekście tym przedstawię podstawowe pojecia niezbędne do opiosu ruchu: Wykład 2. Kinematyka. Aby prześledzić tok tego wykładu MUSISZ rozumieć pojęcie wektora, jego składowych w układzie kartezjańskim oraz w trakcie wykładu zrozumieć intuicyjnie pojęcie pochodnej funkcji jednej

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny

Bardziej szczegółowo

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 MARCA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) ( 5 Liczba 3 4 2 1 2

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI Zadania zamknięte (0- pkt) Zadanie Jeżeli a = log 6 to a jest równe: 4 A. B. C. - Zadanie Warunek x ; 8 jest rozwiązaniem nierówności: A. x + 5 > B. x 5 C. x 5 x + 5 Zadanie Wskaż warunek, który opisuje

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Elżbieta Bagińska-Stawiarz. Fotografia na okładce: Agencja East News sp. z o. o. Skład (T E X): Ryszard Kubiak ISBN

Elżbieta Bagińska-Stawiarz. Fotografia na okładce: Agencja East News sp. z o. o. Skład (T E X): Ryszard Kubiak ISBN Redakcja: Elżbieta Bagińska-Stawiarz Projekt okładki: Agnieszka Żelewska Fotografia na okładce: Agencja East News sp. z o. o. Rysunki: Katarzyna Micun Skład (T E X): Ryszard Kubiak ISBN 83 85694 45 5 Copyright

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3. Włodzimierz Wolczyński 05 DYNAMIKA II zasada dynamiki Newtona Ruch prostoliniowy. Siła i ruch. Zakładamy, że F=const i m=const. I siła może być: F 1. F>0 Czyli zwrot siły zgodny ze zwrotem prędkości a=const

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A05 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Ułamek 5+2 5 2 ma wartość: A.

Bardziej szczegółowo

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego)

09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia)

Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia) Analiza Matematyczna F1 dla Fizyków na WPPT Lista zadań 4, 2018/19z (zadania na ćwiczenia) (Na podstawie podręcznika M. Gewert, Z. Skoczylas, Analiza Matematyczna 1. Przykłady i zadania, GiS 2008) 4 Pochodne

Bardziej szczegółowo

Lista 1. Prędkość średnia

Lista 1. Prędkość średnia Lista 1 Prędkość średnia 22. Rowerzyści w czasie wycieczki rejestrowali swoją prędkość. a) Rowerzysta A godzinę jechał z prędkością v 1 = 25 km/h podczas drugiej na skutek zmęczenia jechał z prędkością

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Opracowanie: mgr Jerzy Pietraszko

Opracowanie: mgr Jerzy Pietraszko Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4

= 10 m/s i zatrzymał się o l = 20 m od miejsca uderzenia. Współczynnik tarcia krążka o lód wynosi a. 0,25 b. 0,3 c. 0,35 d. 0,4 Imię i nazwiso Daa Klasa Grupa A Sprawdzian 3 PracA, moc, energia mechaniczna 1. Ze sojącego działa o masie 1 wysrzelono pocis o masie 1 g. nergia ineyczna odrzuu działa w chwili, gdy pocis opuszcza lufę

Bardziej szczegółowo

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z.

A = (A X, A Y, A Z ) A X i + A Y j + A Z k A X e x + A Y e y + A Z e z wektory jednostkowe: i e x j e y k e z. Ćwiczenia rachunkowe z fizyki dla I roku Transport Morski. Zestaw zadań nr 1. Zestaw 1. Wielkości i jednostki. Wektory. Zapisać w jednostkach układu SI: 2 doby; 14 minut;2,5 godz.; 3 000 lat; 3 MM (mile

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Analiza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x

Analiza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x Analiza B II zadania Oblicz granicę n cos n n Udowodnij wzór dla mπ 3 Udowodnij że szereg + n = cos = sin(n + sin cos n sin n jest zbieżny warunowo 4 Wyprowadź wzory (sin = cos (cos = sin 5 Wyaż że funcje

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).

Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E). Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną

Bardziej szczegółowo

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ.

Bardziej szczegółowo